Assessment of Wooden Foundation Piles after 125 Years of Service
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Resistograph and Screw Withdrawal Measurements
2.3. Density and DVS Analysis
2.4. Chemical Analysis
2.5. Microscopic Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shabani, A.; Kioumarsi, M.; Plevris, V.; Stamatopoulos, H. Structural vulnerability assessment of heritage timber buildings: A methodological proposal. Forests 2020, 11, 881. [Google Scholar] [CrossRef]
- Heumüller, M. Erosion and archaeological heritage protection in lake constance and lake zurich: The interreg iv project “erosion und denkmalschutz am bodensee und zürichsee”. Conserv. Manag. Archaeol. Sites 2012, 14, 48–59. [Google Scholar]
- Cufar, K.; Levanic, T.; Veluscek, A.; Kromer, B. First chronologies of the Eneolithic pile dwellings from the Ljubljana moor, Slovenia. Dendrochronologia 1997, 15, 39–50. [Google Scholar]
- Klaassen, R.K.W.M. Bacterial decay in wooden foundation piles—Patterns and causes: A study of historical pile foundations in the Netherlands. Int. Biodeterior. Biodegrad. 2008, 61, 45–60. [Google Scholar] [CrossRef]
- Jeraj, M.; Velušček, A.; Jacomet, S. The diet of Eneolithic (Copper Age, Fourth millennium cal b.c.) pile dwellers and the early formation of the cultural landscape south of the Alps: A case study from Slovenia. Veg. Hist. Archaeobot. 2009, 18. [Google Scholar] [CrossRef]
- Elam, J.; Björdal, C. A review and case studies of factors affecting the stability of wooden foundation piles in urban environments exposed to construction work. Int. Biodeterior. Biodegrad. 2020, 148, 104913. [Google Scholar] [CrossRef]
- Curtis, D.R.; Campopiano, M. Medieval land reclamation and the creation of new societies: Comparing Holland and the Po Valley, c.800–c.1500. J. Hist. Geogr. 2014, 44, 93–108. [Google Scholar] [CrossRef]
- Fejfer, M.; Majka, J.; Zborowska, M. Dimensional Stability ofWaterlogged Scots Pine Wood Treated with PEG and Dried Using an Alternative Approach. Forests 2020, 11, 1254. [Google Scholar] [CrossRef]
- Humar, M.; Lesar, B.; Kržišnik, D. Tehnična in estetska življenjska doba lesa. Acta Silvae et Ligni 2020, 121, 33–48. [Google Scholar] [CrossRef]
- Klaassen, R.K.W.M.; Creemers, J.G.M. Wooden foundation piles and its underestimated relevance for cultural heritage. J. Cult. Herit. 2012, 13, 123–128. [Google Scholar] [CrossRef]
- Terziev, N.; Nilsson, T. Effect of soluble nutrient content in wood on its susceptibility to soft rot and bacterial attack in ground test. Holzforschung 1999, 53, 575–579. [Google Scholar] [CrossRef]
- García-Iruela, A.; Esteban, L.G.; Fernández, F.G.; de Palacios, P.; Rodriguez-Navarro, A.B.; Sánchez, L.G.; Hosseinpourpia, R. Effect of degradation onwood hygroscopicity: The case of a 400-year-old coffin. Forests 2020, 11, 712. [Google Scholar] [CrossRef]
- Blanchette, R.A. A review of microbial deterioration found in archaeological wood from different environments. Int. Biodeterior. Biodegrad. 2000, 46, 189–204. [Google Scholar] [CrossRef]
- Savory, J.G. Breakdown of timber by ascomycetes and fungi imperfecti. Ann. Appl. Biol. 1954, 41, 336–347. [Google Scholar] [CrossRef]
- Zabel, R.A.; Morrell, J.J. Wood Microbiology: Decay and Its Prevention, 2nd ed.; Academic Press: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Schmidt, O. Wood and Tree Fungi: Biology, Damage, Protection, and Use; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Kim, Y.S.; Singh, A.P. Micromorphological characteristics of wood biodegradation in wet environments: A review. IAWA J. 2000, 21, 135–155. [Google Scholar] [CrossRef]
- Daniel, G.; Nilsson, T. Developments in the study of soft rot and bacterial decay. In Forest Products Biotechnology; Taylor & Francis: Abingdon, UK, 1998; pp. 37–62. [Google Scholar]
- Lucejko, J.J.; Modugno, F.; Ribechini, E.; Tamburini, D.; Colombini, M.P. Analytical instrumental techniques to study archaeologicalwood degradation. Appl. Spectrosc. Rev. 2015, 50, 584–625. [Google Scholar] [CrossRef]
- High, K.E.; Penkman, K.E.H. A review of analytical methods for assessing preservation in waterlogged archaeological wood and their application in practice. Herit. Sci. 2020, 8, 1–33. [Google Scholar] [CrossRef]
- Macchioni, N.; Pizzo, B.; Capretti, C.; Giachi, G. How an integrated diagnostic approach can help in a correct evaluation of the state of preservation of waterlogged archaeological wooden artefacts. J. Archaeol. Sci. 2012, 39, 3255–3263. [Google Scholar] [CrossRef]
- Chelazzi, D.; Giorgi, R.; Baglioni, P. Nanotechnology for Vasa wood de-acidification. Macromol. Symp. 2006, 238, 30–36. [Google Scholar] [CrossRef]
- Pizzo, B.; Pecoraro, E.; Lazzeri, S. Dynamic mechanical analysis (DMA) of waterlogged archaeological wood at room temperature. Holzforschung 2018, 72. [Google Scholar] [CrossRef]
- Romagnoli, M.; Galotta, G.; Antonelli, F.; Sidoti, G.; Humar, M.; Kržišnik, D.; Čufar, K.; Davidde Petriaggi, B. Micro-morphological, physical and thermogravimetric analyses of waterlogged archaeological wood from the prehistoric village of Gran Carro (Lake Bolsena-Italy). J. Cult. Herit. 2018, 33, 30–38. [Google Scholar] [CrossRef]
- Xia, Y.; Chen, T.Y.; Wen, J.L.; Zhao, Y.L.; Qiu, J.; Sun, R.C. Multi-analysis of chemical transformations of lignin macromolecules from waterlogged archaeological wood. Int. J. Biol. Macromol. 2018, 109, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Lucejko, J.J.; Tamburini, D.; Zborowska, M.; Babiński, L.; Modugno, F.; Colombini, M.P. Oak wood degradation processes induced by the burial environment in the archaeological site of Biskupin (Poland). Herit. Sci. 2020, 8. [Google Scholar] [CrossRef]
- Kržišnik, D.; Brischke, C.; Lesar, B.; Thaler, N.; Humar, M. Performance of wood in the Franja partisan hospital. Wood Mater. Sci. Eng. 2019, 14, 24–32. [Google Scholar] [CrossRef]
- Frontini, F. In situ evaluation of a timber structure using a drilling resistance device. Case study: Kjøpmannsgata 27, Trondheim (Norway). Int. Wood Prod. J. 2017, 8, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Xue, S.; Zhou, H.; Liu, X.; Wang, W. Prediction of compression strength of wood usually used in ancient timber buildings by using resistograph and screw withdrawal tests. Wood Res. 2019, 64, 249–260. [Google Scholar]
- Macias, K.A.; Carvajal, M.T. The influence of granule density on granule strength and resulting compact strength. Chem. Eng. Sci. 2012, 72, 205–213. [Google Scholar] [CrossRef]
- Micromeritics Instrument Corporation. GeoPyc 1365 Operator Manual; Micromeritics Instrument Corporation: Norcross, GA, USA, 2017. [Google Scholar]
- Mitchell, A.J.; Watson, A.J.; Higgins, H.G. An infrared spectroscopic study of delignification of Eucalyptus regnans. Tappi 1965, 48, 520–532. [Google Scholar]
- Humar, M.; Fabčič, B.; Zupančič, M.; Pohleven, F.; Oven, P. Influence of xylem growth ring width and wood density on durability of oak heartwood. Int. Biodeterior. Biodegrad. 2008, 62, 368–371. [Google Scholar] [CrossRef]
- Yasuda, S.; Fukushima, K.; Kakehi, A. Formation and chemical structures of acid-soluble lignin I: Sulfuric acid treatment time and acid-soluble lignin content of hardwood. J. Wood Sci. 2001, 47, 69–72. [Google Scholar] [CrossRef]
- Humar, M.; Petrič, M.; Pohleven, F. Changes of the pH value of impregnated wood during exposure to wood-rotting fungi. Holz als Roh- und Werkstoff 2001, 59, 288–293. [Google Scholar] [CrossRef]
- Repe, B. Classification of soils in Slovenia. Soil Sci. Annu. 2020, 71, 158–164. [Google Scholar] [CrossRef]
- Agencija Republike Slovenije za Okolje/Slovenian Environmental Agency. Archives of Meteorological Data. Available online: http://meteo.arso.gov.si/met/sl/archive/ (accessed on 17 January 2021).
- Chafe, S.C. Wood-water relations. For. Ecol. Manag. 1990, 31, 121–123. [Google Scholar] [CrossRef]
- Poljanšek, S.; Jevšenak, J.; Gričar, J.; Levanič, T. Seasonal radial growth of Black pine (Pinus nigra Arnold) from Bosnia and Herzegovina, monitored by the pinning method and manual band dendrometers. Acta Silvae et Ligni 2019, 119, 1–11. [Google Scholar] [CrossRef]
- European Committee for Standardisation. Durability of Wood and Wood-Based Products—Natural Durability of Solid Wood: Guide to Natural Durability and Treatability of Selected Wood Species of Importance in Europe; European Committee for Standardisation: Brussels, Belgium, 1994. [Google Scholar]
- Brischke, C.; Meyer, L.; Alfredsen, G.; Humar, M.; Francis, L.; Flæte, P.-O.; Larsson-Brelid, P. Natural durability of timber exposed above ground—A survey. Drv. Ind. 2013, 64, 113–129. [Google Scholar] [CrossRef]
- Wagenfuhr, R. Holzatlas; Fachbuchverlag: Leipzig, Germany, 2007. [Google Scholar]
- Čufar, K.; Tišler, V.; Gorišek, Ž. Arheološki les—Njegove lastnosti in raziskovalni potencial. Arheol. Vestn. 2002, 53, 69–75. [Google Scholar]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions; Walter de Gruyte: Berlin, Germany; New York, NY, USA, 2011. [Google Scholar]
- Hemmingson, J.; Wong, H. Characterization of photochemically degraded newsprint solubles by 13C NMR and IR spectroscopy. Holzforschung 1989, 43, 141–147. [Google Scholar] [CrossRef]
- Woźniak, M.; Kwaśniewska-Sip, P.; Krueger, M.; Roszyk, E.; Ratajczak, I. Chemical, biological and mechanical characterization of wood treated with propolis extract and silicon compounds. Forests 2020, 11, 907. [Google Scholar] [CrossRef]
- Blanchette, R.A.; Cease, K.R.; Abad, A.R.; Koestler, R.J.; Simpson, E.; Sams, G.K. An evaluation of different forms of deterioration found in archaeological wood. Int. Biodeterior. 1991, 28, 3–22. [Google Scholar] [CrossRef]
- Ghavidel, A.; Hosseinpourpia, R.; Militz, H.; Vasilache, V.; Sandu, I. Characterization of Archaeological European White Elm (Ulmus laevis P.) and Black Poplar (Populus nigra L.). Forests 2020, 11, 1329. [Google Scholar] [CrossRef]
- Esteban, L.G.; De Palacios, P.; Fernández, F.G.; Guindeo, A.; Conde, M.; Baonza, V. Sorption and thermodynamic properties of juvenile Pinus sylvestris L. wood after 103 years of submersion. Holzforschung 2008, 62, 745–751. [Google Scholar] [CrossRef]
- Anbu, P.; Kang, C.H.; Shin, Y.J.; So, J.S. Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus 2016, 5, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarikaya, M. Biomimetics: Materials fabrication through biology. Proc. Natl. Acad. Sci. USA 1999, 96, 14183–14185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merk, V.; Chanana, M.; Keplinger, T.; Gaan, S.; Burgert, I. Hybrid wood materials with improved fire retardance by bio-inspired mineralisation on the nano- and submicron level. Green Chem. 2015, 17, 1423–1428. [Google Scholar] [CrossRef] [Green Version]
- Turk, J.; Pranjić, A.M.; Tomasin, P.; Škrlep, L.; Antelo, J.; Favaro, M.; Škapin, A.S.; Bernardi, A.; Ranogajec, J.; Chiurato, M. Environmental performance of three innovative calcium carbonate-based consolidants used in the field of built cultural heritage. Int. J. Life Cycle Assess. 2017, 22, 1329–1338. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Humar, M.; Balzano, A.; Kržišnik, D.; Lesar, B. Assessment of Wooden Foundation Piles after 125 Years of Service. Forests 2021, 12, 143. https://doi.org/10.3390/f12020143
Humar M, Balzano A, Kržišnik D, Lesar B. Assessment of Wooden Foundation Piles after 125 Years of Service. Forests. 2021; 12(2):143. https://doi.org/10.3390/f12020143
Chicago/Turabian StyleHumar, Miha, Angela Balzano, Davor Kržišnik, and Boštjan Lesar. 2021. "Assessment of Wooden Foundation Piles after 125 Years of Service" Forests 12, no. 2: 143. https://doi.org/10.3390/f12020143
APA StyleHumar, M., Balzano, A., Kržišnik, D., & Lesar, B. (2021). Assessment of Wooden Foundation Piles after 125 Years of Service. Forests, 12(2), 143. https://doi.org/10.3390/f12020143