Soil Mesofauna Responses to Fire Severity in a Sclerophyllous Forest in Central Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Soil Characteristics
2.2. Remote Sensing Data and Experimental Design
2.3. Soil Sampling and Processing
2.4. Species Identification and Biodiversity Analysis
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bardgett, R.D.; Van Der Putten, W.H. Belowground biodiversity and ecosystem functioning. Nature 2014, 515, 505–511. [Google Scholar] [CrossRef]
- Briones, M.J. The serendipitous value of soil fauna in ecosystem functioning: The unexplained explained. Front. Environ. Sci. 2018, 6, 149. [Google Scholar] [CrossRef]
- Graham, E.B.; Knelman, J.E.; Schindlbacher, A.; Siciliano, S.; Breulmann, M.; Yannarell, A.; Beman, J.; Abell, G.; Philippot, L.; Prosser, J. Microbes as engines of ecosystem function: When does community structure enhance predictions of ecosystem processes? Front. Microbiol. 2016, 7, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenbeis, G. Biology of soil invertebrates. In Intestinal Microorganisms of Termites and Other Invertebrates; König, H., Varma, A., Eds.; Springer: Berlin, Germany, 2006; pp. 3–53. [Google Scholar]
- Lavelle, P.; Spain, A. Soil Ecology; Kluwer Academic Publishers: New York, NY, USA, 2001; p. 654. [Google Scholar]
- Eisenbeis, G.; Wichard, W. Atlas on the Biology of Soil Arthropods; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Brussaard, L.; De Ruiter, P.C.; Brown, G.G. Soil biodiversity for agricultural sustainability. Agric. Ecosyst. Environ. 2007, 121, 233–244. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F.; Wyckhuys, K. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemink, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality–A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Socarrás, A. Mesofauna edáfica: Indicador biológico de la calidad del suelo. Forrajes 2013, 36, 5–13. [Google Scholar]
- Riaño, D.; Ruiz, J.; Martínez, J.; Ustin, S. Burned area forecasting using past burned area records and Southern Oscillation Index for tropical Africa (1981–1999). Remote Sens. Environ. 2007, 107, 571–581. [Google Scholar] [CrossRef]
- De Santis, A.; Chuvieco, E. GeoCBI: A modified version of the Composite Burn Index for the initial assessment of the short-term burn severity from remotely sensed data. Remote Sens. Environ. 2009, 113, 554–562. [Google Scholar] [CrossRef]
- Brewer, C.K.; Winne, J.C.; Redmond, R.L.; Opitz, D.W.; Mangrich, M.V. Classifying and mapping wildfire severity. Photogramm. Eng. Remote Sens. 2005, 71, 1311–1320. [Google Scholar] [CrossRef] [Green Version]
- Key, C.H. Ecological and sampling constraints on defining landscape fire severity. Fire Ecol. 2006, 2, 34–59. [Google Scholar] [CrossRef]
- Bengtsson, J. Disturbance and resilience in soil animal communities. Eur. J. Soil Biol. 2002, 38, 119–125. [Google Scholar] [CrossRef]
- Arellano, S.; Vega, J.A.; Rodríguez y Silva, F.; Fernández, C.; Vega-Nieva, D.; Álvarez-González, J.G.; Ruiz-González, A.D. Validación de los índices de teledetección dNBR y RdNBR para determinar la severidad del fuego en el incendio forestal de Oia-O Rosal (Pontevedra) en 2013. Rev. Teledetección 2017, 49, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Fernández, I.; Morales, N.; Olivares, L.; Salvatierra, J.; Gómez, M.; Montenegro, G. Restauración Ecológica Para Ecosistemas Nativos Afectados por Incendios Forestales; Pontificia Universidad Católica de Chile: Santiago, Chile, 2010; p. 162. [Google Scholar]
- Wikars, L.-O.; Schimmel, J. Immediate effects of fire-severity on soil invertebrates in cut and uncut pine forests. For. Ecol. Manag. 2001, 141, 189–200. [Google Scholar] [CrossRef]
- De la Barrera, F.; Barraza, F.; Favier, P.; Ruiz, V.; Quense, J. Megafires in Chile 2017: Monitoring multiscale environmental impacts of burned ecosystems. Sci. Total Environ. 2018, 637, 1526–1536. [Google Scholar] [CrossRef] [PubMed]
- Úbeda, X.; Sarricolea, P. Wildfires in Chile: A review. Glob. Planet. Chang. 2016, 146, 152–161. [Google Scholar] [CrossRef]
- Westerling, A.L. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150178. [Google Scholar] [CrossRef]
- Key, C.; Benson, N. Landscape Assessment: Ground Measure of Severity, the Composite Burn Index; and Remote Sensing of Severity, the Normalized Burn Ratio; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; p. 55. [Google Scholar]
- Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 2007, 109, 66–80. [Google Scholar] [CrossRef]
- Parson, A.; Robichaud, P.R.; Lewis, S.A.; Napper, C.; Clark, J.T. Field Guide for Mapping Post-Fire Soil Burn Severity; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2010; p. 49. [Google Scholar]
- Boucher, J.; Beaudoin, A.; Hébert, C.; Guindon, L.; Bauce, É. Assessing the potential of the differenced Normalized Burn Ratio (dNBR) for estimating burn severity in eastern Canadian boreal forests. Int. J. Wildland Fire 2016, 26, 32–45. [Google Scholar] [CrossRef]
- Filipponi, F. BAIS2: Burned Area Index for Sentinel-2; Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2018; p. 364. [Google Scholar]
- Lanorte, A.; Danese, M.; Lasaponara, R.; Murgante, B. Multiscale mapping of burn area and severity using multisensor satellite data and spatial autocorrelation analysis. Int. J. Appl. Earth Obs. Geoinf. 2013, 20, 42–51. [Google Scholar] [CrossRef]
- Parks, S.A.; Dillon, G.K.; Miller, C. A new metric for quantifying burn severity: The relativized burn ratio. Remote Sens. 2014, 6, 1827–1844. [Google Scholar] [CrossRef] [Green Version]
- Klinger, R.; Brooks, M. Alternative pathways to landscape transformation: Invasive grasses, burn severity and fire frequency in arid ecosystems. J. Ecol. 2017, 105, 1521–1533. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Baig, M.H.A.; Liu, S.; Wan, H.; Wu, T.; Yang, Y. Estimating the area burned by agricultural fires from Landsat 8 Data using the Vegetation Difference Index and Burn Scar Index. Int. J. Wildland Fire 2018, 27, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Cansler, C.A.; McKenzie, D. How robust are burn severity indices when applied in a new region? Evaluation of alternate field-based and remote-sensing methods. Remote Sens. 2012, 4, 456–483. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.D.; Quayle, B. Calibration and validation of immediate post-fire satellite-derived data to three severity metrics. Fire Ecol. 2015, 11, 12–30. [Google Scholar] [CrossRef]
- Storey, E.A.; Stow, D.A.; Roberts, D.A. Evaluating uncertainty in Landsat-derived postfire recovery metrics due to terrain, soil, and shrub type variations in southern California. GIScience Remote Sens. 2020, 57, 352–368. [Google Scholar] [CrossRef]
- Pressler, Y.; Moore, J.C.; Cotrufo, M.F. Belowground community responses to fire: Meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos 2019, 128, 309–327. [Google Scholar] [CrossRef]
- Zaitsev, A.S.; Gongalsky, K.B.; Malmström, A.; Persson, T.; Bengtsson, J. Why are forest fires generally neglected in soil fauna research? A mini-review. Appl. Soil Ecol. 2016, 98, 261–271. [Google Scholar] [CrossRef]
- Fontúrbel, T.; Carrera, N.; Vega, J.A.; Fernández, C. The Effect of Repeated Prescribed Burning on Soil Properties: A Review. Forests 2021, 12, 767. [Google Scholar] [CrossRef]
- González, M.E.; Gómez-González, S.; Lara, A.; Garreaud, R.; Díaz-Hormazábal, I. The 2010–2015 Megadrought and its influence on the fire regime in central and south-central Chile. Ecosphere 2018, 9, e02300. [Google Scholar] [CrossRef] [Green Version]
- Santibáñez, F.; Uribe, J. Atlas Agroclimático de Chile: Regiones VI y VII; Universidad de Chile: Santiago, Chile, 1993; p. 66. [Google Scholar]
- Luebert, F.; Pliscoff, P. Ecosistemas Terrestres. In Biodiversidad de Chile, Patrimonio y Desafíos, Ocho Libros; CONAMA, Ed.; Comisión Nacional del Medio Ambiente: Santiago, Chile, 2008; pp. 74–87. [Google Scholar]
- Castillo, M.; Plaza, Á.; Garfias, R. A recent review of fire behavior and fire effects on native vegetation in Central Chile. Glob. Ecol. Conserv. 2020, 24, e01210. [Google Scholar] [CrossRef]
- Reyes, G.; Zamora, G.; Torres, P.; Salinas, C. Estudio Agrológico Región Del Maule. Descripción de Suelos Materiales y Símbolos, 2012. Sobre Ortoimágenes a Escala de Salida 1:10.000; 9569365048; Centro de Información de Recursos Naturales: Santiago, Chile, 2012; p. 32. [Google Scholar]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- ESA. Copernicus Open Access Hub. Sentinels Scientific Data Available. Available online: https://scihub.copernicus.eu/ (accessed on 15 November 2018).
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 Sen2Cor: L2A processor for users. In Proceedings of the Proceedings Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; pp. 1–8. [Google Scholar]
- Team, Q.D. QGIS Geographic Information System; QGIS Association: Beaverton, OR, USA, 2018. [Google Scholar]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Swift, M.; Bignell, D. Standard Methods for Assessment of Soil Biodiversity and Land Use Practice; International Centre for Research in Agroforestry, Southeast Asian Regional Research Programme: Bogor, Indonesia, 2001. [Google Scholar]
- Sandler, R.V.; Falco, L.B.; Di Ciocco, C.; De Luca, R.; Coviella, C.E. Eficiencia del embudo Berlese-Tullgren para extracción de artrópodos edáficos en suelos Argiudoles típicos de la provincia de Buenos Aires. Cienc. Del Suelo 2010, 28, 1–7. [Google Scholar]
- Oliver, I.; Beattie, A.J. A possible method for the rapid assessment of biodiversity. Conserv. Biol. 1993, 7, 562–568. [Google Scholar] [CrossRef]
- Villareal, H.; Álvarez, M.; Córdoba-Córdoba, S.; Escobar, F.; Fagua, G.; Gast, F.; Mendoza-Cifuentes, H.; Ospina, M.; Umaña, A. Manual de Métodos Para el Desarrollo de Inventarios de Biodiversidad; Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt: Bogotá, Colombia, 2004; p. 238. [Google Scholar]
- Magurran, A.E. Measuring Biological Diversity; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Field, J.; Clarke, K.; Warwick, R. A practical strategy for analysing multispecies distribution patterns. Mar. Ecol. Prog. Ser. 1982, 8, 37–52. [Google Scholar] [CrossRef]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis; Pearson: London, UK, 2014; Volume 6. [Google Scholar]
- Kruskal, J.B.; Wish, M. Multidimensional Scaling; Sage Publications: Newbury Park, CA, USA, 1978; p. 93. [Google Scholar]
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Clarke, K.R.; Warwick, R.M. Similarity-based testing for community pattern: The two-way layout with no replication. Mar. Biol. 1994, 118, 167–176. [Google Scholar] [CrossRef]
- Martella, M.; Trumper, E.; Bellis, L.; Renison, D.; Giordano, P.; Bazzano, G.; Gleiser, R. Manual de Ecología. Evaluación de la biodiversidad. Reduca (Biología) 2012, 5, 71–115. [Google Scholar]
- Pla, L. Biodiversidad: Inferencia basada en el índice de Shannon y la riqueza. Interciencia 2006, 31, 583–590. [Google Scholar]
- Buckingham, S.; Murphy, N.; Gibb, H. The effects of fire severity on macroinvertebrate detritivores and leaf litter decomposition. PLoS ONE 2015, 10, e0124556. [Google Scholar] [CrossRef] [Green Version]
- Camero, E.R.; Chamorro, C.B. La fauna edáfica en bosques y plantaciones de coníferas de la Estación San Lorenzo-Sierra Nevada de Santa Marta. Acta Biológica Colomb. 1999, 4, 35–45. [Google Scholar]
- Coyle, D.R.; Nagendra, U.J.; Taylor, M.K.; Campbell, J.H.; Cunard, C.E.; Joslin, A.H.; Mundepi, A.; Phillips, C.A.; Callaham, M.A., Jr. Soil fauna responses to natural disturbances, invasive species, and global climate change: Current state of the science and a call to action. Soil Biol. Biochem. 2017, 110, 116–133. [Google Scholar] [CrossRef]
- Lindo, Z.; Visser, S. Microbial biomass, nitrogen and phosphorus mineralization, and mesofauna in boreal conifer and deciduous forest floors following partial and clear-cut harvesting. Can. J. For. Res. 2003, 33, 1610–1620. [Google Scholar] [CrossRef]
- Culliney, T.W. Role of arthropods in maintaining soil fertility. Agriculture 2013, 3, 629–659. [Google Scholar] [CrossRef] [Green Version]
- Frouz, J. Effects of soil macro-and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 2018, 332, 161–172. [Google Scholar] [CrossRef]
- Lavelle, P.; Decaëns, T.; Aubert, M.; Barot, S.b.; Blouin, M.; Bureau, F.; Margerie, P.; Mora, P.; Rossi, J.-P. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 2006, 42, S3–S15. [Google Scholar] [CrossRef]
- Iturrondobeitia, C.; Subías, L. Orden Oribatida (=Cryptostigmata). Rev. IDE@-SEA 2015, 16, 1–17. [Google Scholar]
- Ferragut, F. Orden Prostigmata. Rev. IDE@-SEA 2015, 14, 1–8. [Google Scholar]
- Moraza, M.; Balanzategui, I. Orden Mesostigmata. Rev. IDE@-SEA 2015, 12, 1–16. [Google Scholar]
- Kamczyc, J.; Urbanowski, C.; Pers-Kamczyc, E. Mite communities (Acari: Mesostigmata) in young and mature coniferous forests after surface wildfire. Exp. Appl. Acarol. 2017, 72, 145–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sileshi, G.; Mafongoya, P. The short-term impact of forest fire on soil invertebrates in the miombo. Biodivers. Conserv. 2006, 15, 3153–3160. [Google Scholar] [CrossRef]
- Arroyo, M.K.; Armesto, J.J.; Rozzi, R.; Peñaloza, A. Bases de la sustentabilidad ecológica y sus implicaciones para el manejo y conservación del bosque nativo en Chile. In Silvicultura de Los Bosques Nativos de Chile; Lara, C., Donoso, C., Eds.; Editorial Universitaria: Santiago, Chile, 1999; pp. 35–60. [Google Scholar]
Soil Arthropods Mesofauna | Severity | Treatment | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No Damage | Low | Medium | High | |||||||||
RTUs | Abundance | % | RTUs | Abundance | % | RTUs | Abundance | % | RTUs | Abundance | % | |
Arachnida | ||||||||||||
Acari | ||||||||||||
Sarcoptiformes | 6 | 62 | 9.27 | 7 | 20 | 2.79 | 3 | 14 | 3.36 | 1 | 1 | 0.70 |
Mesostigmata | 9 | 137 | 20.48 | 9 | 90 | 12.55 | 7 | 67 | 16.07 | 6 | 33 | 23.24 |
Oribatida | 18 | 288 | 43.05 | 21 | 252 | 35.15 | 24 | 207 | 49.64 | 7 | 23 | 16.20 |
Trombidiformes | 5 | 6 | 0.90 | 5 | 36 | 5.02 | 6 | 29 | 6.95 | 4 | 33 | 23.24 |
Other Acari | 2 | 48 | 7.17 | 2 | 21 | 2.93 | 2 | 7 | 1.68 | 7 | 9 | 6.34 |
Araneae | 1 | 2 | 0.30 | 1 | 1 | 0.14 | 0 | 0 | 0 | 0 | 0 | 0 |
Pseudoscorpionida | 1 | 8 | 1.20 | 1 | 7 | 0.98 | 1 | 15 | 3.60 | 0 | 0 | 0 |
Hexapoda | ||||||||||||
Ectognatha | ||||||||||||
Coleoptera | 3 | 20 | 2.99 | 1 | 4 | 0.56 | 3 | 4 | 0.96 | 3 | 7 | 4.93 |
Diptera | 3 | 13 | 1.94 | 4 | 76 | 10.60 | 2 | 4 | 0.96 | 0 | 0 | 0 |
Hemiptera | 0 | 0 | 0 | 1 | 1 | 0.14 | 2 | 2 | 0.48 | 0 | 0 | 0 |
Hymenoptera | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 1 | 2 | 1.41 |
Isopoda | 0 | 0 | 0 | 1 | 1 | 0.14 | 1 | 1 | 0.24 | 0 | 0 | 0 |
Lepidoptera | 1 | 1 | 0.15 | 1 | 1 | 0.14 | 0 | 0 | 0.00 | 1 | 1 | 0.70 |
Protura | 0 | 0 | 0 | 1 | 37 | 5.16 | 1 | 7 | 1.68 | 1 | 1 | 0.70 |
Psocoptera | 3 | 4 | 0.60 | 1 | 1 | 0.14 | 2 | 8 | 1.92 | 3 | 10 | 7.04 |
Thysanoptera | 1 | 1 | 0.15 | 0 | 0 | 0 | 1 | 1 | 0.24 | 1 | 3 | 2.11 |
Entognatha | ||||||||||||
Collembola | 9 | 45 | 6.73 | 19 | 137 | 19.11 | 6 | 37 | 8.87 | 5 | 19 | 13.38 |
Diplura | 2 | 9 | 1.35 | 1 | 4 | 0.56 | 1 | 2 | 0.48 | 0 | 0 | 0 |
Myriapoda | ||||||||||||
Chilopoda | 1 | 17 | 2.54 | 1 | 11 | 1.53 | 1 | 12 | 2.88 | 0 | 0 | 0 |
Symphyla | 1 | 8 | 1.20 | 2 | 17 | 2.37 | 0 | 0 | 0 | 0 | 0 | 0 |
Total | 66 | 669 | 100 | 79 | 717 | 100 | 63 | 417 | 100 | 40 | 142 | 100 |
Bray–Curtis | Jaccard | |||
---|---|---|---|---|
Paired Comparison | R | p-Value | R | p-Value |
ND vs. L | −0.2593 | 0.7986 | −0.0741 | 0.7973 |
ND vs. M | −0.0741 | 0.6978 | 0.0020 | 0.5992 |
ND vs. H | 0.5185 | 0.0989 | 0.7407 | 0.1031 |
L vs. M | −0.2222 | 0.8034 | 0.0001 | 0.4057 |
L vs. H | 0.4444 | 0.7986 | 0.9630 | 0.0995 |
M vs. H | 0.2963 | 0.2018 | 0.8704 | 0.0988 |
Severity Level | Taxa | Abundance | Dominance | Simpson Index | Shannon Index | Evenness |
---|---|---|---|---|---|---|
ND | 11.0 ± 1.52 a | 222.3 ± 108.0 a | 0.23 ± 0.06 a | 0.77 ± 0.06 a | 1.81 ± 0.18 a | 0.60 ± 0.13 a |
L | 10.6 ± 1.76 a | 239.0 ± 106.0 a | 0.26 ± 0.04 a | 0.73 ± 0.04 a | 1.69 ± 0.10 a | 0.54 ± 0.09 a |
M | 10.6 ± 1.20 a | 139.0 ± 61.8 a | 0.29 ± 0.07 a | 0.71 ± 0.07 a | 1.66 ± 0.18 a | 0.52 ± 0.08 a |
H | 8.33 ± 1.33 a | 47.3 ± 14.3 b | 0.25 ± 0.08 a | 0.74 ± 0.08 a | 1.65 ± 0.24 a | 0.66 ± 0.11 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Huerta, R.; Morales, C.; Gajardo, J.; Mundaca, E.A.; Yáñez, M. Soil Mesofauna Responses to Fire Severity in a Sclerophyllous Forest in Central Chile. Forests 2021, 12, 1444. https://doi.org/10.3390/f12111444
Castro-Huerta R, Morales C, Gajardo J, Mundaca EA, Yáñez M. Soil Mesofauna Responses to Fire Severity in a Sclerophyllous Forest in Central Chile. Forests. 2021; 12(11):1444. https://doi.org/10.3390/f12111444
Chicago/Turabian StyleCastro-Huerta, Ricardo, Carolina Morales, John Gajardo, Enrique A. Mundaca, and Marco Yáñez. 2021. "Soil Mesofauna Responses to Fire Severity in a Sclerophyllous Forest in Central Chile" Forests 12, no. 11: 1444. https://doi.org/10.3390/f12111444
APA StyleCastro-Huerta, R., Morales, C., Gajardo, J., Mundaca, E. A., & Yáñez, M. (2021). Soil Mesofauna Responses to Fire Severity in a Sclerophyllous Forest in Central Chile. Forests, 12(11), 1444. https://doi.org/10.3390/f12111444