Norway Spruce Stem Parameters in Sites with Different Stand Densities in Lithuanian Hemiboreal Forest
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Site and Material
2.2. Field Measurements
2.3. Data and Statistical Analysis
3. Results
3.1. Tree Stem and Branch Characteristics at the Sites of Different Stand Densities
3.2. Relationships between Stand, Tree Stem and Branch Characteristics
3.3. Modelling Branch Diameter in Relation to Stand, Tree Stem and Branch Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Watt, M.S.; Moore, J.R.; Façon, J.-P.; Downes, G.M.; Clinton, P.W.; Coker, G.; Davis, M.R.; Simcock, R.; Parfitt, R.L.; Dando, J.; et al. Modelling the influence of stand structural, edaphic and climatic influences on juvenile Pinus radiata dynamic modulus of elasticity. For. Ecol. Manag. 2006, 229, 136–144. [Google Scholar] [CrossRef]
- Budeanu, M.; Şofletea, N. Stem and Crown Characteristics of Norway Spruce [Picea abies (L.) Karst] Populations from Romanian Carpathians. Not. Bot. Horti. Agrobot. Cluj-Napoca 2013, 41, 593–600. [Google Scholar] [CrossRef] [Green Version]
- Krajnc, L.; Farrelly, N.; Harte, A.M. The effect of thinning on mechanical properties of Douglas fir, Norway spruce, and Sitka spruce. Ann. For. Sci. 2019, 76, 3. [Google Scholar] [CrossRef] [Green Version]
- Russo, D.; Marziliano, P.; Macrì, G.; Proto, A.R.; Zimbalatti, G.; Lombardi, F. Does Thinning Intensity Affect Wood Quality? An Analysis of Calabrian Pine in Southern Italy Using a Non-Destructive Acoustic Method. Forests 2019, 10, 303. [Google Scholar] [CrossRef] [Green Version]
- Del Río, M.; Bravo-Oviedo, A.; Pretzsch, H.; Löf, M.; Ruiz-Peinado, R. A review of thinning effects on Scots pine stands: From growth and yield to new challenges under global change. For. Syst. 2017, 26, eR03S. [Google Scholar] [CrossRef]
- Routa, J.; Kilpeläinen, A.; Ikonen, V.-P.; Asikainen, A.; Venäläinen, A.; Peltola, H. Effects of intensified silviculture on timber production and its economic profitability in boreal Norway spruce and Scots pine stands under changing climatic conditions. Forestry 2019, 92, 648–658. [Google Scholar] [CrossRef] [Green Version]
- Teder, M.; Mizaraitė, D.; Mizaras, S.; Nonić, D.; Nedeljković, J.; Sarvašová, Z.; Vilkriste, L.; Zalite, Z.; Weiss, G. Structural changes of state forest management organisations in Estonia, Latvia, Lithuania, Serbia and Slovakia since 1990. Balt. For. 2015, 21, 326–339. [Google Scholar]
- Lundmark, H.; Josefsson, T.; Östlund, L. The introduction of modern forest management and clear-cutting in Sweden: Ridö State Forest 1832–2014. Eur. J. For. Res. 2017, 136, 269–285. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.; Kändler, G. An analysis of Norway spruce stem quality in Baden-Württemberg: Results from the second German national forest inventory. Eur. J. For. Res. 2009, 128, 515–529. [Google Scholar] [CrossRef]
- Niemistö, P.; Kilpeläinen, H.; Poutiainen, E. Effect of first thinning type and age on growth, stem quality and financial performance of a Scots pine stand in Finland. Silva Fenn. 2018, 52. [Google Scholar] [CrossRef] [Green Version]
- Mäkinen, H. Thinning intensity and growth of Norway spruce stands in Finland. Forests 2004, 77, 349–364. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, E. Thinning operations and their impact on biomass production in stands of Norway spruce and Scots pine. Biomass Bioenergy 2006, 30, 848–854. [Google Scholar] [CrossRef]
- Del Río, M.; Calama, R.; Cañellas, I.; Roig, S.; Montero, G. Thinning intensity and growth response in SW-European Scots pine stands. Ann. For. Sci. 2008, 65, 308. [Google Scholar] [CrossRef] [Green Version]
- Ikonen, V.-P.; Kellomäki, S.; Peltola, H. Sawn timber properties of Scots pine as affected by initial stand density, thinning and pruning: A simulation based approach. Silva Fenn. 2009, 43, 411–431. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, U.; Agestam, E.; Ekö, P.-M.; Elfving, B.; Fahlvik, N.; Johansson, U.; Karlsson, K.; Lundmark, T.; Wallentin, C. Thinning of Scots pine and Norway spruce monocultures in Sweden—Effects of different thinning programmes on stand level gross- and net stem volume production. Studia For. Suec. 2010, 219, 46. [Google Scholar]
- Zeide, B. Thinning and growth: A full turnaround. J. For. 2001, 99, 20–25. [Google Scholar] [CrossRef]
- Bosela, M.; Redmond, J.; Kučera, M.; Marin, G.; Adolt, R.; Gschwantner, T.; Petráš, R.; Korhonen, K.; Kuliešis, A.; Kulbokas, G.; et al. Stem quality assessment in European National Forest Inventories: An opportunity for harmonised reporting? Ann. For. Sci. 2016, 73, 635–648. [Google Scholar] [CrossRef] [Green Version]
- Mäkinen, H.; Colin, F. Predicting branch angle and branch diameter of Scots pine from usual tree measurements and stand structural information. Can. J. For. Res. 1998, 28, 1686–1696. [Google Scholar] [CrossRef]
- Mäkinen, H.; Ojansuu, R.; Sairanen, P.; Yli-Kojola, H. Predicting branch characteristics of Norway spruce (Picea abies (L.) Karst.) from simple stand and tree measurements. Forests 2003, 76, 525–546. [Google Scholar] [CrossRef]
- Huuskonen, S.; Hakala, S.; Mäkinen, H.; Hynynen, J.; Varmola, M. Factors influencing the branchiness of young Scots pine trees. Forests 2013, 87, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Loubère, M.; Saint-André, L.; Hervé, J.-C.; Vestøl, G.I. Relationships between stem size and branch basal diameter variability in Norway spruce (Picea abies (L.) Karsten) from two regions of France. Ann. For. Sci. 2004, 61, 525–535. [Google Scholar] [CrossRef] [Green Version]
- Pape, R. Effects of Thinning Regime on the Wood Properties and Stem Quality of Picea abies. Scand. J. For. Res. 1999, 14, 38–50. [Google Scholar] [CrossRef]
- Malinen, J.; Maltamo, M.; Verkasalo, E. Stem and Wood Properties of Norway Spruce on Drained Peatlands and Mineral Forest Lands in Southern Finland. Balt. For. 2005, 11, 21–38. [Google Scholar]
- Kuliešis, A.; Saladis, J. The effect of early thinning on the growth of pine and spruce stands. Balt. For. 1998, 1, 8–16. [Google Scholar]
- Šilinskas, B.; Varnagirytė-Kabašinskienė, I.; Aleinikovas, M.; Beniušienė, L.; Aleinikovienė, J.; Škėma, M. Scots Pine and Norway Spruce Wood Properties at Sites with Different Stand Densities. Forests 2020, 11, 587. [Google Scholar] [CrossRef]
- Beniušienė, L.; Šilinskas, B.; Beniušis, R.; Aleinikovas, M.; Petrauskas, E.; Varnagirytė-Kabašinskienė, I. Scots Pine Stem Parameters in Sites with Different Stand Densities in Lithuania. Forests 2020, 11, 716. [Google Scholar] [CrossRef]
- Ministry of Environment, State Forest Service. Lithuanian Statistical Yearbook of Forestry; Dagilius, R., Eigirdas, M., Kuliešis, A., Vižlenskas, D., Eds.; Lutute: Kaunas, Lithuania, 2019; p. 184. ISSN 1648-8008. [Google Scholar]
- World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014; ISBN 978-92-5-108370-3. [Google Scholar]
- Vaičys, M.; Karazija, S.; Kuliešis, A.; Rutkauskas, A. Miškų Augavietės [Forest Sites]; Lutute: Kaunas, Lithuania, 2006; p. 95. (In Lithuanian) [Google Scholar]
- LST EN 1927-1:2008. Apvaliosios Spygliuočių Medienos Klasifikavimas Pagal Kokybę. 1 Dalis. Eglės ir Kėniai [Qualitative Classification of Softwood round Timber- Part 1: Spruces and Firs]; Lithuanian Standards Board: Vilnius, Lithuania, 2008. [Google Scholar]
- Spiecker, H. Growth of Norway spruce (Picea abies [L.] Karst) under changing environmental conditions in Europe. In Spruce Monocultures in Central Europe. Problems and Prospects; Klimo, E., Hager, H., Kulhavy, J., Eds.; European Forest Institute: Joensuu, Finland, 2000; pp. 11–26. ISBN 13 978-952-9844-76-0. [Google Scholar]
- Assmann, E. The Principles of Forest Yield Study: Studies in the Organic Production, Structure, Increment and Yield of Forest Stands; Pergamon Press: Oxford, UK, 1970; p. 505. ISBN 9781483150932. [Google Scholar]
- Savill, P.S.; Sandels, A.J. The Influence of Early Respacing on the Wood Density of Sitka Spruce. Forests 1983, 56, 109–120. [Google Scholar] [CrossRef]
- Fahlvik, N.; Ekö, P.-M.; Pettersson, N. Influence of precommercial thinning grade on branch diameter and crown ratio in Pinus sylvestris in southern Sweden. Scand. J. For. Res. 2005, 20, 243–251. [Google Scholar] [CrossRef]
- Liziniewicz, M.; Ekö, P.M.; Agestam, E. Effect of spacing on 23-year-old lodgepole pine (Pinus contortaDougl. var.latifolia) in southern Sweden. Scand. J. For. Res. 2012, 27, 361–371. [Google Scholar] [CrossRef]
- Pretzsch, H.; Rais, A. Wood quality in complex forests versus even-aged monocultures: Review and perspectives. Wood Sci. Technol. 2016, 50, 845–880. [Google Scholar] [CrossRef]
- Auty, D.; Weiskittel, A.R.; Achim, A.; Moore, J.R.; Gardiner, B.A. Influence of early re-spacing on Sitka spruce branch structure. Ann. For. Sci. 2011, 69, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Colin, F.; Houllier, F. Branchiness of Norway spruce in northeastern France: Predicting the main crown characteristics from usual tree measurements. Ann. des Sci. For. 1992, 49, 511–538. [Google Scholar] [CrossRef] [Green Version]
- Moberg, L. Models of internal knot properties for Picea abies. For. Ecol. Manag. 2001, 147, 123–138. [Google Scholar] [CrossRef]
- Kärkkäinen, M. Malli männyn, kuusen ja koivun puuaineen oksaisuudesta. Silva Fenn. 1986, 20, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Mäkinen, H.; Hein, S. Effect of wide spacing on increment and branch properties of young Norway spruce. Eur. J. For. Res. 2006, 125, 239–248. [Google Scholar] [CrossRef]
Study Sites a | Number of Study Plots b | Year of Establish-ment | Site Area, ha | Stand Age, Years | Location | Latitude, Longitude | Soil Type c | Forest Site Type d |
---|---|---|---|---|---|---|---|---|
202 | 5 | 1990 | 2.02 | 38 | Sudervė, Vilnius distr. | 54°68′31″ 25°10′42″ | Dystric Planosol | Ncp |
203 | 4 | 1991 | 0.80 | 39 | Rozalimas, Pakruojis distr. | 55°89′78″ 23°75′39″ | Calcic Luvisol | Nds |
204 | 5 | 1992 | 1.17 | 43 | Mikoliškės, Kretinga distr. | 55°82′88″ 21°46′92″ | Calcic Luvisol | Nds |
205 | 4 | 1992 | 0.34 | 36 | Mostaičiai, Plungė distr. | 55°77′08″ 21°74′64″ | Haplic Luvisol | Ncs |
Stand Density a, Trees ha−1 | Thinning Intensity | Stand Age at Thinning, Years | Stand Density at Assessment b, Trees ha−1 | Area of Study Plot, m2 | Number of Assessed Trees |
---|---|---|---|---|---|
Study Site–202 | |||||
4038 | no thinning | − | 3036 | 4071 | 60 |
3100 | 4 times | 9, 15, 21, 34 | 955 | 3991 | 60 |
2100 | 3 times | 9, 15, 34 | 909 | 4037 | 60 |
1100 | 2 times | 9, 34 | 842 | 4026 | 60 |
500 | 1 time | 9 | 498 | 4100 | 60 |
Study Site–203 | |||||
2947 | no thinning | − | 1604 | 2001 | 30 |
No data | - | - | - | - | - |
2200 | 3 times | 11,16, 35 | 961 | 2040 | 30 |
1200 | 2 times | 11, 35 | 921 | 2030 | 30 |
600 | 1 time | 11 | 582 | 1890 | 30 |
Study Site–204 | |||||
4118 | no thinning | - | 2510 | 2331 | 60 |
3000 | 4 times | 15, 20, 14, 26 | 928 | 2338 | 60 |
2000 | 3 times | 15, 20, 26 | 634 | 2350 | 60 |
1200 | 2 times | 15, 26 | 678 | 2346 | 60 |
600 | 1 time | 15 | 545 | 2332 | 60 |
Study Site–205 | |||||
5196 | no thinning | - | 1450 | 841 | 30 |
No data | - | - | - | - | - |
2300 | 3 times | 8, 13, 32 | 922 | 781 | 30 |
1200 | 2 times | 8, 32 | 1077 | 733 | 30 |
600 | 1 time | 8 | 585 | 1059 | 30 |
Stand Density, Trees ha−1 | H, m | DBH, cm |
---|---|---|
Study Site–202 | ||
4038 | 19.12 ± 0.19 D | 15.03 ± 0.31 D |
3100 | 21.09 ± 0.16 B | 19.81 ± 0.28 C |
2100 | 20.57 ± 0.18 C | 20.00 ± 0.30 C |
1100 | 22.19 ± 0.15 A | 22.64 ± 0.40 B |
500 | 22.18 ± 0.17 A | 28.05 ± 0.44 A |
Study Site–203 | ||
2947 | 18.10 ± 0.43B | 16.19 ± 0.64 C |
2200 | 19.20 ± 0.24 A | 18.91 ± 0.51 B |
1200 | 19.09 ± 0.28 A | 20.56 ± 0.72 B |
600 | 18.72 ± 0.31 AB | 22.79 ± 0.73 A |
Study Site–204 | ||
4118 | 20.97 ± 0.22 B | 17.90 ± 0.48 D |
3000 | 22.19 ± 0.23 A | 22.66 ± 0.48 C |
2000 | 22.22 ± 0.17 A | 26.65 ± 0.52 B |
1200 | 21.79 ± 0.17 A | 25.54 ± 0.44 B |
600 | 22.22 ± 0.21 A | 28.84 ± 0.47 A |
Study Site–205 | ||
5196 | 22.30 ± 0.34 B | 21.28 ± 0.78 C |
2300 | 23.73 ± 0.24 A | 24.41 ± 0.51 B |
1200 | 23.72 ± 0.25 A | 24.46 ± 0.59 B |
600 | 22.94 ± 0.22 AB | 29.15 ± 0.57 A |
Stand Density, Trees ha−1 | Nbr0-6 * | Dbr0-6, cm | Dbr0-3, cm | Dbr3-6, cm | Hlb, m | Hdb, m | Brarea, % |
---|---|---|---|---|---|---|---|
Study Site–202 | |||||||
4038 | 44.63 ± 1.91 E | 1.22 ± 0.01 D | 1.14 ± 0.01 D | 1.29 ± 0.02 D | 11.90 ± 0.14 D | 0.43 ± 0.07 B | 0.17 ± 0.01 E |
3100 | 59.85 ± 2.04 D | 1.37 ± 0.02 C | 1.24 ± 0.02 C | 1.48 ± 0.02 C | 11.32 ± 0.19 C | 0.29 ± 0.03 AB | 0.22 ± 0.01 D |
2100 | 67.60 ± 1.82 C | 1.42 ± 0.02 BC | 1.29 ± 0.02 C | 1.58 ± 0.02 B | 10.56 ± 0.21 B | 0.29 ± 0.13 AB | 0.27 ± 0.01 C |
1100 | 84.25 ± 2.48 B | 1.45 ± 0.02 B | 1.36 ± 0.02 B | 1.58 ± 0.03 B | 12.11 ± 0.16 D | 0.16 ± 0.02 A | 0.31 ± 0.01 B |
500 | 90.87 ± 2.60 A | 1.84 ± 0.03 A | 1.69 ± 0.03 A | 2.05 ± 0.04 A | 9.89 ± 0.19 A | 0.09 ± 0.01 A | 0.45 ± 0.02 A |
Study Site–203 | |||||||
2947 | 62.87 ± 3.40 B | 1.34 ± 0.03 D | 1.28 ± 0.03 C | 1.40 ± 0.04 C | 8.94 ± 0.34 C | 0.37 ± 0.06 B | 0.28 ± 0.02 B |
2200 | 70.83 ± 2.96 B | 1.45 ± 0.02 C | 1.35 ± 0.02 C | 1.59 ± 0.03 B | 8.00 ± 0.21 B | 0.24 ± 0.03 A | 0.31 ± 0.02 B |
1200 | 81.67 ± 4.63 A | 1.56 ± 0.03 B | 1.46 ± 0.03 B | 1.69 ± 0.04 B | 7.73 ± 0.32 B | 0.22 ± 0.03 A | 0.38 ± 0.02 A |
600 | 83.90 ± 3.56 A | 1.72 ± 0.05 A | 1.58 ± 0.05 A | 1.90 ± 0.06 A | 4.66 ± 0.26 A | 0.21 ± 0.03 A | 0.44 ± 0.02 A |
Study Site–204 | |||||||
4118 | 59.47 ± 2.65 D | 1.29 ± 0.02 D | 1.19 ± 0.01 D | 1.40 ± 0.03 C | 12.64 ± 0.17 D | 0.27 ± 0.05 B | 0.22 ± 0.01 C |
3000 | 56.28 ± 1.54 CD | 1.33 ± 0.02 D | 1.21 ± 0.01 D | 1.47 ± 0.02 C | 10.95 ± 0.29 C | 0.27 ± 0.03 B | 0.18 ± 0.01 D |
2000 | 64.35 ± 1.59 C | 1.47 ± 0.02 C | 1.27 ± 0.01 C | 1.67 ± 0.03 B | 9.91 ± 0.27 B | 0.26 ± 0.04 B | 0.21 ± 0.01 C |
1200 | 71.07 ± 1.93 B | 1.53 ± 0.02 B | 1.34 ± 0.01 B | 1.73 ± 0.02 B | 9.20 ± 0.25 A | 0.24 ± 0.02 AB | 0.26 ± 0.01 B |
600 | 81.82 ± 1.84 A | 1.82 ± 0.02 A | 1.59 ± 0.02 A | 2.11 ± 0.04 A | 8.65 ± 0.26 A | 0.16 ± 0.02 A | 0.38 ± 0.01 A |
Study Site–205 | |||||||
5196 | 43.63 ± 4.28 C | 1.25 ± 0.03 D | 1.08 ± 0.04 D | 1.34 ± 0.04 C | 11.84 ± 0.50 B | 0.86 ± 0.18 B | 0.13 ± 0.01 C |
2300 | 78.93 ± 3.49 B | 1.47 ± 0.02 C | 1.29 ± 0.02 C | 1.67 ± 0.04 B | 12.72 ± 0.21 B | 0.19 ± 0.04 A | 0.28 ± 0.02 B |
1200 | 81.00 ± 3.90 B | 1.56 ± 0.02 B | 1.37 ± 0.02 B | 1.75 ± 0.04 B | 12.65 ± 0.30 B | 0.15 ± 0.02 A | 0.32 ± 0.03 B |
600 | 92.40 ± 2.91 A | 1.72 ± 0.04 A | 1.46 ± 0.03 A | 2.00 ± 0.06 A | 10.56 ± 0.26 A | 0.16 ± 0.02 A | 0.38 ± 0.02 A |
H * | Hlb | Hdb | DBH | Nbr0–6 | Dbr0–6 | Dbr0–3 | Dbr3–6 | Dmaxbr0–3 | Dmaxbr3–6 | Brarea | |
---|---|---|---|---|---|---|---|---|---|---|---|
SD | −0.20 | 0.59 | 0.14 | −0.68 | −0.46 | −0.72 | −0.67 | −0.69 | −0.59 | −0.65 | −0.52 |
H | −0.02 | 0.03 | 0.60 | 0.05 | 0.18 | 0.17 | 0.16 | 0.18 | 0.18 | −0.14 | |
Hlb | 0.12 | −0.49 | −0.33 | −0.46 | −0.41 | −0.45 | −0.40 | −0.49 | −0.33 | ||
Hdb | −0.15 | −0.36 | −0.24 | −0.24 | −0.27 | −0.27 | −0.22 | −0.32 | |||
DBH | 0.43 | 0.64 | 0.58 | 0.62 | 0.55 | 0.62 | 0.29 | ||||
Nbr0-6 | 0.49 | 0.54 | 0.44 | 0.55 | 0.48 | 0.78 | |||||
Dbr0-6 | 0.95 | 0.98 | 0.88 | 0.90 | 0.79 | ||||||
Dbr0-3 | 0.89 | 0.92 | 0.84 | 0.81 | |||||||
Dbr3-6 | 0.82 | 0.89 | 0.75 | ||||||||
Dmaxbr0-3 | 0.83 | 0.77 | |||||||||
Dmaxbr3-6 | 0.72 |
Variable | Parameter Estimate | Pr > |t| | Variance Inflation | Parameter Estimate | Pr > |t| | Variance Inflation | Parameter Estimate | Pr > |t| | Variance Inflation |
---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | |||||||
Intercept | 0.13914 | <0.0001 | 0 | 0.07575 | 0.0174 | 0 | 0.14675 | 0.0013 | 0 |
SD | −0.000002 | 0.0294 | 2.38865 | −0.000005 | 0.0944 | 2.03319 | −0.000004 | 0.1836 | 2.08029 |
H | 0.00044 | 0.4533 | 2.50019 | - | - | - | −0.00426 | 0.0295 | 2.29310 |
DBH | 0.00331 | <0.0001 | 7.40240 | 0.00904 | <0.0001 | 1.74858 | 0.01061 | <0.0001 | 3.76615 |
Dbr0-3 | 0.40631 | <0.0001 | 8.99331 | 0.86774 | <0.0001 | 5.16032 | 0.85451 | <0.0001 | 5.39296 |
Dbr3-6 | 0.43160 | <0.0001 | 9.44931 | - | - | - | - | - | - |
Nbr0-3 | −0.00263 | <0.0001 | 4.68097 | - | - | - | - | - | - |
Nbr3-6 | 0.00080 | <0.0001 | 4.32472 | - | - | - | - | - | - |
Dmaxbr0-3 | 0.00442 | 0.1401 | 4.98863 | 0.02682 | 0.0078 | 4.63008 | 0.02680 | 0.0077 | 4.63009 |
Dmaxbr3-6 | −0.00361 | 0.0127 | 2.36321 | - | - | - | - | - | - |
Brarea | 0.29408 | <0.0001 | 21.51302 | - | - | - | - | - | - |
R2 | 0.9919 | 0.9007 | 0.9013 | ||||||
Adj R2 | 0.9918 | 0.9002 | 0.9007 | ||||||
Model 4 | Model 5 | Model 6 | |||||||
Intercept | 0.03975 | 0.1689 | 0 | 0.81499 | <0.0001 | 0 | 0.86950 | <.0001 | 0 |
SD | −0.000004 | 0.1262 | 2.02758 | −0.00004 | <0.0001 | 1.78864 | −0.000013 | 0.0019 | 2.10136 |
H | - | - | - | - | - | - | −0.00825 | 0.0031 | 2.33134 |
DBH | 0.00941 | <0.0001 | 1.67449 | 0.00936 | <0.0001 | 1.74813 | 0.02270 | <.0001 | 3.20227 |
Dbr0-3 | 0.92787 | <0.0001 | 1.96218 | - | - | - | - | - | - |
Dmaxbr0-3 | - | - | - | 0.26671 | <0.0001 | 1.76056 | - | - | - |
Brarea | - | - | - | - | - | - | 1.09151 | <.0001 | 1.73320 |
R2 | 0.8998 | 0.7916 | 0.8032 | ||||||
Adj R2 | 0.8995 | 0.7909 | 0.8022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beniušienė, L.; Petrauskas, E.; Aleinikovas, M.; Varnagirytė-Kabašinskienė, I.; Beniušis, R.; Šilinskas, B. Norway Spruce Stem Parameters in Sites with Different Stand Densities in Lithuanian Hemiboreal Forest. Forests 2021, 12, 201. https://doi.org/10.3390/f12020201
Beniušienė L, Petrauskas E, Aleinikovas M, Varnagirytė-Kabašinskienė I, Beniušis R, Šilinskas B. Norway Spruce Stem Parameters in Sites with Different Stand Densities in Lithuanian Hemiboreal Forest. Forests. 2021; 12(2):201. https://doi.org/10.3390/f12020201
Chicago/Turabian StyleBeniušienė, Lina, Edmundas Petrauskas, Marius Aleinikovas, Iveta Varnagirytė-Kabašinskienė, Ričardas Beniušis, and Benas Šilinskas. 2021. "Norway Spruce Stem Parameters in Sites with Different Stand Densities in Lithuanian Hemiboreal Forest" Forests 12, no. 2: 201. https://doi.org/10.3390/f12020201
APA StyleBeniušienė, L., Petrauskas, E., Aleinikovas, M., Varnagirytė-Kabašinskienė, I., Beniušis, R., & Šilinskas, B. (2021). Norway Spruce Stem Parameters in Sites with Different Stand Densities in Lithuanian Hemiboreal Forest. Forests, 12(2), 201. https://doi.org/10.3390/f12020201