Natural Regeneration of the Tree Stand in the Bilberry Spruce Forest—Clear-Cutting Ecotone Complex in the First Post-Logging Decade
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Material
2.3. Methods
3. Results
3.1. Significant Factors for the Distribution of Regeneration in the Forest and the Clear-Cut
3.2. Forest Edge Aspects
3.3. Mosses as Indicators for Moisture and Trophic Conditions
3.4. Vascular Plants
3.5. Competition between Spruce and Birch Regeneration
3.6. Transitional Zone Width
3.7. Temporal and Spatial Variation of the Amount of Regeneration concerning Size Categories
4. Discussion
4.1. Environment Characteristics in the Forest, Transitional Zone, and the Clear-Cut
4.2. Time since Cutting
4.3. Forest Edge Aspect
4.4. Mosses Associated with Moist Habitats (Sphagnum spp. and Polytrichum commune) and Mosses Associated with Well-Drained Habitats (Hylocomium splendens and Pleurozium schreberi)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gustafsson, L.; Hannerz, M.; Koivula, M.; Shorohova, E.; Vanha-Majamaa, I.; Weslien, J. Research on retention forestry in Northern Europe. Ecol. Process. 2020, 9, 3. [Google Scholar] [CrossRef]
- Halpern, C.; Urgenson, L. Level and spatial pattern of overstory retention impose trade-offs for regenerating and retained trees. Ecol. Appl. 2021, 31, e02296. [Google Scholar] [CrossRef] [PubMed]
- Martinez Pastur, G.J.; Vanha-Majamaa, I.; Franklin, J.F. Ecological perspectives on variable retention forestry. Ecol. Process. 2020, 9, 12. [Google Scholar] [CrossRef]
- Franklin, J.F.; Donato, D.C. Variable retention harvesting in the Douglas-fir region. Ecol. Process. 2020, 9, 8. [Google Scholar] [CrossRef]
- Beese, W.J.; Deal, J.; Dunsworth, B.G.; Mitchell, S.J.; Philpott, T.J. Two decades of variable retention in British Columbia: A review of its implementation and effectiveness for biodiversity conservation. Ecol. Process. 2019, 8, 33. [Google Scholar] [CrossRef]
- Koivula, M.; Vanha-Majamaa, I. Experimental evidence on biodiversity impacts of variable retention forestry, prescribed burning, and deadwood manipulation in Fennoscandia. Ecol. Process. 2020, 9, 11. [Google Scholar] [CrossRef] [Green Version]
- Fang, Z.; Bao, W.; Yan, X.; Liu, X. Understory structure and vascular plant diversity in naturally regenerated deciduous forests and spruce plantations on similar clear-cuts: Implications for forest regeneration strategy selection. Forests 2014, 5, 715–743. [Google Scholar] [CrossRef] [Green Version]
- Herve, B.; Bisseleua, D.; Vidal, S. Plant biodiversity and vegetation structure in traditional cocoa forest gardens in southern Cameroon under different management. Biodivers. Conserv. 2008, 17, 1821–1835. [Google Scholar] [CrossRef] [Green Version]
- Nagaike, T.; Kamitani, T.; Nakashizuka, T. Effects of different forest management systems on plant species diversity in a Fagus crenata forested landscape of central Japan. Can. J. For. Res. 2005, 35, 2832–2840. [Google Scholar] [CrossRef]
- Thomas, S.C.; Halpern, C.B.; Falk, D.A.; Liguori, D.A.; Austin, K.A. Plant diversity in managed forests: Understory responses to thinning and fertilization. Ecol. Appl. 1999, 9, 864–879. [Google Scholar] [CrossRef]
- Saksa, T. Regeneration process from seed crop to saplings—A case study in uneven-aged Norway spruce-dominated stands in southern Finland. Silva Fenn. 2004, 38, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Kuuluvainen, T.; Lindberg, H.; Vanha-Majamaa, I.; Keto-Tokoi, P.; Punttila, P. Low-level retention forestry, certification, and biodiversity: Case Finland. Ecol. Process. 2019, 8, 47. [Google Scholar] [CrossRef]
- Siipilethto, J. Height distributions of Scots pine sapling stands affected by retained tree and edge stand competition. Silva Fenn. 2006, 40, 473–486. [Google Scholar]
- Shorohova, E.; Sinkevich, S.; Kryshen, A.; Vanha-Majamaa, I. Variable retention forestry in European boreal forests in Russia. Ecol. Process. 2019, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Kryshen, A.M.; Sinkevich, S.M.; Shorohova, E.V. Variable retention forestry is targeted to preserve the temporal and spatial continuity of forest habitats and ecosystem functions. Rastit. Resur. 2020, 56, 195–201. (In Russian) [Google Scholar] [CrossRef]
- Souček, J. Regeneration under a shelterwood system of spruce-dominated forest stands at middle altitudes. J. For. Sci. 2007, 53, 467–475. [Google Scholar] [CrossRef] [Green Version]
- Druzhinin, F.N. Spruce forest renewal using regular progressive fellings. Bull. Mosc. State Univ. For. Lesn. Vestnik. 2012, 2, 58–61. [Google Scholar]
- Terinov, N.N. The method of formation of dark-coniferous forest stands. Proc. St. Petersburg For. Res. Inst. 2013, 1, 64–71. [Google Scholar]
- Gromtcev, A.N.; Kravchenko, A.V.; Kurhinen, J.P.; Sazonov, S.V. Dynamics of the diversity of forest communities, flora and fauna in European taiga under pristine conditions and upon human impact: Research experience and first conclusion. Trans. KarRC RAS 2010, 1, 16–33. [Google Scholar]
- Chen, J.; Franklin, J.F.; Spies, T.A. Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forests. Ecol. Appl. 1995, 5, 74–86. [Google Scholar] [CrossRef]
- Scott, R.E.; Neyland, M.G.; Baker, S.C. Variable retention in Tasmania, Australia: Trends over 16 years of monitoring and adaptive management. Ecol. Process. 2019, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Baker, T.; Jordan, G.; Baker, S. Microclimatic edge effects in a recently harvested forest: Do remnant forest patches create the same impact as large forest areas? For. Ecol. Manag. 2016, 365, 128–136. [Google Scholar] [CrossRef]
- Heithecker, T.; Halpern, C. Edge-related gradients in microclimate in forest aggregates following structural retention harvests in western Washington. For. Ecol. Manag. 2007, 248, 163–173. [Google Scholar] [CrossRef]
- Davies-Colley, R.; Payne, G.; van Elswijk, M. Microclimate gradients across a forest edge. N. Z. J. Ecol. 2000, 24, 111–121. [Google Scholar]
- Redding, T.; Hope, G.; Fortin, M.-J.; Schmidt, M.; Bailey, W. Spatial patterns of soil temperature and moisture across subalpine forest-clearcut edges in the southern interior of British Columbia. Can. J. Soil Sci. 2003, 83, 121–130. [Google Scholar] [CrossRef]
- Craig, A.; Macdonald, E. Threshold effects of variable retention harvesting on understory plant communities in the boreal mixedwood forest. For. Ecol. Manag. 2009, 258, 2619–2627. [Google Scholar] [CrossRef]
- Marozas, V.; Grigaitis, V.; Brazaitis, G. Edge effect on ground vegetation in clear-cut edges of pine-dominanted forests. Scand. J. For. Res. 2005, 20, 43–48. [Google Scholar] [CrossRef]
- Berstedt, J.; Milberg, P. The impact of logging intensity on field-layer vegetation in Swedish boreal forests. For. Ecol. Manag. 2001, 154, 105–115. [Google Scholar] [CrossRef]
- Reforestation rules. In The Order of the Ministry of Natural Resources of the Russian Federation; No. 1014; 2020; p. 190. (In Russian)
- Genikova, N.V.; Haritonov, V.A.; Pekkoev, A.N.; Karpechko, A.Y.; Kikeeva, A.V.; Kryshen’, A.M.; Obabko, R.P. Bilberry spruce forest—aspen forest ecotone. Rastit. Resur. 2020, 56, 151–164. (In Russian) [Google Scholar] [CrossRef]
- Genikova, N.V.; Mamontov, V.N.; Kryshen’, A.M. Abundance of forest dwarf-shrubs and microclimatic conditions of the bilberry spruce–cutting ecotone complex. Rastit. Resur. 2021, 57, 1–16. (In Russian) [Google Scholar] [CrossRef]
- Bokalo, M.; Comeau, P.; Titus, S. Early development of tended mixtures of aspen and spruce in western Canadian boreal forests. For. Ecol. Manag. 2007, 242, 175–184. [Google Scholar] [CrossRef]
- Tsvetkov, V.F. Reforestation: Nature, Patterns, Assessment, Forecast; Arkhangelsk State Technical University: Arkhangelsk, Russia, 2008; p. 211. (In Russian) [Google Scholar]
- Šebeň, V.; Bošeľa, M.; Konôpka, B.; Pajtík, J. Indices of tree competition in dense spruces stand originated from natural regeneration. Lesn. Časopis For. J. 2013, 59, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Fløistad, I.S.; Hylen, G.; Hanssen, K.H.; Granhus, A. Germination and seedling establishment of Norway spruce (Picea abies) after clear-cutting is affected by timing of soil scarification. New For. 2018, 49, 231–247. [Google Scholar] [CrossRef] [Green Version]
- Kryshen’, A.M.; Genikova, N.V.; Presnukhin, Y.V. Reforestation series of bilberry spruce forests in Eastern Fennoscandia. Bot. Zhurnal 2021, 106, 107–125. (In Russian) [Google Scholar] [CrossRef]
- Elgersma, A.M. Primary forest succession on poor sandy soils as related to site factors. Biodivers. Conserv. 1998, 7, 193–206. [Google Scholar] [CrossRef]
- Karazija, S. Age-related dynamics of pine forest communities in Lithuania. Balt. For. 2002, 9, 50–62. [Google Scholar]
- Sokolov, A.I. Reforestation in the Cuttings of the North-West of Russia; Karelian Research Centre of RAS: Petrozavodsk, Russia, 2006; p. 215. (In Russian) [Google Scholar]
- Rosner, L.S.; Rose, R. Synergetic stem volume response to combinations of vegetation control and seedling size in conifer plantations in Oregon. Can. J. For. Res. 2006, 36, 930–944. [Google Scholar] [CrossRef]
- Burton, P.J. Effects of clearcut edges on trees in the sub-boreal spruce zone of Northwest-Central British Columbia. Silva Fenn. 2002, 36, 329–352. [Google Scholar] [CrossRef] [Green Version]
- Wiström, B.; Nielsen, A.B. Effects of planting design on planted seedlings and spontaneous vegetation 16 years after establishment of forest edges. New For. 2014, 45, 97–117. [Google Scholar] [CrossRef]
- Downey, M.; Valkonen, S.; Heikkinen, J. Natural tree regeneration and vegetation dynamics across harvest gaps in Norway spruce dominated forests in southern Finland. Can. J. For. Res. 2018, 48, 524–534. [Google Scholar] [CrossRef] [Green Version]
- Aleksandrova, V.D. Geobotanical Zoning of the Non-Chernozem Region of the European Part of the Russian Soviet Federative Socialist Republic; Aleksandrova, V.D., Yurkovskaya, T.K., Eds.; Nauka: Leningrad, Russia, 1989; p. 64. (In Russian) [Google Scholar]
- Genikova, N.V.; Toropova, E.V.; Kryshen’, A.M. The response of species in the ground cover of a bilberry type spruce stand to logging. Trans. KarRC RAS 2016, 4, 92–99. (In Russian) [Google Scholar] [CrossRef]
- Genikova, N.V.; Toropova, E.V.; Kryshen’, A.M.; Mamontov, V.N. Changes in the ground cover structure in the "forest-forest edge-cutover" ecotone in a bilberry spruce stand ten years after logging. Trans. KarRC RAS 2018, 10, 12–26. (In Russian) [Google Scholar] [CrossRef]
- Eerikäinen, K.; Valkonen, S.; Saksa, T. Ingrowth, survival and height growth of small trees in uneven-aged Picea abies stands in southern Finland. For. Ecosyst. 2014, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Storozhenko, V.G. Natural regeneration in native uneven-aged spruce forests of the European Russian taiga. Sib. J. For. Sci. 2017, 3, 87–92. (In Russian) [Google Scholar] [CrossRef]
- Pauchard, A.; Alaback, P.B. Edge type defines alien plant species invasions along Pinus contorta burned, highway and clearcut forest edges. For. Ecol. Manag. 2006, 223, 327–335. [Google Scholar] [CrossRef]
- Harper, K.; Drapeau, P.; Lesieur, D.; Bergeron, Y. Negligible structural development and edge influence on the understorey at 16–17-yr-old clear-cut edges in black spruce forest. Appl. Veg. Sci. 2016, 19, 462–473. [Google Scholar] [CrossRef] [Green Version]
- Whyte, B.J.; Halpern, C.B. Forest aggregates influence conifer recruitment and height growth in a long-term variable-retention experiment. For. Ecol. Manag. 2019, 441, 42–56. [Google Scholar] [CrossRef]
- Bílek, L.; Vacek, Z.; Vacek, S.; Bulušek, D.; Linda, R.; Král, J. Are clearcut borders an effective tool for Scots pine (Pinus sylvestris L.) natural regeneration? For. Syst. 2018, 27, 6. [Google Scholar] [CrossRef] [Green Version]
- Burova, N.V.; Ray, E.A.; Shavrina, E.V. Features of natural regeneration in bilberry spruce forests of the middle taiga subzone after final thinning. Vestn. North. (Arct.) Fed. Univ. 2011, 1, 27–31. (In Russian) [Google Scholar]
- Spulak, O.; Kacalek, D. Spontaneous development of early successional vegetation improves Norway spruce forest soil after clear-cutting and renewal failure: A case study at a sandy-soil site. J. For. Sci. 2020, 66, 36–47. [Google Scholar] [CrossRef]
- Genikova, N.V.; Gnatiuk, E.P.; Kryshen, A.M. Coenoflora of bilberry spruce forests in Eastern Fennoscandia. Bot. Zhurnal 2019, 104, 699–716. (In Russian) [Google Scholar] [CrossRef]
- Ilintsev, A.; Bogdanov, A.; Nakvasina, E.; Amosova, I.; Koptev, S.; Tretyakov, S. The natural recovery of disturbed soil, plant cover and trees after clear-cutting in the boreal forests, Russia. iForest 2020, 13, 531–540. (In Russian) [Google Scholar] [CrossRef]
- Plants and Lichens of Russia and Neighboring Countries: Open Online Galleries and Plant Identification Guide. 2007–2021. Available online: https://www.plantarium.ru/lang/en/page/view/item/32140.html (accessed on 5 August 2021).
- Gryaz’kin, A.V.; Novikova, M.A.; Novikov Ya, A. Features of natural birch regeneration in cutting. Russ. For. J. 2016, 4, 81–88. (In Russian) [Google Scholar] [CrossRef]
- Chizhov, B.E.; Ivanova, R.I.; Shtol, V.A.; Kulyasova, O.A. The features of silver birch Betula verrucosa Ehrh. and downy birch Betula pubescens Ehrh. seed regeneration in subtaiga and forest-steppe of Western Siberia. Sib. J. For. Sci. 2016, 6, 49–59. (In Russian) [Google Scholar] [CrossRef]
- Sokolov, A.I. Increasing the Resource Potential of Taiga Forests Using the Silvicultural Method; KarRC RAS: Petrozavodsk, Russia, 2016; p. 178. (In Russian) [Google Scholar]
- Alekseev, V.I. Regeneration of Spruce on Logging Areas; Nauka: Moscow, Russia, 1978; p. 130. (In Russian) [Google Scholar]
- Kryshen, A.M.; Sokolov, A.I.; Kharitonov, V.A. Dependence of growth of spruce seedlings from grassy vegetation on felling areas. Lesovedenie 2001, 2, 41–45. (In Russian) [Google Scholar]
- Kryshen, A.M. Plant Communities of Clearings of Karelia; Nauka: Moscow, Russia, 2006; p. 262. (In Russian) [Google Scholar]
- Radler, K.; Oltchev, A.; Panferov, O.; Klinck, U.; Gravenhorst, G. Radiation and temperature responses to a small cear-cut in a spruce forest. Open Geogr. J. 2010, 3, 103–114. [Google Scholar] [CrossRef]
- Brang, P. Early seedling establishment of Picea abies in small forest gap in the Swiss Alps. Can. J. For. Res. 1998, 28, 626–639. [Google Scholar] [CrossRef]
- Melekhov, I.S. Forest science (Lesovedeniye); Lesnaya promyshlennost: Moscow, Russia, 1980; p. 403. (In Russian) [Google Scholar]
- Kramer, P.D.; Kozlovsky, T.T. Physiology of Woody Plants; Lesnaya promyshlennost: Moscow, Russia, 1983; p. 464. (In Russian) [Google Scholar]
Clear-Cutting | Intact Forest | ||||||||
---|---|---|---|---|---|---|---|---|---|
Site | Transects | Forest Edge Aspect (°) | Age | Dominant Herbaceous Species | Field Layer Cover (%) | Average Age | Basal Area (m2/ha) | Average Height (m) | Canopy Cover (%) |
1 | 1 | N (0) | 2 (3) | Deschampsia flexuosa, Vaccinium vitis-idaea | 15 | 110 | Spruce 38.8 Birch 5.6 | Spruce 18 Birch 17 | 60 |
1 | 2 | E (90) | 2 (3) | Deschampsia flexuosa, Vaccinium myrtillus | 25 | 160 | Spruce 31.1 Birch 1.0 | Spruce 16 Birch 14 | 60 |
1 | 3 | S (180) | 2 (3) | Deschampsia flexuosa, Vaccinium vitis-idaea | 15 | 150 | Spruce 31.4 Birch 2.0 | Spruce 14 Birch 13 | 50 |
1 | 4 | W (270) | 2 (3) | Deschampsia flexuosa, Vaccinium vitis-idaea | 15 | 170 | Spruce 10.5 Birch 1.0 | Spruce 14 Birch 12 | 35 |
2 | 1 | SE (135) | 5 | Vaccinium myrtillus, V. vitis-idaea | 35 | 155 | Spruce 6.3 Pine 2.2 Birch 1.2 Aspen 0.8 | Spruce 17 Pine 18 Birch 17 Aspen 22 | 35 |
3 | 1 | W (270) | 5 | Deschampsia flexuosa, Epilobium angustifolium | 30 | 135 | Spruce 13.2 Birch 1.5 | Spruce 17 Birch 18 | 50 |
3 | 2 | S (210) | 5 | Epilobium angustifolium, Vaccinium vitis-idaea | 30 | 130 | Spruce 10.2 Birch 1.0 | Spruce 16 Birch 15 | 40 |
3 | 3 | N (0) | 5 | Carex globularis, Vaccinium vitis-idaea | 40 | 140 | Spruce 7.2 Birch 1.2 | Spruce 15 Birch 16 | 35 |
3 | 4 | E (90) | 5 | Deschampsia flexuosa, Vaccinium vitis-idaea | 35 | 180 | Spruce 9.2 Birch 1.3 | Spruce 17 Birch 17 | 40 |
3 | 1 | S (200) | 10 | Vaccinium vitis-idaea, Carex globularis | 30 | 140 | Spruce 13.7 Birch 3.1 | Spruce 15 Birch 15 | 60 |
3 | 2 | W (290) | 10 | Epilobium angustifolium, Gymnocarpium dryopteris | 60 | 160 | Spruce 25.4 Birch 4.9 Pine 1.4 | Spruce 14 Birch 15 Pine 15 | 70 |
3 | 3 | E (110) | 10 | Vaccinium vitis-idaea,Deschampsia flexuosa | 70 | 175 | Spruce 30.2 Birch 3.7 | Spruce 16 Birch 19 | 70 |
3 | 4 | N (0) | 10 | Vaccinium vitis-idaea, Carex globularis | 60 | 180 | Spruce 27.3 Birch 5.0 | Spruce 15 Birch 17 | 70 |
Main Effects | Birch | Spruce | Rowan | Prickly Rose | ||||
---|---|---|---|---|---|---|---|---|
Forest | Clear-Cut | Forest | Clear-Cut | Forest | Clear-Cut | Forest | Clear-Cut | |
Aspect | ||||||||
H-value | 13.12 | 20.41 | 23.82 | 15.81 | 30.71 | 27.67 | 60.65 | 34.01 |
p-value | 0.49 | <0.001 | 0.0025 | 0.008 | <0.001 | <0.001 | <0.001 | <0.001 |
df/n | 3/650 | 2/527 | 3/650 | 2/527 | 3/650 | 2/527 | 3/650 | 2/527 |
Sphagnum spp. abundance | ||||||||
H-value | 26.27 | 100.92 | 15.28 | 22.20 | 6.09 | 7.06 | 3.11 | 5.84 |
p-value | <0.001 | <0.001 | 0.0016 | <0.001 | 0.10 | 0.070 | 0.37 | 0.12 |
df/n | 3/325 | 3/325 | 3/325 | 3/325 | 3/325 | 3/325 | 3/325 | 3/325 |
Polytrichum commune abundance | ||||||||
H-value | 5.63 | 44.62 | 6.11 | 26.89 | 2.58 | 1.73 | 0.67 | 3.31 |
p-value | 0.13 | <0.001 | 0.10 | <0.001 | 0.46 | 0.63 | 0.87 | 0.34 |
df/n | 3/325 | 3/325 | 3/325 | 3/325 | 3/325 | 3/325 | 3/325 | 3/325 |
Pleurozium schreberi abundance | ||||||||
H-value | 6.03 | 14.95 | 8.83 | 15.32 | 4.21 | 4.87 | 2.49 | 4.87 |
p-value | 0.11 | 0.0018 | 0.032 | 0.0015 | 0.24 | 0.18 | 0.47 | 0.18 |
df/n | 3/325 | 3/325 | 3/325 | 3/325 | 3/325 | 3/325 | 3/325 | 3/325 |
Hylocomium splendens abundance | ||||||||
H-value | 15.68 | 56.41 | 13.46 | 7.97 | 3.12 | 8.32 | 2.40 | 2.93 |
p-value | 0.0013 | <0.001 | 0.0037 | 0.046 | 0.37 | 0.039 | 0.49 | 0.40 |
df/n | 3/325 | 3/325 | 3/325 | 3/325 | 3/325 | 3/325 | 3/325 | 3/325 |
Vaccinium myrtillus abundance | ||||||||
H-value | 0.83 | 4.09 | 6.17 | 7.20 | 0.94 | 4.16 | 3.49 | 2.60 |
p-value | 0.84 | 0.25 | 0.10 | 0.065 | 0.82 | 0.24 | 0.32 | 0.45 |
df/n | 3/325 | 3/325 | 3/325 | 3/325 | 3/325 | 3/325 | 3/325 | 3/325 |
Vaccinium vitis-idaea abundance | ||||||||
H-value | 0.35 | 4.50 | 0.84 | 6.79 | 4.29 | 1.85 | 4.29 | 4.15 |
p-value | 0.84 | 0.21 | 0.65 | 0.078 | 0.12 | 0.60 | 0.12 | 0.24 |
df/n | 2/325 | 3/325 | 2/325 | 3/325 | 2/325 | 3/325 | 2/325 | 3/325 |
Deschampsia flexuosa abundance | ||||||||
H-value | 1.67 | 4.37 | 0.005 | 0.14 | 19.98 | 5.08 | 3.67 | 1.65 |
p-value | 0.19 | 0.22 | 0.94 | 0.98 | <0.001 | 0.16 | 0.055 | 0.64 |
df/n | 1/325 | 3/325 | 1/325 | 3/325 | 1/325 | 3/325 | 1/325 | 3/325 |
Epilobium angustifolium abundance | ||||||||
H-value | 0.18 | 2.56 | 5.80 | 9.13 | 0.94 | 10.07 | 0.17 | 8.75 |
p-value | 0.67 | 0.46 | 0.012 | 0.027 | 0.33 | 0.018 | 0.68 | 0.032 |
df/n | 1/325 | 3/325 | 1/325 | 3/325 | 1/325 | 3/325 | 1/325 | 3/325 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Genikova, N.V.; Mamontov, V.N.; Kryshen, A.M.; Kharitonov, V.A.; Moshnikov, S.A.; Toropova, E.V. Natural Regeneration of the Tree Stand in the Bilberry Spruce Forest—Clear-Cutting Ecotone Complex in the First Post-Logging Decade. Forests 2021, 12, 1542. https://doi.org/10.3390/f12111542
Genikova NV, Mamontov VN, Kryshen AM, Kharitonov VA, Moshnikov SA, Toropova EV. Natural Regeneration of the Tree Stand in the Bilberry Spruce Forest—Clear-Cutting Ecotone Complex in the First Post-Logging Decade. Forests. 2021; 12(11):1542. https://doi.org/10.3390/f12111542
Chicago/Turabian StyleGenikova, Nadezhda V., Viktor N. Mamontov, Alexander M. Kryshen, Vladimir A. Kharitonov, Sergey A. Moshnikov, and Elena V. Toropova. 2021. "Natural Regeneration of the Tree Stand in the Bilberry Spruce Forest—Clear-Cutting Ecotone Complex in the First Post-Logging Decade" Forests 12, no. 11: 1542. https://doi.org/10.3390/f12111542
APA StyleGenikova, N. V., Mamontov, V. N., Kryshen, A. M., Kharitonov, V. A., Moshnikov, S. A., & Toropova, E. V. (2021). Natural Regeneration of the Tree Stand in the Bilberry Spruce Forest—Clear-Cutting Ecotone Complex in the First Post-Logging Decade. Forests, 12(11), 1542. https://doi.org/10.3390/f12111542