Different Responses of Evapotranspiration Rates of Urban Lawn and Tree to Meteorological Factors and Soil Water in Hot Summer in a Subtropical Megacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Meteorological and Soil Water Content Measurements
2.3. ETlawn and Ttree Measurement
2.4. Data Analysis and Parameter Calculation
3. Results
3.1. Meteorological Factors and Soil Water Conditions
3.2. Responses of Diurnal ETlawn and Ttree to Meteorological Factors and Soil Water
3.3. Responses of Daily ETlawn and Ttree to Meteorological Factors and Soil Water
4. Discussion
4.1. Intensities of ETlawn and Ttree
4.2. Response of ETlawn and Ttree to Meteorological Factors
4.3. Response of ETlawn and Ttree to Soil Water
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- DiGiovanni, K.; Montalto, F.; Gaffin, S.; Rosenzweig, C. Applicability of classical predictive equations for the estimation of evapotranspiration from urban green spaces: Green roof results. J. Hydrol. Eng. 2013, 18, 99–107. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, W.Y. Ecosystem services and valuation of urban forests in China. Cities 2009, 26, 187–194. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, W.Y. Assessing the ecosystem service of air pollutant removal by urban trees in Guangzhou. J. Environ. Manag. 2008, 88, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.S.; Shen, S.L.; Yue, L.; Zhou, A.N. Design of Sponge City: Lessons learnt from an ancient drainage system in Ganzhou, China. J. Hydrol. 2018, 563, 900–908. [Google Scholar] [CrossRef]
- Yu, C.; Hien, W.N. Thermal benefits of city parks. Energy Build. 2006, 38, 105–120. [Google Scholar] [CrossRef]
- Ca, V.T.; Asaeda, T.; Abu, E.M. Reductions in air conditioning energy caused by a nearby park. Energy Build. 1998, 29, 83–92. [Google Scholar] [CrossRef]
- Chandler, T.J. Urban Climatology and Its Relevance to Urban Design. In Technical Note No. 149; Secretariat of the World Meteorological Organisation: Geneva, Switzerland, 1976. [Google Scholar]
- Di, S.; Li, Z.; Tang, R.; Pan, X.; Liu, H.; Niu, Y. Urban green space classification and water consumption analysis with remote-sensing technology: A case study in Beijing, China. Int. J. Remote Sens. 2019, 40, 1909–1929. [Google Scholar] [CrossRef]
- Litvak, E.; Mccarthy, H.R.; Pataki, D.E. A method for estimating transpiration of irrigated urban trees in California. Landsc. Urban Plan. 2017, 158, 48–61. [Google Scholar] [CrossRef] [Green Version]
- Grimmond, C.S.B. The suburban energy balance: Methodological considerations and results for a mid-latitude west coast city under winter and spring conditions. Int. J. Climatol. 2010, 12, 481–497. [Google Scholar] [CrossRef]
- Oke, T.R.; Zeuner, G.; Jauregui, E. The surface energy balance in Mexico City. Atmos. Environ. 1992, 26, 433–444. [Google Scholar] [CrossRef]
- Spronken-Smith, R.A.; Oke, T.R.; Lowry, W.P. Advection and the surface energy balance across an irrigated urban park. Int. J. Climatol. 2000, 20, 1033–1047. [Google Scholar] [CrossRef]
- Wang, C.; Yang, J.; Myint, S.W.; Wang, Z.; Tong, B. Empirical modeling and spatio-temporal patterns of urban evapotranspiration for the Phoenix metropolitan area, Arizona. GISci. Remote Sens. 2016, 53, 778–792. [Google Scholar] [CrossRef]
- Tang, J.; Bolstad, P.V.; Ewers, B.E.; Desai, A.R.; Davis, K.J.; Carey, E.V. Sap flux-upscaled canopy transpiration, stomatal conductance, and water use efficiency in an old growth forest in the Great Lakes region of the United States. J. Geophys. Res.-Biogeosci. 2015, 111, G02009. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Santana, V.; David, T.S.; Martínez-Fernández, J. Environmental and plant-based controls of water use in a Mediterranean oak stand. For. Ecol. Manag. 2008, 255, 3707–3715. [Google Scholar] [CrossRef]
- Kim, S.J.; Kang, D.H.; Yu, H.; Kwon, B.H. Influence of Micrometeorological Factors for Actual Evapotranspiration in the Coastal Urban Area; AGU Fall Meeting: San Francisco, CA, USA, 2015. [Google Scholar]
- Tognetti, R.; D’Andria, R.; Morelli, G.; Alvino, A. The effect of deficit irrigation on seasonal variations of plant water use in Olea europaea L. Plant Soil 2005, 273, 139–155. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Biogeochemical C and N cycles in urban soils. Environ. Int. 2009, 35, 1–8. [Google Scholar] [CrossRef]
- Scalenghe, R.; Marsan, F.A. The anthropogenic sealing of soils in urban areas. Landsc. Urban Plan. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Richard, G.; Cousin, I.; Sillon, J.F.; Bruand, A.; Guérif, J. Effect of compaction on the porosity of a silty soil: Influence on unsaturated hydraulic properties. Eur. J. Soil Sci. 2001, 52, 49–58. [Google Scholar] [CrossRef]
- Horton, R.; Ankeny, M.D.; Allmaras, R.R. Effects of Compaction on Soil Hydraulic Properties. In Soil Compaction in Crop Production; Soane, B.D., van Ouwerkerk, C., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 141–165. [Google Scholar]
- Gregory, J.H.; Dukes, M.D.; Jones, P.H.; Miller, G.L. Effect of urban soil compaction on infiltration rate. J. Soil Water Conserv. 2006, 61, 117–124. [Google Scholar]
- Chen, L.; Zhang, Z.; Li, Z.; Tang, J.; Caldwell, P.; Zhang, W. Biophysical control of whole tree transpiration under an urban environment in Northern China. J. Hydrol. 2011, 402, 388–400. [Google Scholar] [CrossRef]
- Mitchell, P.J.; Veneklaas, E.; Lambers, H.; Burgess, S. Partitioning of evapotranspiration in a semi-arid eucalypt woodland in south-western Australia. Agric. For. Meteorol. 2009, 149, 25–37. [Google Scholar] [CrossRef]
- Gazal, R.M.; Scott, R.L.; Goodrich, D.C.; Williams, D.G. Controls on transpiration in a semiarid riparian cottonwood forest. Agric. For. Meteorol. 2006, 137, 56–67. [Google Scholar] [CrossRef]
- Voyde, E.; Fassman, E.; Simcock, R. Hydrology of an extensive living roof under sub-tropical climate conditions in Auckland, New Zealand. J. Hydrol. 2010, 394, 384–395. [Google Scholar] [CrossRef]
- Tognetti, R.; Giovannelli, A.; Lavini, A.; Morelli, G.; Fragnito, F.; D’Andria, R. Assessing environmental controls over conductances through the soil–plant–atmosphere continuum in an experimental olive tree plantation of southern Italy. Agric. For. Meteorol. 2009, 149, 1229–1243. [Google Scholar] [CrossRef]
- O’Grady, A.P.; Worledge, D.; Battaglia, M. Constraints on transpiration of Eucalyptus globulus in southern Tasmania, Australia. Agric. For. Meteorol. 2008, 148, 453–465. [Google Scholar] [CrossRef]
- Johnson, T.D.; Belitz, K. A remote sensing approach for estimating the location and rate of urban irrigation in semi-arid climates. J. Hydrol. 2012, 414, 86–98. [Google Scholar] [CrossRef]
- Gober, P.; Brazel, A.J.; Quay, R.; Myint, S.; Grossman-Clarke, S.; Miller, A.; Rossi, S. Using Watered Landscapes to Manipulate Urban Heat Island Effects: How Much Water Will It Take to Cool Phoenix? J. Am. Plan. Assoc. 2009, 76, 109–121. [Google Scholar] [CrossRef]
- Kurc, S.A.; Small, E.E. Dynamics of evapotranspiration in semiarid grassland and shrubland ecosystems during the summer monsoon season, central New Mexico. Water Resour. Res. 2004, 40, W09305. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Oke, T.R. Evapotranspiration rates in urban areas. In Proceedings of the IUGG 99 Symposium HS5, Birmingham, UK, July 1999. [Google Scholar]
- Decker, J.P.; Gaylor, W.G.; Cole, F.D. Measuring transpiration of undisturbed tamarisk shrubs. Plant Physiol. 1962, 37, 393–397. [Google Scholar] [CrossRef] [Green Version]
- Oke, T.R. Advectively-assisted evapotranspiration from irrigated urban vegetation. Bound.-Layer Meteorol. 1979, 17, 167–173. [Google Scholar] [CrossRef]
- Colby, B.G.; Jacobs, K.L. Lessons for Semiarid Regions Facing Growth and Competition for Water. In Arizona Water Policy; Routledge: London, UK, 2010; pp. 243–258. [Google Scholar]
- Sabo, J.L.; Sinha, T.; Bowling, L.C.; Schoups, G.; Wallender, W.W.; Campana, M.E.; Cherkauer, K.A.; Fuller, P.L.; Graf, W.L.; Hopmans, J.W. Reclaiming freshwater sustainability in the Cadillac Desert. Proc. Natl. Acad. Sci. USA 2010, 107, 21263–21269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, R.G.; Sadler, E.J. Methods and technologies to improve efficiency of water use. Water Resour. Res. 2008, 44, 767–768. [Google Scholar] [CrossRef]
- Hilaire, R.S.; Arnold, M.A.; Wilkerson, D.C.; Devitt, D.A.; Hurd, B.H.; Lesikar, B.J.; Lohr, V.I.; Martin, C.A.; Mcdonald, G.V.; Morris, R.L.; et al. Efficient Water Use in Residential Urban Landscapes. Hortscience 2008, 43, 2081–2092. [Google Scholar] [CrossRef]
- Litvak, E.; Pataki, D.E. Evapotranspiration of urban lawns in a semi-arid environment: An in situ evaluation of microclimatic conditions and watering recommendations. J. Arid Environ. 2016, 134, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Nouri, H.; Beecham, S.; Kazemi, F.; Hassanli, A.M. A review of ET measurement techniques for estimating the water requirements of urban landscape vegetation. Urban Water J. 2013, 10, 247–259. [Google Scholar] [CrossRef]
- Sun, R.; Chen, L. How can urban water bodies be designed for climate adaptation? Landsc. Urban Plan. 2012, 105, 27–33. [Google Scholar] [CrossRef]
- Snyder, R.L.; Pedras, C.; Montazar, A.; Henry, J.M.; Ackley, D. Advances in ET-based landscape irrigation management. Agric. Water Manag. 2015, 147, 187–197. [Google Scholar] [CrossRef]
- Wang, H.; Ouyang, Z.; Chen, W.; Wang, X.; Hua, Z.; Ren, Y. Water, heat, and airborne pollutants effects on transpiration of urban trees. Environ. Pollut. 2011, 159, 2127–2137. [Google Scholar] [CrossRef]
- Hagishima, A.; Narita, K.I.; Tanimoto, J. Field experiment on transpiration from isolated urban plants. Hydrol. Process. 2007, 21, 1217–1222. [Google Scholar] [CrossRef]
- Van Bavel, C.; Fritschen, L.J.; Reeves, W.E. Transpiration by sudangrass as an externally controlled process. Science 1963, 141, 269–270. [Google Scholar] [CrossRef]
- Chen, S.; Chai, M.; Jia, Y.; Gao, Z.; Zhang, L.; Gu, M.; Lin, W.; Wang, L. In vitro selection of glyphosate-tolerant variants from long-term callus cultures of Zoysia matrella [L.] Merr. Plant Cell Tiss. Org. 2012, 111, 199–207. [Google Scholar] [CrossRef]
- Shu, C.; Chai, M.; Jia, Y.; Gao, Z.; Gu, M. In vitro selection of salt tolerant variants following 60Co gamma irradiation of long-term callus cultures of Zoysia matrella [L.] Merr. Plant Cell Tiss. Org. 2011, 107, 493–500. [Google Scholar] [CrossRef]
- Qiu, G.Y.; Yu, X.; Wen, H.; Yan, C. An advanced approach for measuring the transpiration rate of individual urban trees by the 3D three-temperature model and thermal infrared remote sensing. J. Hydrol. 2020, 587, 125034. [Google Scholar] [CrossRef]
- Qiu, G.; Tan, S.; Yue, W.; Yu, X.; Yan, C. Characteristics of Evapotranspiration of Urban Lawns in a Sub-Tropical Megacity and Its Measurement by the ‘Three Temperature Model + Infrared Remote Sensing’ Method. Remote Sens.-Basel 2017, 9, 502. [Google Scholar] [CrossRef] [Green Version]
- Bowen, I.S. The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev. 1926, 27, 779–787. [Google Scholar] [CrossRef] [Green Version]
- Perez, P.J.; Castellvi, F.; Ibanez, M.; Rosell, J.I. Assessment of reliability of Bowen ratio method for partitioning fluxes. Agric. For. Meteorol. 1999, 97, 141–150. [Google Scholar] [CrossRef]
- Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 1987, 3, 309–320. [Google Scholar] [CrossRef]
- Lu, P.; Urban, L.; Zhao, P. Granier’s thermal dissipation probe (TDP) method for measuring sap flow in trees: Theory and practice. J. Integr. Plant Biol. 2004, 46, 631–646. [Google Scholar]
- Granier, A.; Gross, P. Mesure du flux de sève brute dans le tronc du Douglas par une nouvelle méthode thermique. Ann. Des Sci. For. 1987, 44, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Zhang, Z.; Zha, T.; Mo, K.; Zhang, Y.; Fang, X. Soil water affects transpiration response to rainfall and vapor pressure deficit in poplar plantation. New For. 2014, 45, 235–250. [Google Scholar] [CrossRef]
- Gartner, K.; Nadezhdina, N.; Englisch, M.; Čermak, J.; Leitgeb, E. Sap flow of birch and Norway spruce during the European heat and drought in summer 2003. For. Ecol. Manag. 2009, 258, 590–599. [Google Scholar] [CrossRef] [Green Version]
- Snyder, K.A.; Richards, J.H.; Donovan, L.A. Night-time conductance in C3 and C4 species: Do plants lose water at night? J. Exp. Bot. 2003, 383, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Zeppel, M.; Lewis, J.D.; Chaszar, B.; Smith, R.A.; Medlyn, B.E.; Huxman, T.E.; Tissue, D.T. Nocturnal stomatal conductance responses to rising [CO2], temperature and drought. New Phytol. 2012, 193, 929–938. [Google Scholar] [CrossRef]
- Daley, M.J.; Phillips, N.G. Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest. Tree Physiol. 2006, 26, 411–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, J.B.; Baldocchi, D.D.; Misson, L.; Dawson, T.E.; Goldstein, A.H. What the towers don’t see at night: Nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California. Tree Physiol. 2007, 27, 597–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilos, M.; Stahl, C.; Burban, B.; Hérault, B.; Courtois, E.; Coste, S.; Wanger, F.; Ziegler, C.; Takagi, K.; Bonal, D. Interannual and Seasonal Variations in Ecosystem Transpiration and Water Use Efficiency in a Tropical Rainforest. Forests 2018, 10, 14. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.Y.; Qin, H.P.; Zhang, J.Y.; Hu, Y.C. An in-situ measurement method of evapotranspiration from typical LID facilities based on the three-temperature model. J. Hydrol. 2020, 588, 125105. [Google Scholar] [CrossRef]
- Yu, X.; Yang, Y.; Tan, S.; Li, R.; Qin, H.; Qiu, G. Evapotranspiration and its cooling effect of urban green roof. Chin. J. Environ. Eng. 2017, 11, 5333–5340. [Google Scholar] [CrossRef]
- Migliaccio, K.W.; Shoemaker, W.B. Estimation of urban subtropical bahiagrass (Paspalum notatum) evapotranspiration using crop coefficients and the eddy covariance method. Hydrol. Process. 2014, 28, 4487–4495. [Google Scholar] [CrossRef]
- Litvak, E.; Bijoor, N.S.; Pataki, D.E. Adding trees to irrigated turfgrass lawns may be a water-saving measure in semi-arid environments. Ecohydrology 2014, 7, 1314–1330. [Google Scholar] [CrossRef]
- Bastug, R.; Buyuktas, D. The effects of different irrigation levels applied in golf courses on some quality characteristics of turfgrass. Irrig. Sci. 2003, 22, 87–93. [Google Scholar] [CrossRef]
- Amgain, N.R.; Harris, D.K.; Thapa, S.B.; Martin, D.L.; Wu, Y.; Moss, J.Q. Evapotranspiration Rates of Turf Bermudagrasses under Nonlimiting Soil Moisture Conditions in Oklahoma. Crop Sci. 2018, 58, 1409–1415. [Google Scholar] [CrossRef] [Green Version]
- Peters, E.B.; Hiller, R.V.; Mc Fa Dden, J.P. Seasonal contributions of vegetation types to suburban evapotranspiration. J. Geophys. Res. Biogeosci. 2011, 116, G01003. [Google Scholar] [CrossRef]
- Pataki, D.E.; McCarthy, H.R.; Litvak, E.; Pincetl, S. Transpiration of urban forests in the Los Angeles metropolitan area. Ecol. Appl. 2011, 21, 661–677. [Google Scholar] [CrossRef] [Green Version]
- Asawa, T.; Kiyono, T.; Hoyano, A. Continuous measurement of whole-tree water balance for studying urban tree transpiration. Hydrol. Process. 2017, 31, 3056–3068. [Google Scholar] [CrossRef]
- Lubczynski, M.W.; Gurwin, J. Integration of various data sources for transient groundwater modeling with spatio-temporally variable fluxes—Sardon study case, Spain. J. Hydrol. 2005, 306, 71–96. [Google Scholar] [CrossRef]
- Jackson, R.B.; Jobbágy, E.G.; Avissar, R.; Roy, S.B.; Barrett, D.J.; Cook, C.W.; Farley, K.A.; Maitre, D.C.L.; McCarl, B.A.; Murray, B.C. Trading water for carbon with biological carbon sequestration. Science 2005, 310, 1944–1947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huxman, T.E.; Wilcox, B.P.; Breshears, D.D.; Scott, R.L.; Snyder, K.A.; Small, E.E.; Hultine, K.; Pockman, W.T.; Jackson, R.B. Ecohydrological implications of woody plant encroachment. Ecology 2005, 86, 308–319. [Google Scholar] [CrossRef]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Yimam, Y.T.; Ochsner, T.E.; Kakani, V.G. Evapotranspiration partitioning and water use efficiency of switchgrass and biomass sorghum managed for biofuel. Agr. Water Manag. 2015, 155, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Guan, H.; Wilson, J.L. A hybrid dual-source model for potential evaporation and transpiration partitioning. J. Hydrol. 2009, 377, 405–416. [Google Scholar] [CrossRef]
- Sutanto, S.J.; Wenninger, J.; Coenders-Gerrits, A.M.J.; Uhlenbrook, S. Partitioning of evaporation into transpiration, soil evaporation and interception: A comparison between isotope measurements and a HYDRUS-1D model. Hydrol. Earth Syst. Sci. 2012, 16, 2605–2616. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Xu, X.; Liu, M.; Zhang, Y.; Xu, C.; Yi, R.; Luo, W. Comparing evapotranspiration characteristics and environmental controls for three agroforestry ecosystems in a subtropical humid karst area. J. Hydrol. 2018, 563, 1042–1050. [Google Scholar] [CrossRef]
- Breuer, L.; Eckhardt, K.; Frede, H. Plant parameter values for models in temperate climates. Ecol. Model. 2003, 169, 237–293. [Google Scholar] [CrossRef]
- Schenk, H.J.; Jackson, R.B. The global biogeography of roots. Ecol. Monogr. 2002, 72, 311–328. [Google Scholar] [CrossRef]
- Zeng, X. Global Vegetation Root Distribution for Land Modeling. J. Hydrometeorol. 2001, 2, 525–530. [Google Scholar] [CrossRef]
- Scharenbroch, B.C.; Carter, D.; Bialecki, M.; Fahey, R.; Scheberl, L.; Catania, M.; Roman, L.A.; Bassuk, N.; Harper, R.W.; Werner, L.; et al. A rapid urban site index for assessing the quality of street tree planting sites. Urban For. Urban Green. 2017, 27, 279–286. [Google Scholar] [CrossRef]
- Sanders, J.R.; Grabosky, J.C. 20 years later: Does reduced soil area change overall tree growth? Urban For. Urban Green. 2014, 13, 295–303. [Google Scholar] [CrossRef]
- Day, S.D.; Bassuk, N.L. A review of the effects of soil compaction and amelioration techniques on landscape trees. J. Arboric. 1994, 20, 9–17. [Google Scholar]
- Monteith, J.I.L. Evaporation and Environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [PubMed]
- Penman, H.L. Natural Evaporation from Open Water, Bare Soil and Grass. Proc. R. Soc. Lond. 1948, 193, 120–145. [Google Scholar] [CrossRef] [Green Version]
- Aranda, I.; Forner, A.; Cuesta, B.; Valladares, F. Species-specific water use by forest tree species: From the tree to the stand. Agric. Water Manag. 2012, 114, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, P.G.; Mcnaughton, K.G. Stomatal control of transpiration: Scaling up from leaf to region. Adv. Ecol. Res. 1986, 15, 1–49. [Google Scholar] [CrossRef]
- Collatz, G.J. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agric. For. Meteorol. 1991, 54, 107–136. [Google Scholar] [CrossRef]
- Wen, D.Z. Ecophysiological Responses and Sensitivity of 39 Woody Species Exposed to Air Pollution. J. Trop. Subtrop. Bot. 2003, 11, 341–347. [Google Scholar]
- Li, G. The Photosynthesis and Water Use Efficiency of Eight Garden Tree Species. For. Res. 2002, 15, 291–296. [Google Scholar] [CrossRef]
- Konarska, J.; Holmer, B.; Lindberg, F.; Thorsson, S. Influence of vegetation and building geometry on the spatial variations of air temperature and cooling rates in a high latitude city. Int. J. Climatol. 2016, 36, 2379–2395. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, C.N.; Bühler, O.; Kristoffersen, P. Soil Water Dynamics and Growth of Street and Park Trees. Arboric. Urban For. 2007, 33, 231–245. [Google Scholar]
- Bühler, O.; Nielsen, C.N.; Kristoffersen, P. Growth and phenology of established street trees in response to different irrigation regimes. Arboric. Urban For. 2006, 32, 3–9. [Google Scholar]
Parameters | Sensors | Height (m) | Accuracy |
---|---|---|---|
Relative humidity | 225-050YA, NOVALYNX, Grass Valley, CA, USA | 2.0, 1.5 | ± 3%, ± 0.6 °C |
Air temperature | |||
Wind speed and wind direction | 200-WS-02, NOVALYNX, Grass Valley, CA, USA | 2 | ± 0.2 m s−1, ± 3° |
Solar radiation | PYP-PA, APOGEE, Santa Monica, CA, USA | 2 | 10~40 μV W−1 m−2 |
Net radiation | 240-100, NOVALYNX, Grass Valley, CA, USA | 2 | <4% |
Soil heat flux | HFP01, HUKSEFLUX, Center Moriches, NY, USA | −0.05, −0.02 | 50 μV W−1 m−2 |
Meteorological Factors/Water | Rs | VPD | WS | REW | |
---|---|---|---|---|---|
ETlawn | Whole period | 0.560 *** | 0.505 *** | 0.212 | −0.010 |
Water depletion period | 0.823 *** | 0.696 *** | −0.347 | 0.758 *** | |
Ttree | Whole period | −0.229 | 0.360 ** | −0.060 | 0.327 * |
Water depletion period | 0.059 | 0.520 ** | −0.417 * | 0.773 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Z.; Yan, C.; Yu, L.; Jiang, X.; Ding, J.; Ding, J.; Qiu, G. Different Responses of Evapotranspiration Rates of Urban Lawn and Tree to Meteorological Factors and Soil Water in Hot Summer in a Subtropical Megacity. Forests 2021, 12, 1463. https://doi.org/10.3390/f12111463
Zou Z, Yan C, Yu L, Jiang X, Ding J, Ding J, Qiu G. Different Responses of Evapotranspiration Rates of Urban Lawn and Tree to Meteorological Factors and Soil Water in Hot Summer in a Subtropical Megacity. Forests. 2021; 12(11):1463. https://doi.org/10.3390/f12111463
Chicago/Turabian StyleZou, Zhendong, Chunhua Yan, Leiyu Yu, Xianchenghao Jiang, Jinshan Ding, Junjie Ding, and Guoyu Qiu. 2021. "Different Responses of Evapotranspiration Rates of Urban Lawn and Tree to Meteorological Factors and Soil Water in Hot Summer in a Subtropical Megacity" Forests 12, no. 11: 1463. https://doi.org/10.3390/f12111463
APA StyleZou, Z., Yan, C., Yu, L., Jiang, X., Ding, J., Ding, J., & Qiu, G. (2021). Different Responses of Evapotranspiration Rates of Urban Lawn and Tree to Meteorological Factors and Soil Water in Hot Summer in a Subtropical Megacity. Forests, 12(11), 1463. https://doi.org/10.3390/f12111463