Assessing Genetic Variation in Resistance to Pinewood Nematode (Bursaphelenchus xylophilus) in Pinus radiata D. Don Half-Sib Families
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Pinewood Nematode Culture and Inoculation Procedure
2.3. Pre-Inoculation Variables
2.4. Wilting Symptom Assessment and Survival
2.5. Nematode Quantification
2.6. Chemical Compounds Analysis
2.7. Statistical Analysis
3. Results
3.1. Pre-Inoculation Variables
3.2. Disease-Related Variables
3.3. Genotype by Environment Interaction
3.4. Nematodes
3.5. Correlations
3.6. Chemical Compounds
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ledig, F.T.; Vargas-Hernández Jesús, J.; Johnsen, H.K. The conservation of forest genetic resources: Case histories from Canada, Mexico, and the United States. J. For. 1998, 96, 32–41. [Google Scholar]
- MITECO. Anuario de Estadística Forestal 2019; Ministerio fpara la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2020. [Google Scholar]
- Mota, M.M.; Futai, K.; Vieira, P. Pine wilt disease and the pinewood nematode, Bursaphelenchus xylophilus. In Integrated Management of Fruit Crops Nematodes; Ciancio, A., Mukerji, K.G., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 253–274. ISBN 978-1-4020-9858-1. [Google Scholar]
- Zamora, P.; Rodríguez, V.; Renedo, F.; Sanz, A.V.; Domínguez, J.C.; Pérez-Escolar, G.; Miranda, J.; Álvarez, B.; González-Casas, A.; Mayor, E.; et al. First report of Bursaphelenchus xylophilus causing pine wilt disease on Pinus radiata in Spain. Plant Dis. 2015, 99, 1449. [Google Scholar] [CrossRef]
- Menéndez-Gutiérrez, M.; Alonso, M.; Jiménez, E.; Toval, G.; Mansilla, P.; Abelleira, A.; Abelleira-Sanmartín, A.; Díaz, R. Interspecific variation of constitutive chemical compounds in Pinus spp. xylem and susceptibility to pinewood nematode (Bursaphelenchus xylophilus). Eur. J. Plant Pathol. 2018, 150, 939–953. [Google Scholar] [CrossRef]
- De la Fuente, B.; Saura, S. Long-term projections of the natural expansion of the pine wood nematode in the Iberian Peninsula. Forests 2021, 12, 849. [Google Scholar] [CrossRef]
- Lawson, S.A.; Sathyapala, S. The risk of pine wilt disease to Australia and New Zealand. In Pine Wilt Disease: A Worldwide Threat to Forest Ecosystems; Mota, M.M., Vieira, P., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 41–58. [Google Scholar]
- Yano, M. Investigations on the cause of mortality in Nagasaki prefecture. Sanron-Koho 1913, 4, 1–14. [Google Scholar]
- Cheng, H.; Lin, M.; Li, W.; Fang, Z. The ocurrence of a pine wilting disease caused by a nematode found in Nanjing. For. Pest Dis. 1983, 4, 1–5. [Google Scholar]
- Yi, C.K.; Byun, B.H.; Park, J.D.; Yang, S.I.; Chang, K.H. First finding of the pine wood nematode, Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle and its insect vector in Korea. Res. Rep. For. Res. Inst. (Seoul) 1989, 38, 141–149. [Google Scholar]
- Tzean, S.; Jan, S. The ocurrence of pinewood nematode, Bursaphelenchus xylophilus in Taiwan. In Proceedings of the 6th ROC Symposium of Electron Microscopy, 1985; pp. 38–39. [Google Scholar]
- Mota, M.; Braasch, H.; Bravo, M. First Report of Bursaphelenchus xylophilus in Portugal and in Europe. Nematology 1999, 1, 727–734. [Google Scholar] [CrossRef]
- Soliman, T.; Mourits, M.C.M.; van der Werf, W.; Hengeveld, G.M.; Robinet, C.; Lansink, A.G.J.M.O. Framework for modelling economic impacts of invasive species, applied to pine wood nematode in europe. PLoS ONE 2012, 7, e45505. [Google Scholar] [CrossRef] [PubMed]
- Robertson, L.; Cobacho Arcos, S.; Escuer, M.; Santiago Merino, R.; Esparrago, G.; Abelleira, A.; Navas, A. Incidence of the pinewood nematode Bursaphelenchus xylophilus Steiner & Buhrer, 1934 (Nickle, 1970) in Spain. Nematology 2011, 13, 755–757. [Google Scholar] [CrossRef]
- Abelleira, A.; Picoaga, A.; Mansilla, J.P.; Aguin, O. Detection of Bursaphelenchus xylophilus, Causal Agent of Pine Wilt Disease on Pinus pinaster in Northwestern Spain. Plant Dis. 2011, 95, 776. [Google Scholar] [CrossRef]
- Matsunaga, K.; Ohira, M.; Hirao, T.; Takahashi, M.; Fukatsu, E.; Kurita, M.; Kuramoto, N.; Togashi, K. The current state of breeding for Japanese pine resistance against pine wilt disease and planned gain realization by seed orchard establishment. In Proceedings of the IUFRO Seed Orchard Conference 2017, Balsta, Sweden, 4–6 September 2017; p. 79. [Google Scholar]
- Kurinobu, S. Current status of resistance breeding of Japanese pine species to pine wilt disease. For. Sci. Tech. 2008, 4, 51–57. [Google Scholar] [CrossRef]
- Toda, T.; Kurinobu, S. Genetic improvement in pine wilt disease resistance in Pinus thunbergii: The effectiveness of pre-screening with an artificial inoculation at the nursery. J. For. Res. 2001, 6, 197–201. [Google Scholar] [CrossRef]
- Carrasquinho, I.; Lisboa, A.; Inácio, M.L.; Gonçalves, E. Genetic variation in susceptibility to pine wilt disease of maritime pine (Pinus pinaster Aiton) half-sib families. Ann. For. Sci. 2018, 75, 85. [Google Scholar] [CrossRef] [Green Version]
- Menéndez-Gutiérrez, M.; Alonso, M.; Toval, G.; Díaz, R. Testing of selected Pinus pinaster half-sib families for tolerance to pinewood nematode (Bursaphelenchus xylophilus). Forestry 2018, 91, 38–48. [Google Scholar] [CrossRef]
- Sasse, J.; Elms, S.; Kube, P. Genetic resistance in Pinus radiata to defoliation by the pine aphid Essigella californica. Aust. For. 2009, 72, 25–31. [Google Scholar] [CrossRef]
- Ivković, M.; Baltunis, B.; Gapare, W.; Sasse, J.; Dutkowski, G.; Elms, S.; Wu, H. Breeding against Dothistroma needle blight of Radiata pine in Australia. Can. J. For. Res. 2010, 40, 1653–1660. [Google Scholar] [CrossRef]
- Suontama, M.; Li, Y.; Low, C.B.; Dungey, H.S. Genetic improvement of resistance to Cyclaneusma needle cast in Pinus radiata. Can. J. For. Res. 2019, 49, 128–133. [Google Scholar] [CrossRef]
- Burdon, R.D.; Li, Y. Genotype-Environment interaction involving site differences in expression of genetic variation along with genotypic rank changes: Simulations of economic significance. Tree Genet. Genomes 2019, 15, 2. [Google Scholar] [CrossRef]
- Li, Y.; Suontama, M.; Burdon, R.D.; Dungey, H.S. Genotype by environment interactions in forest tree breeding: Review of methodology and perspectives on research and application. Tree Genet. Genomes 2017, 13, 60. [Google Scholar] [CrossRef] [Green Version]
- Cortés, A.J.; Restrepo-Montoya, M.; Bedoya-Canas, L.E. Modern strategies to assess and breed forest tree adaptation to changing climate. Front. Plant Sci. 2020, 11, 1606. [Google Scholar] [CrossRef] [PubMed]
- Sniezko, R.A.; Koch, J. Breeding trees resistant to insects and diseases: Putting theory into application. Biol. Invasions 2017, 19, 3377–3400. [Google Scholar] [CrossRef]
- Hanawa, F.; Yamada, T.; Nakashima, T. Phytoalexins from Pinus strobus bark infected with pinewood nematode, Bursaphelenchus xylophilus. Phytochemistry 2001, 57, 223–228. [Google Scholar] [CrossRef]
- Pimentel, C.S.; Gonçalves, E.V.; Firmino, P.N.; Calvão, T.; Fonseca, L.; Abrantes, I.; Correia, O.; Máguas, C. differences in constitutive and inducible defences in pine species determining susceptibility to pinewood nematode. Plant Pathol. 2017, 66, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Simões, R.; Pimentel, C.; Ferreira-Dias, S.; Miranda, I.; Pereira, H. Phytochemical characterization of phloem in maritime pine and stone pine in three sites in Portugal. Heliyon 2021, 7, e06718. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, C.S.; Firmino, P.N.; Calvão, T.; Ayres, M.P.; Miranda, I.; Pereira, H. Pinewood nematode population growth in relation to pine phloem chemical composition. Plant Pathol. 2017, 66, 856–864. [Google Scholar] [CrossRef]
- Chow, P.S.; Landhausser, S.M. A Method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiol. 2004, 24, 1129–1136. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Fry, J. Estimation of genetic variances and covariances by restricted maximum likelihood using PROC MIXED. In Genetic Analysis of Complex Traits Using SAS; SAS Institute Inc.: Cary, NC, USA, 2004; pp. 11–34. [Google Scholar]
- Wright, J.W. Introduction to Forest Genetics, 1st ed.; Academic Press: Cambridge, MA, USA, 1976; ISBN 9780323148887. [Google Scholar]
- Gilmour, A.R.; Anderson, R.D.; Rae, A.L. The analysis of binomial data by a generalized linear mixed model. Biometrika 1985, 72, 593–599. [Google Scholar] [CrossRef]
- Nantongo, J.S.; Potts, B.M.; Fitzgerald, H.; Newman, J.; Elms, S.; Aurik, D.; Dungey, H.; O’Reilly-Wapstra, J.M. Quantitative genetic variation in bark stripping of Pinus radiata. Forests 2020, 11, 1356. [Google Scholar] [CrossRef]
- Yang, R. Likelihood-based analysis of genotype–environment interactions. Crop Sci. 2002, 42, 1434–1440. [Google Scholar] [CrossRef]
- De la Mata, R.; Zas, R. Transferring Atlantic maritime pine improved material to a region with marked mediterranean influence in inland NW Spain: A likelihood-based approach on spatially adjusted field data. Eur. J. For. Res. 2010, 129, 645–658. [Google Scholar] [CrossRef] [Green Version]
- Shelbourne, C.J.A. Genotype-Environment interaction: Its study and its implications in forest tree improvement. In Proceedings of the IUFRO Genetics and SABRAO Joint Symposium, Tokyo, Japan, 1972; pp. 1–28. [Google Scholar]
- Alfaro, R.I.; King, J.N.; VanAkker, L. Delivering sitka spruce with resistance against white pine weevil in British Columbia, Canada. For. Chron. 2013, 89, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Carson, M.; Carson, S.; Te Rinni, C. Successful varietal forestry with radiata pine in New Zealand. N. Z. J. For. Sci. 2015, 60, 8–11. [Google Scholar]
- Sniezko, R.; Smith, J.; Liu, J.-J.; Hamelin, R. Genetic resistance to fusiform rust in southern pines and white pine blister rust in white pines—A Contrasting tale of two rust pathosystems—Current status and future prospects. Forests 2014, 5, 2050–2083. [Google Scholar] [CrossRef]
- Toda, T. Studies on breeding for resistance to pine wilt disease in Pinus densiflora and P. thunbergia. Bull. For. Tree Breed. Inst. 2004, 20, 83–217. [Google Scholar]
- Xu, L.-Y.; Zhang, J.; Gao, J.-B.; Chen, X.-L.; Jiang, C.-W.; Hao, Y.-P. Study on the disease resistance of candidate clones in Pinus massonina to Bursaphelenchus xylophilus. China For. Sci. Techonol. 2012, 26, 27–30. [Google Scholar]
- Resolución de 3 de Junio de 2020, de La Dirección General de BiodiversidadBosques y Desertificación, por la que se Publican las Incorporaciones al Catálogo Nacional de Materiales de Base, para la Producción de Materiales Forestales de Reproducción de la Categoría “Cualificado” de la Especie Pinus Pinaster Ait, Situados en el Territorio de Galicia; Ministerio para la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2020; Available online: https://www.boe.es/diario_boe/txt.php?lang=en&id=BOE-A-2020-6076 (accessed on 8 February 2021).
- Burdon, R.D.; Carson, M.J.; Shelbourne, C.J.A. Achievements in forest tree genetic improvement in Australia and New Zealand 10: Pinus radiata in New Zealand. Aust. For. 2008, 71, 263–279. [Google Scholar] [CrossRef]
- Akiba, M.; Ishihara, M.; Sahashi, N.; Nakamura, K.; Ohira, M.; Toda, T. Virulence of Bursaphelenchus xylophilus isolated from naturally infested pine forests to five resistant families of Pinus thunbergii. Plant Dis. 2012, 96, 249–252. [Google Scholar] [CrossRef] [Green Version]
- Menéndez-Gutiérrez, M.; Villar, L.; Díaz, R. Virulence of seven pathogenic Bursaphelenchus xylophilus isolates in Pinus pinaster and Pinus radiata seedlings and its relation with multiplication. For. Pathol. 2021, 51, e12677. [Google Scholar] [CrossRef]
- Verrez, A.; Quiring, D.; Le Cocq, T.L.; Adams, G.; Park, Y.S. Genetically based resistance to the white pine weevil in jack pine and eastern white pine. For. Chron. 2010, 86, 775–779. [Google Scholar] [CrossRef] [Green Version]
- Kleinhentz, M.; Raffinz, A.; Jactel, H. Genetic parameters and gain expected from direct selection for resistance to Dioryctria sylvestrella Ratz. (Lepidoptera:Pyralidae) in Pinus pinaster Ait., using a full diallel mating design. For. Genet. 1998, 5, 147–154. [Google Scholar]
- Yamanobe, T. Relationships between morphological traits and resistance to pine wood nematode in two Japanese pines. Eur. J. Plant Pathol. 2009, 124, 543–552. [Google Scholar] [CrossRef]
- Menéndez-Gutiérrez, M.; Alonso, M.; Toval, G.; Díaz, R. Variation in pinewood nematode susceptibility among Pinus pinaster Ait. provenances from the iberian peninsula and france. Ann. For. Sci. 2017, 74, 76. [Google Scholar] [CrossRef] [Green Version]
- Iki, T.; Matsunaga, K.; Hirao, T.; Ohira, M.; Yamanobe, T.; Iwaizumi, M.G.; Miura, M.; Isoda, K.; Kurita, M.; Takahashi, M.; et al. Effects of temperature factors on resistance against pine wood nematodes in Pinus thunbergii, based on multiple location sites nematode inoculation tests. Forests 2020, 11, 922. [Google Scholar] [CrossRef]
- Matsunaga, K.; Iki, T.; Hirao, T.; Ohira, M.; Yamanobe, T.; Iwaizumi, M.G.; Miura, M.; Isoda, K.; Kurita, M.; Takahashi, M.; et al. Do seedlings derived from pinewood nematode-resistant Pinus thunbergii Parl. clones selected in southwestern region perform well in northern regions in Japan? Inferences from nursery inoculation tests. Forests 2020, 11, 955. [Google Scholar] [CrossRef]
- Ott, D.S.; Yanchuk, A.D.; Huber, D.P.W.; Wallin, K.F. Genetic variation of lodgepole pine, Pinus contorta var. latifolia, chemical and physical defenses that affect mountain pine beetle, Dendroctonus ponderosae, attack and tree mortality. J. Chem. Ecol. 2011, 37, 1002–1012. [Google Scholar] [CrossRef]
- Kuroda, K. Physiological incidences related to symptom development and wilting mechanism. In Pine Wilt Disease; Zhao, B.G., Futai, K., Sutherland, J.R., Takeuchi, Y., Eds.; Springer: Tokyo, Japan, 2008; pp. 204–222. ISBN 978-4-431-75655-2. [Google Scholar]
- Lattanzio, V.; Lattanzio, V.M.T.; Cardinali, A.; Amendola, V. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In Phytochemistry: Advances in Research; Trivandrum: Kerala, India, 2006; Volume 661, ISBN 8130800349. [Google Scholar]
- Ayres, M.P.; Clausen, T.P.; MacLean, S.F.; Redman, A.M.; Relchardt, P.B. Diversity of structure and antiherbivore activity in condensed tannins. Ecology 1997, 78, 1696–1712. [Google Scholar] [CrossRef]
- Ohyama, N.; Shiraishi, S.; Takagi, T. Characteristics in the graftings of the resistant pine against wood nematodes. For. Tree Breed. 1986, 140, 17–21. [Google Scholar]
- Couée, I.; Sulmon, C.; Gouesbet, G.; El Amrani, A. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J. Exp. Bot. 2006, 57, 449–459. [Google Scholar] [CrossRef]
- Fukuda, K. Physiological process of the symptom development and resistance mechanism in pine wilt disease. J. For. Res. 1997, 2, 171–181. [Google Scholar] [CrossRef]
- Dordas, C. Role of nutrients in controlling plant diseases in sustainable agriculture. A Review. Agron. Sus. Dev. 2008, 28, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Maehara, N.; Aikawa, T.; Kanzaki, N. Inoculation of several Bursaphelenchus xylophilus group nematodes into adult trees of Pinus thunbergii and their survival in the trees. For. Pathol. 2011, 41, 477–481. [Google Scholar] [CrossRef]
- Kanzaki, N.; Aikawa, T.; Maehara, N.; Ichihara, Y. An inoculation experiment of Japanese Bursaphelenchus nematodes on Japanese black and red pine, Pinus thunbergii and P. densiflora. J. For. Res. 2011, 16, 325–330. [Google Scholar] [CrossRef]
Experiment 1 | Experiment 2 | Experiment 3 | |
---|---|---|---|
Age | 3 | 3 | 3 |
Inoculation date | April 2019 | April 2020 | July 2019 |
Experiment duration (days) | 83 | 83 | 83 |
Average temperature (°C) | 25.3 | 22.3 | 23.8 |
Average temperature (night-day) (°C) | 22.4–28.2 | 19.0–26.7 | 19.6–28.0 |
Height (cm) | 121.69 ± 1.1 | 122.05 ± 1.04 | 112.22 ± 1.13 |
Diameter (mm) | 19.25 ± 0.2 | 19.32 ± 0.2 | 18.44 ± 0.23 |
No. branches | 11.47 ± 0.29 | 11.47 ± 0.28 | 14.67 ± 0.34 |
Survival | 0.20 ± 0.02 | 0.50± 0.02 | 0.26 ± 0.02 |
Wilting | 6.39 ± 0.06 | 5.52 ± 0.07 | 6.07 ± 0.08 |
No. families tested | 41 | 44 | 40 |
No. seedlings inoculated per family | 10 BX + 3 H2O | 10 BX + 3 H2O | 10 BX + 3 H2O |
No. blocks | 10 | 10 | 10 |
Total No. of seedlings | 533 | 572 | 520 |
Variables | Mean ± SD | Experiment | Family | Experiment × Family | Heritability | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
F2,79 * | p > F | σ2 | χ2 LRT | p > χ2 | σ2 | χ2 LRT | p > χ2 | hi2 | hf2 | ||
H | 118.93 ± 0.64 | 11.79 | <0.0001 | 0.068 ± 0.020 | 29.1 | <0.0001 | 0.039 ± 0.010 | 44.4 | <0.0001 | 0.77 ± 0.10 | 0.76 ± 0.21 |
HPY | 102.89 ± 0.65 | 3.25 | 0.044 | 0.033 ± 0.009 | 30.2 | <0.0001 | 0.015 ± 0.005 | 22.4 | <0.0001 | 0.67 ± 0.09 | 0.77 ± 0.20 |
IH | 16.06 ± 0.23 | 26.03 | <0.0001 | 0.031 ± 0.011 | 13.8 | <0.0001 | 0.018 ± 0.009 | 5.9 | 0.015 | 0.29 ± 0.06 | 0.63 ± 0.12 |
D | 19.03 ± 0.12 | 3.75 | 0.0278 | 0.016 ± 0.005 | 20.2 | <0.0001 | 0.012 ± 0.004 | 36.4 | <0.0001 | 0.57 ± 0.08 | 0.70 ± 0.18 |
NB | 12.45 ± 0.18 | 19.62 | <0.0001 | 0.058 ± 0.018 | 21.5 | < 0.0001 | 0.031 ± 0.011 | 16.4 | <0.0001 | 0.51 ± 0.08 | 0.72 ± 0.17 |
W | 5.98 ± 0.04 | 10.24 | 0.0005 | 0.137 ± 0.048 | 15.9 | < 0.0001 | 0.045 ± 0.035 | 2.2 | 0.138 | 0.29 ± 0.06 | 0.66 ± 0.11 |
S | 0.33 ± 0.01 | 37.64 | <0.0001 | 0.414 ± 0.163 | 12.3 | 0.0004 | 0.161 ± 0.124 | 2.4 | 0.119 | 0.43 ± 0.07 | 0.72 ± 0.15 |
SW | 33.04 ± 0.28 | 42.72 | <0.0001 | 2.301 ± 1.528 | 2.8 | 0.0943 | 3.895 ± 1.898 | 7 | 0.0082 | 0.18 ± 0.04 | 0.45 ± 0.09 |
EW | 55.31 ± 0.45 | 33.37 | <0.0001 | 8.978 ± 4.552 | 5.3 | 0.0213 | 6.739 ± 4.473 | 3.3 | 0.0693 | 0.26 ± 0.05 | 0.59 ± 0.16 |
DW a | 22.35 ± 0.37 | 44.31 | <0.0001 | 9.278 ± 3.187 | 14.7 | 0.0001 | - | - | - | 0.38 ± 0.07 | 0.76 ± 0.14 |
Null Hypotheses | df | Wilting | Mortality | ||
---|---|---|---|---|---|
χ2 | p > χ2 | χ2 | p > χ2 | ||
No family by environment interaction | 5 | 20.3 | 0.001 | 16 | 0.007 |
Homogeneity of family variance across experiments | 4 | 2.3 | 0.681 | 4.2 | 0.241 |
Perfect family correlation between all experiment pairs | 3 | 5.3 | 0.151 | 3.8 | 0.283 |
Homogeneity of family covariance across experiment pairs | 2 | 5.2 | 0.074 | 4.4 | 0.111 |
H | HPY | IH | D | NB | W | S | SW | EW | DW | |
---|---|---|---|---|---|---|---|---|---|---|
H | 0.97 *** | 0.62 *** | 0.37 * | |||||||
HPY | 0.94 *** | 0.55 *** | 0.30 * | 0.37 * | ||||||
IH | 0.12 *** | −0.23 *** | −0.30 * | −0.35 * | ||||||
D | 0.58 *** | 0.59 *** | 0.75 *** | 0.45 ** | −0.38 * | −0.29 * | ||||
NB | 0.32 *** | 0.33 *** | 0.48 *** | 0.44 ** | −0.39 ** | −0.32 * | ||||
W | 0.16 *** | 0.17 *** | 0.21 *** | 0.19 *** | −0.94 *** | −0.40 ** | −0.54 *** | −0.36 * | ||
S | −0.097 *** | −0.112 *** | −0.14 *** | −0.15 *** | −0.89 *** | 0.39 ** | 0.58 *** | 0.41 ** | ||
SW | 0.11 ** | −0.19 *** | −0.25 *** | - | 0.48 *** | |||||
EW | 0.11 ** | 0.12 *** | 0.07 * | −0.57 *** | - | 0.56 *** | 0.82 *** | |||
DW | 0.15 *** | 0.18 *** | −0.11 ** | 0.13 *** | 0.18 *** | −0.50 *** | - | −0.08 * | 0.79 *** | |
ND | 0.12 * | 0.67 *** | −0.70 *** | −0.15 * | −0.26 *** |
Variables | Susceptibility Group | Experiment | Susceptibility Group × Experiment | |||
---|---|---|---|---|---|---|
F1, 25 | p > F | F2, 25 | p > F | F2, 25 | p > F | |
WC (%) | 2.03 | 0.1662 | 4.13 | 0.0282 | 0.2 | 0.8175 |
N (%) | 13.95 | 0.001 | 22.21 | <0.0001 | 0.43 | 0.6577 |
P (%) | 16.84 | 0.0004 | 2.87 | 0.0753 | 0.06 | 0.9447 |
K (%) | 6.43 | 0.0178 | 6.58 | 0.005 | 0.36 | 0.6995 |
Ca (%) | 3.38 | 0.0781 | 2.21 | 0.1302 | 0.94 | 0.4039 |
Mg (%) | 0.04 | 0.8344 | 1.5 | 0.2421 | 0.49 | 0.6197 |
Fe (ppm) | 0.13 | 0.7173 | 6.53 | 0.0052 | 1.24 | 0.3064 |
Mn (ppm) | 7.27 | 0.0124 | 0.25 | 0.7795 | 4.47 | 0.0219 |
LS (mg·g−1) | 0.21 | 0.6476 | 22.81 | <0.0001 | 5.93 | 0.0078 |
POL (mg·g−1) | 1.07 | 0.3115 | 1.3 | 0.2902 | 1.13 | 0.3383 |
TAN (mg·g−1) | 5.14 | 0.0323 | 1.44 | 0.2548 | 0.01 | 0.9883 |
CAR (mg·g−1) | 5.08 | 0.0333 | 7 | 0.0038 | 1.91 | 0.1686 |
STA (mg·g−1) | 1.13 | 0.2971 | 2.46 | 0.1058 | 1.15 | 0.3334 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menéndez-Gutiérrez, M.; Alonso, M.; Díaz, R. Assessing Genetic Variation in Resistance to Pinewood Nematode (Bursaphelenchus xylophilus) in Pinus radiata D. Don Half-Sib Families. Forests 2021, 12, 1474. https://doi.org/10.3390/f12111474
Menéndez-Gutiérrez M, Alonso M, Díaz R. Assessing Genetic Variation in Resistance to Pinewood Nematode (Bursaphelenchus xylophilus) in Pinus radiata D. Don Half-Sib Families. Forests. 2021; 12(11):1474. https://doi.org/10.3390/f12111474
Chicago/Turabian StyleMenéndez-Gutiérrez, María, Margarita Alonso, and Raquel Díaz. 2021. "Assessing Genetic Variation in Resistance to Pinewood Nematode (Bursaphelenchus xylophilus) in Pinus radiata D. Don Half-Sib Families" Forests 12, no. 11: 1474. https://doi.org/10.3390/f12111474
APA StyleMenéndez-Gutiérrez, M., Alonso, M., & Díaz, R. (2021). Assessing Genetic Variation in Resistance to Pinewood Nematode (Bursaphelenchus xylophilus) in Pinus radiata D. Don Half-Sib Families. Forests, 12(11), 1474. https://doi.org/10.3390/f12111474