Decoupling the Effect of Climate and Land-Use Changes on Carbon Sequestration of Vegetation in Mideast Hunan Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Scenarios
2.2.1. Data
2.2.2. Scenarios
2.3. Modeling
2.3.1. CASA Model
2.3.2. Coefficient of Variation
3. Results
3.1. Changes in NPP
3.2. The Effects of Climate Changes on Total Production
3.3. The Effects of Land-Use Changes on Total Production
4. Discussion
4.1. Validation
4.2. Response of Carbon Dynamics to Climate Changes
4.3. Response of Carbon Dynamics to Land-Use Changes
4.4. Limitation and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Crabtree, R.; Potter, C.; Mullen, R.; Sheldon, J.; Huang, S.L.; Harmsen, J.; Rodman, A.; Jean, C.A. Modeling and spatio-temporal analysis framework for monitoring environmental change using NPP as an ecosystem indicator. Remote Sens. Environ. 2009, 113, 1486–1496. [Google Scholar] [CrossRef] [Green Version]
- Gingrich, S.; Niedertscheider, M.; Kastner, T.; Haberl, H.; Cosor, G.; Krausmann, F.; Kuemmerle, T.; Müller, D.; Reith-Musel, A.; Jepsen, M.R.; et al. Exploring long-term trends in land use change and aboveground human appropriation of net primary production in nine European countries. Land Use Policy 2015, 47, 426–438. [Google Scholar] [CrossRef]
- Yang, Y.T.; Qu, S.; Cai, B.F.; Liang, S.; Xu, M. Mapping global carbon footprint in China. Nat. Commun. 2020, 11, 2237. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; He, Q.Y. Spatio-temporal evaluation of the urban agglomeration expansion in the middle reaches of the Yangtze River and its impact on ecological lands. Sci. Total Environ. 2021, 790, 148150. [Google Scholar]
- Huang, C.; Huang, X.; Peng, C.; Zhou, Z.; Teng, M.; Wang, P. Land use/cover change in the Three Gorges Reservoir area, China: Reconciling the land use conflicts between development and protection. Catena 2019, 175, 388–399. [Google Scholar] [CrossRef]
- Morel, A.C.; Adu Sasu, M.; Adu-Bredu, S.; Quaye, M.; Moore, C.; Ashley Asare, R.; Mason, J.; Hirons, M.; McDermott, C.L.; Robinson, E.J.Z.; et al. Carbon dynamics, net primary productivity (NPP) and human appropriated NPP (HANPP) across a forest-cocoa farm landscape in West Africa. Glob. Chang. Biol. 2019, 25, 2661–2677. [Google Scholar] [CrossRef]
- Bondeau, A.; Kicklighter, D.W.; Kaduk, J.; ThE. Participants OF. ThE. Potsdam NpP. Model Intercomparison. Comparing global models of terrestrial net primary productivity (NPP): Importance of vegetation structure on seasonal NPP estimates. Glob. Chang. Biol. 1999, 5, 35–45. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, C.; De Grandpré, L.; Candau, J.N.; Work, T.; Huang, C.; Kneeshaw, D. Simulation and analysis of the effect of a spruce budworm outbreak on carbon dynamics in boreal forests of Québec. Ecosystems 2019, 22, 1838–1851. [Google Scholar] [CrossRef]
- Liao, Q.; Wang, Z.; Huang, C. Green infrastructure offset of the negative ecological effects of urbanization and storing water in the three gorges reservoir area, china. Int. J. Environ. Res. Public Health 2020, 17, 8077. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.H.; Xu, C.Y.; Yang, X.X.; Ye, X.C. Controls of Climate and Land-Use Change on Terrestrial Net Primary Productivity Variation in a Subtropical Humid Basin. Remote Sens. 2020, 12, 3525. [Google Scholar] [CrossRef]
- Chen, S.; Chen, B.; Fath, B.D. Urban ecosystem modeling and global change: Potential for rational urban management and emissions mitigation. Environ. Pollut. 2014, 190, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Peng, C.; Dang, Q.L.; Sun, J.; Wu, H.; Hua, D. Simulating carbon exchange in Canadian Boreal forests: I. Model structure, validation, and sensitivity analysis. Ecol. Model. 2008, 219, 287–299. [Google Scholar] [CrossRef]
- Peng, C.H.; Liu, J.; Dang, Q.; Apps, M.J.; Jiang, H. TRIPLEX: A generic hybrid model for predicting forest growth and carbon and nitrogen dynamics. Ecol. Model. 2002, 153, 109–130. [Google Scholar] [CrossRef]
- Zhu, Q.; Peng, C.; Chen, H.; Fang, X.; Liu, J.; Jiang, H.; Yang, Y.; Yang, G. Estimating global natural wetland methane emissions using process modelling: Spatio-temporal patterns and contributions to atmospheric methane fluctuations. Glob. Ecol. Biogeogr. 2015, 24, 959–972. [Google Scholar] [CrossRef]
- Carver, A.D.; Unger, D.R.; Parks, C.L. Modeling energy savings from urban shade trees: An assessment of the CITYgreen energy conservation module. Environ. Manag. 2004, 34, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Baines, O.; Wilkes, P.; Disney, M. Quantifying urban forest structure with open-access remote sensing data sets. Urban. For. Urban. Gree. 2020, 50, 126653. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Piao, S.L.; Fang, J.Y.; Guo, Q.H. Application of casa model to the estimation of Chinese terrestrial net primary productivity. Acta Phytoecol. Sin. 2001, 21, 603–608. (In Chinese) [Google Scholar]
- Wang, H.; Zhang, J.; Zhu, F.; Zhang, W. Analysis of spatial pattern of aerosol optical depth and affecting factors using spatial autocorrelation and spatial autoregressive model. Environ. Earth Sci. 2016, 75, 822. [Google Scholar]
- Xu, H.; Zhao, C.; Wang, X. Elevational differences in the net primary productivity response to climate constraints in a dryland mountain ecosystem of northwestern China. Land Degrad. Dev. 2020, 31, 2087–2103. [Google Scholar] [CrossRef]
- Zou, Z.; Wu, T.; Xiao, Y.; Song, C.; Ouyang, Z. Valuing natural capital amidst rapid urbanization: Assessing the gross ecosystem product (gep) of china’s “Chang-Zhu-Tan” megacity. Environ. Res. Lett. 2020, 15, 124019. [Google Scholar] [CrossRef]
- Master Plan for Ecological Green Core Area of Chang Zhu Tan Urban Agglomeration (2010–2030). Hunan Provincial Government, China. 2018. Available online: http://zrzyt.hunan.gov.cn/zrzyt/xxgk/tzgg/201909/t20190926_10466709.html (accessed on 16 September 2021). (In Chinese)
- Liu, C.; Xiang, W.H.; Lei, P.F.; Deng, X.W.; Tian, D.L.; Fang, X.; Peng, C.H. Standing fine root mass and production in four Chinese subtropical forests along a succession and species diversity gradient. Plant Soil 2014, 376, 445–459. [Google Scholar] [CrossRef]
- Ouyang, S.; Xiang, W.H.; Wang, X.P.; Xiao, W.F.; Chen, L.; Li, S.G.; Sun, H.; Deng, X.W.; Forrester, D.I.; Zeng, L.X.; et al. Effects of stand age, richness and density on productivity in subtropical forests in China. J. Ecol. 2019, 107, 2266–2277. [Google Scholar] [CrossRef]
- Xiang, W.H.; Fan, G.W.; Lei, P.F.; Zeng, Y.L.; Tong, J.; Fang, X.; Deng, X.W.; Peng, C.H. Fine root interactions in subtropical mixed forests in China depend on tree species composition. Plant Soil 2015, 395, 335–349. [Google Scholar] [CrossRef]
- IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014, update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015.
- Ouyang, S.; Xiang, W.H.; Gou, M.M.; Chen, L.; Lei, P.F.; Xiao, W.F.; Deng, X.W.; Zeng, L.X.; Li, J.R.; Zhang, T.; et al. Stability in subtropical forests: The role of tree species diversity, stand structure, environmental and socio-economic conditions. Glob. Ecol. Biogeogr. 2021, 30, 500–513. [Google Scholar] [CrossRef]
- Yang, K.; He, J. China Meteorological Forcing Dataset (1979–2018); National Tibetan Plateau Data Center: Beijing, China, 2019. [Google Scholar] [CrossRef]
- Bao, G.; Bao, Y.; Qin, Z.; Xin, X.; Bao, Y.; Bayarsaikan, S.; Zhou, Y.; Chuntai, B. Modeling net primary productivity of terrestrial ecosystems in the semi-arid climate of the Mongolian Plateau using LSWI-based CASA ecosystem model. Int. J. Appl. Earth Obs. Geoinf. 2016, 46, 84–93. [Google Scholar] [CrossRef]
- Zhu, W.; Pan, Y.; He, H.; Yu, D.; Hu, H. Simulation of maximum light use efficiency for some typical vegetation types in China. Chin. Sci. Bull. 2006, 51, 457–463. [Google Scholar] [CrossRef]
- Yu, D.; Shi, P.; Shao, H.; Zhu, W.; Pan, Y. Modelling net primary productivity of terrestrial ecosystems in East Asia based on an improved CASA ecosystem model. Int. J. Remote Sens. 2009, 30, 4851–4866. [Google Scholar] [CrossRef]
- Pretzsch, H.; Forrester, D.I.; Rtzer, T. Representation of species mixing in forest growth models. A review and perspective. Ecol. Model. 2015, 313, 276–292. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zeng, Y. Net primary production estimation by using fusion remote sensing data with high spatial and temporal resolution. J. Remote Sens. 2018, 22, 143–152. (In Chinese) [Google Scholar]
- Zhu, W.Q.; Pan, Y.Z.; Zhang, J.S. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. J. Plant Ecol. 2007, 31, 413–424. [Google Scholar]
- Harris, J.A.; Hobbs, R.J.; Higgs, E.; Aronson, J. Ecological restoration and global climate change. Restor. Ecol. 2006, 14, 170–176. [Google Scholar] [CrossRef]
- Liu, C.; Xiang, W.H.; Xie, B.G.; Ouyang, S.; Zeng, Y.L.; Lei, P.F.; Peng, C.H. Decoupling the complementarity effect and the selection effect on the overyielding of fine root production along a tree species richness gradient in subtropical forests. Ecosystems 2020, 24, 613–627. [Google Scholar] [CrossRef]
- Lauerwald, R.; Hartmann, J.; Ludwig, W.; Moosdorf, N. Assessing the nonconservative fluvial fluxes of dissolved organic carbon in North America. J. Geophy. Res.-Biogeo 2012, 117, G01027. [Google Scholar] [CrossRef]
- Hui, D.; Qi, D.; Tian, H.; Luo, Y. Climate Change and Carbon Sequestration in Forest Ecosystems; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–40. [Google Scholar]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDowell, N.G.; Sevanto, S. The mechanisms of carbon starvation: How, when, or does it even occur at all? New Phytol. 2010, 186, 264–266. [Google Scholar] [CrossRef] [PubMed]
- Im, J.; Park, S.; Rhee, J.; Baik, J.; Choi, M. Downscaling of amsr-e soil moisture with modis products using machine learning approaches. Environ. Earth Sci. 2016, 75, 1120. [Google Scholar] [CrossRef]
- Kurz, W.A.; Stinson, G.; Rampley, G.J.; Dymond, C.C.; Neilson, E.T. Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc. Natl. Acad. Sci. USA 2008, 105, 1551–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, L.A.; Ballantyne, A.P.; Holden, Z.A.; Landguth, E.L. Disturbance impacts on land surface temperature and gross primary productivity in the western United States. J. Geophys. Res.-Biogeo. 2017, 122, 930–946. [Google Scholar] [CrossRef]
- Yu, L.; Dong, T.F.; Lu, Y.B.; Song, M.Y.; Duan, B.L. Ecophysiological responses of cunninghamia lanceolata to nongrowing-season warming, nitrogen deposition, and their combination. Photosynthetica 2016, 54, 598–610. [Google Scholar] [CrossRef]
- Yue, K.; Fornara, D.A.; Yang, W.; Peng, Y.; Peng, C.; Liu, Z.; Wu, F.; Niu, S. Influence of multiple global change drivers on terrestrial carbon storage: Additive effects are common. Ecol. Lett. 2017, 20, 663. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.B.; Hobbie, S.E.; Lee, T.D.; Rich, R.; Worm, K. Synergistic effects of four climate change drivers on terrestrial carbon cycling. Nat. Geosci. 2020, 13, 1–7. [Google Scholar] [CrossRef]
Class I | Class II | Description | Area (km2) | |
---|---|---|---|---|
2000 | 2015 | |||
Crop land | Paddy field | Cultivated land with guaranteed water source and irrigation facilities, which can be irrigated normally in general years to plant aquatic crops such as rice and lotus root. Also includes cultivated land with rice and dry land crop rotation. | 7409.45 | 7061.96 |
Dry land | Includes cultivated land that grows crops by natural precipitation; dry crop cultivated land with water source and irrigation facilities that can be irrigated normally in general years; and cultivated land mainly for growing vegetables, with normal rotation of fallow land and rest land. | 1153.53 | 1061.84 | |
Forest land | Arboreal forest | Natural and plantation forests with canopy density >40%. Includes timber forest, economic forest, shelter forest, and other woodlands. | 13,408.68 | 12,902.20 |
Shrub | Low and shrub woodland with canopy density >40% and height below 2 m. | 669.49 | 669.18 | |
Open forest land | Forest with canopy density <40% | 3864.50 | 4045.17 | |
Grassland | Includes natural, improved, and mowed grasslands with dense growth. | 444.23 | 436.21 | |
Water | Natural waters and water conservancy facilities. | 517.38 | 547.56 | |
Built-up land | Urban and rural residential land, mining land, and other transportation land outside urban and rural areas. | 650.34 | 1387.83 | |
Bare land | Land with surface soil coverage and vegetation coverage <5%. | 4.09 | 9.88 |
City | ΔClimate | ΔPrecipitation | ΔTemperature | ΔRadiation |
---|---|---|---|---|
Changsha | −0.50 | −0.57 | −0.49 | 0.56 |
Xiangtan | −0.22 | −0.29 | −0.19 | 0.26 |
Zhuzhou | −0.72 | −0.76 | −0.73 | 0.77 |
Total | −1.44 | −1.62 | −1.41 | 1.59 |
City | ΔLULC | ΔAfforestation | ΔUrbanization | ΔOthers |
---|---|---|---|---|
Changsha | 1.02 | 0.01 | −0.03 | 1.04 |
Xiangtan | 0.51 | 0.01 | −0.01 | 0.51 |
Zhuzhou | 1.89 | 0.03 | −0.01 | 1.87 |
Total | 3.42 | 0.05 | −0.05 | 3.42 |
Land-Use Type | Cropland | Forest Land | Grassland | Water | Built-Up Land | Bare Land |
---|---|---|---|---|---|---|
Cropland | 7981.98 | 126.44 | 3.57 | 51.33 | 399.02 | 0.64 |
Forest land | 101.81 | 17,452.78 | 8.09 | 21.70 | 351.79 | 6.50 |
Grassland | 1.68 | 15.32 | 422.88 | 0.70 | 3.65 | 0.00 |
Water | 18.52 | 8.98 | 0.44 | 470.00 | 19.21 | 0.23 |
Built-up land | 19.72 | 12.95 | 0.12 | 3.37 | 614.17 | 0.00 |
Bare land | 0.01 | 0.03 | 1.10 | 0.44 | 0.00 | 2.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Liu, Z.; Xie, B.; Liang, Y.; Li, X.; Zhou, K. Decoupling the Effect of Climate and Land-Use Changes on Carbon Sequestration of Vegetation in Mideast Hunan Province, China. Forests 2021, 12, 1573. https://doi.org/10.3390/f12111573
Liu C, Liu Z, Xie B, Liang Y, Li X, Zhou K. Decoupling the Effect of Climate and Land-Use Changes on Carbon Sequestration of Vegetation in Mideast Hunan Province, China. Forests. 2021; 12(11):1573. https://doi.org/10.3390/f12111573
Chicago/Turabian StyleLiu, Cong, Zelin Liu, Binggeng Xie, Yuan Liang, Xiaoqing Li, and Kaichun Zhou. 2021. "Decoupling the Effect of Climate and Land-Use Changes on Carbon Sequestration of Vegetation in Mideast Hunan Province, China" Forests 12, no. 11: 1573. https://doi.org/10.3390/f12111573
APA StyleLiu, C., Liu, Z., Xie, B., Liang, Y., Li, X., & Zhou, K. (2021). Decoupling the Effect of Climate and Land-Use Changes on Carbon Sequestration of Vegetation in Mideast Hunan Province, China. Forests, 12(11), 1573. https://doi.org/10.3390/f12111573