Changes in the Tree-Ring Width-Derived Cumulative Normalized Difference Vegetation Index over Northeast China during 1825 to 2013 CE
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tree-Ring Data and Ring-Width Chronology Development in the Central–Western Da Hinggan Mountains Region
2.2. Climatic Data
2.3. Remote Sensing Data
2.4. Statistic Method
3. Results
3.1. Variability Statistics of Regional Observed Meteorological Data
3.2. Correlation between CW–DHM7 and CNDVI
3.3. Correlations between CW–DHM Regional CNDVIJJ and Climate Parameters
3.4. CNDVIJJ Reconstruction for the CW–DHM Region during the Period 1825–2013 CE
3.5. The Spatial Representation of CNDVIJJ in the CW–DHM Region
3.6. Periodicity Analysis of CNDVIJJ Variation over the Past 189 Years
3.7. The Connections between CW–DHM Regional CNDVIJJ Variation and Large-Scale Sea–Atmospheric Factors
4. Discussion
4.1. The Relationship between the CNDVI Changes and Tree-Ring Chronology in CW–DHM Region
4.2. The Spatial and Temporal Variations in Vegetation during the Last 189 Years in the CW–DHM Region
4.3. Possible Mechanism of CNDVIJJ Variation in the CW–DHM Region
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hu, C.J.; Fu, B.J.; Liu, G.H.; Jin, T.T.; Guo, L. Vegetation patterns influence on soil microbial biomass and functional diversity in a hilly area of the Loess Plateau, China. J. Soils Sediment. 2010, 10, 1082–1091. [Google Scholar] [CrossRef]
- Piao, S.L.; Fang, J.Y.; He, J.S. Variations in vegetation net primary production in the Qinghai–Xizang Plateau, China, from 1982 to 1999. Clim. Chang. 2006, 74, 253–267. [Google Scholar] [CrossRef]
- Zhao, Y.S. Principle and Method of Remote Sensing Applied Analysis; Science Press: Beijing, China, 2003. [Google Scholar]
- D’Arrigo, R.D.; Malmstrom, C.M.; Jacoby, G.C.; Los, S.O.; Bunker, D.E. Correlation between maximum latewood density of annual tree rings and NDVI based estimates of forest productivity. Int. J. Remote Sens. 2000, 21, 2329–2336. [Google Scholar] [CrossRef]
- Gazol, A.; Camarero, J.J.; Vicente-Serrano, S.M.; Sanchez-Salguero, R.; Gutierrez, E.; de Luis, M.; Sanguesa-Barreda, G.; Novak, K.; Rozas, V.; Tiscar, P.A.; et al. Forest resilience to drought varies across biomes. Glob. Chang. Biol. 2018, 24, 2143. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, R.K.; D’Arrigo, R.D.; Paletta, L.F.; Tian, H.Q.; Jolly, W.M.; Myneni, R.B. Identifying climatic controls on ring width: The timing of correlations between tree rings and NDVI. Earth Interact. 2008, 12, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sankey, T.T. Decadal–scale aspen changes: Evidence in remote sensing and tree ring data. Appl. Veg. Sci. 2012, 15, 84–98. [Google Scholar] [CrossRef]
- Xu, P.P.; Zhou, T.; Yi, C.X.; Fang, W.; Hendrey, G.; Zhao, X. Forest drought resistance distinguished by canopy height. Environ. Res. Lett. 2018, 13, 075003. [Google Scholar] [CrossRef] [Green Version]
- Leavitt, S.W.; Chase, T.N.; Rajagopalan, B.; Lee, E.; Lawrence, P.J. Southwestern U.S. tree-ring carbon isotope indices as a possible proxy for reconstruction of greenness of vegetation. Geophys. Res. Lett. 2008, 35, L12704. [Google Scholar] [CrossRef]
- Gao, J.X.; Shi, Z.J.; Xu, L.H.; Yang, X.H.; Jia, Z.Q.; Lü, S.H.; Feng, C.Y.; Shang, J.X. Precipitation variability in Hulunbuir, Northeastern China since 1829 AD reconstructed from tree-rings and its linkage with remote oceans. J. Arid Environ. 2013, 95, 14–21. [Google Scholar] [CrossRef]
- Liu, Y.; Bao, G.; Song, H.M.; Cai, Q.F.; Sun, J.Y. Precipitation reconstruction from Hailar pine (Pinus sylvestris var mongolica) tree rings in the Hailar region Inner Mongolia China back to 1865 AD. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 282, 81–87. [Google Scholar] [CrossRef]
- Sun, B.; Liu, Y.; Lei, Y. Growing season relative humidity variations and possible impacts on Hulunbuir grassland. Sci. Bull. 2016, 61, 728–736. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.S.; Liu, Y.; Li, Q.; Song, H.M.; Li, X.X.; Sun, C.F.; Cai, Q.F.; Song, Y. Seasonal Palmer Drought Severity Index reconstruction using tree–ring widths from multiple sites over the central–western Da Hinggan Mountains, China since 1825 AD. Clim. Dyn. 2019, 53, 3661–3674. [Google Scholar] [CrossRef]
- Chen, Z.J.; Li, J.B.; Fang, K.Y.; Davi, N.K.; He, X.Y.; Cui, M.X.; Zhang, X.L.; Peng, J.J. Seasonal dynamics of vegetation over the past 100 years inferred from tree rings and climate in Hulunbei’er steppe, northern China. J. Arid Environ. 2012, 83, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Liang, E.Y.; Eckstein, D.; Liu, H.Y. Assessing the recent grassland greening trend in a long–term context based on tree–ring analysis: A case study in north China. Ecol. Indic. 2009, 9, 1280–1283. [Google Scholar] [CrossRef]
- Yao, J.; He, X.Y.; Li, X.Y.; Chen, W. Monitoring responses of forest to climate variations by MODIS NDVI: A case study of Hun river upstream, northeastern China. Eur. J. For. Res. 2012, 131, 705–716. [Google Scholar] [CrossRef]
- Sun, C.F.; Liu, Y.; Song, H.M.; Li, Q.; Cai, Q.F.; Wang, L.; Fang, C.X.; Liu, R.S. Tree-ring evidence of the impacts of climate change and agricultural cultivation on vegetation coverage in the upper reaches of the Weihe River, northwest China. Sci. Total Environ. 2020, 707, 136160. [Google Scholar] [CrossRef]
- Gao, Z.T.; Hu, Z.Z.; Jha, B.; Yang, S.; Zhu, J.S.; Shen, B.Z.; Zhang, R.J. Variability and predictability of northeast China climate during 1948–2012. Clim. Dyn. 2014, 43, 787–804. [Google Scholar] [CrossRef]
- Cook, E.R. A Time Series Analysis Approach to Tree–ring Standardization. Ph.D. Thesis, University of Arizona, Tucson, AZ, USA, 1985. [Google Scholar]
- Cook, E.R.; Kairiukstis, L.A. Methods of Dendrochronology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the average value of correlation time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteor. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Mitchell, T.D.; Jones, P.D. An improved method of constructing a database of monthly climate observations and associated high resolution grids. Int. J. Climatol. 2005, 25, 639–712. [Google Scholar] [CrossRef]
- Van der Schrier, G.; Barichivich, J.; Briffa, K.R.; Jones, P.D. A scPDSI-based global data set of dry and wet spells for 1901–2009. J. Geophys. Res. Atmos. 2013, 118, 4025–4048. [Google Scholar] [CrossRef]
- Song, Y.; Ma, M.; Veroustraete, F. Comparison and conversion of AVHRR GIMMS and SPOT VEGETATION NDVI data in China. Int. J. Remote Sens. 2010, 31, 2377–2392. [Google Scholar] [CrossRef]
- Tucker, C.J.; Sellers, P.J. Satellite remote sensing of primary production. Int. J. Remote Sens. 1986, 7, 1395–1416. [Google Scholar] [CrossRef]
- Song, Y.; Jin, L.; Wang, H.B. Vegetation changes along the Qinghai–Tibet Plateau engineering corridor since 2000 induced by climate Change and Human Activities. Remote Sens. 2018, 10, 95. [Google Scholar] [CrossRef] [Green Version]
- Efron, B. Bootstrap methods: Another look at the jackknife. Ann. Stat. 1979, 7, 1–26. [Google Scholar] [CrossRef]
- Mosteller, F.; Tukey, J.W. Data Analysis and Regression: A Second Course in Statistics; Addison–Wesley Series in Behavioral Science; Addison Wesley Publishing Company: Reading, PA, USA, 1977; pp. 1–588. [Google Scholar]
- Morice, C.P.; Kennedy, J.J.; Rayner, N.A.; Jones, P.D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res. Atmos. 2012, 117, D08101. [Google Scholar] [CrossRef]
- Van Oldenborgh, G.J.; Te Raa, L.A.; Dijkstra, H.A.; Philip, S.Y. Frequency- or amplitude-dependent effects of the Atlantic meridional overturning on the tropical Pacific Ocean. Ocean Sci. 2009, 5, 293–301. [Google Scholar] [CrossRef] [Green Version]
- Folland, C.K.; Knight, J.; Linderholm, H.W.; Fereday, D.; Ineson, S.; Hurrell, J.W. The Summer North Atlantic oscillation: Past, present, and future. J. Clim. 2009, 22, 1082–1103. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R. The Pacific Decadal Oscillation. J. Oceanogr. 2002, 58, 35–44. [Google Scholar] [CrossRef]
- Thomson, D.J. Spectrum estimation and harmonic-analysis. Proc. IEEE 1982, 70, 1055–1096. [Google Scholar] [CrossRef] [Green Version]
- Carlson, T.N.; Gillies, R.R.; Perry, E.M. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sens. Rev. 1994, 9, 161–173. [Google Scholar] [CrossRef]
- Du, Q.; Zhang, M.; Wang, S.; Che, C.; Ma, R.; Ma, Z. Changes in air temperature of China in response to global warming hiatus. Acta Geogr. Sin. 2018, 73, 1748–1764. [Google Scholar]
- Liu, Y.; Wang, Y.C.; Li, Q.; Song, H.; Zhang, Y.H.; Yuan, Z.L.; Wang, Z.Y. Tree-ring stable carbon isotope-based May–July temperature reconstruction over Nanwutai, China, for the past century and its record of 20th century warming. Quat. Sci. Rev. 2014, 93, 67–76. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.C.; Li, Q.; Song, H.; Linderhlom, H.M.; Leavitt, S.W.; Wang, R.Y.; An, Z.S. Reconstructed May–July mean maximum temperature since 1745 AD based on tree-ring width of Pinus tabulaeformis in Qianshan Mountain, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 388, 145–152. [Google Scholar] [CrossRef]
- Durbin, J.; Watson, G.S. Testing for serial correlation in least squares regression I. Biometrika 1950, 37, 409–428. [Google Scholar]
- Wang, J.; Rich, P.M.; Price, K.P.; Kettle, W.D. Relations between NDVI and tree productivity in the central Great Plains. Int. J. Remote Sens. 2004, 25, 3127–3138. [Google Scholar] [CrossRef]
- Wang, W.Z.; Liu, X.H.; Chen, T.; An, W.L.; Xu, G.B. Reconstruction of regional NDVI using tree-ring width chronologies in the Qilian Mountains, northwestern China. Chin. J. Plant Ecol. 2010, 34, 1033–1044. [Google Scholar]
- Liang, E.Y.; Liu, X.H.; Yuan, Y.J.; Qin, N.S.; Fang, X.Q.; Huang, L.; Zhu, H.F.; Wang, L.L.; Shao, X.M. The 1920s drought recorded by tree rings and historical documents in the semi-arid and arid areas of northern China. Clim. Chang. 2006, 79, 403–432. [Google Scholar] [CrossRef]
- Liu, X.H.; Zhang, X.W.; Zhao, L.J.; Xu, G.B.; Wang, L.X.; Sun, W.Z.; Zhang, Q.L.; Wang, W.Z.; Zeng, X.M.; Wu, G.J. Tree ring δ18o reveals no long–term change of atmospheric water demand since 1800 in the northern Great Hinggan Mountains, China. J. Geophys. Res. Atmos. 2017, 122, 6697–6712. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Lei, Y.; Sun, B.; Song, H.M.; Li, Q. Annual precipitation variability inferred from tree–ring width chronologies in the Changling–Shoulu region, China, during AD 1853–2007. Dendrochronologia 2013, 31, 290–296. [Google Scholar] [CrossRef]
- Liu, Y.; Lei, Y.; Sun, B.; Song, H.M.; Sun, J.Y. Annual precipitation in Liancheng, China, since 1777 AD derived from tree rings of Chinese pine (pinus tabulaeformis carr.). Int. J. Biometeorol. 2013, 57, 927–934. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, B.; Song, H.M.; Lei, Y.; Wang, C.Y. Tree–ring–based precipitation reconstruction for Mt. Xinglong, China, since AD 1679. Quat. Int. 2013, 283, 46–54. [Google Scholar] [CrossRef]
- Hao, Z.X.; Zheng, J.Y.; Wu, G.F.; Zhang, X.Z.; Ge, Q.S. 1876–1878 severe drought in North China: Facts, impacts and climatic background. Chin. Sci. Bull. 2010, 55, 3001–3007. [Google Scholar] [CrossRef]
- Kang, S.Y.; Yang, B.; Qin, C.; Wang, J.L.; Shi, F.; Liu, J.J. Extreme drought events in the years 1877–1878, and 1928, in the southeast Qilian Mountains and the air–sea coupling system. Quat. Int. 2013, 283, 85–92. [Google Scholar] [CrossRef]
- Zhang, D.E.; Liang, Y.Y. A long lasting and extensive drought event over China during1876–1878. Adv. Clim. Chang. Res. 2010, 6, 106–112. (in Chinese). [Google Scholar]
- Cheng, M.D. Perspective on Major Emergencies in Contemporary China; Chinese Communist Party History Publishing House: Beijing, China, 2008. [Google Scholar]
- Piao, S.L.; Wang, X.H.; Ciais, P.; Zhu, B.; Wang, T.; Liu, J. Changes in satellite–derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob. Chang. Biol. 2011, 17, 3228–3239. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, G.; Liu, Q.J. Tree–ring based summer temperature regime reconstruction in Xiaoxing Anling Mountains, northeastern China since 1772 CE. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 495, 13–23. [Google Scholar] [CrossRef]
- Wang, Y.C.; Liu, Y. Reconstruction of March–June precipitation from tree rings in central Liaoning, China. Clim. Dyn. 2016, 49, 1–11. [Google Scholar] [CrossRef]
- Han, Y.B.; Han, Y.G. Wavelet analysis of sunspot relative numbers. Chin. Sci. Bull. 2002, 47, 609–612. [Google Scholar] [CrossRef]
- Kaplan, A.; Cane, M.A.; Kushnir, Y.; Clement, A.C.; Blumenthal, M.B.; Rajagopalan, B. Analyses of global sea surface temperature 1856–1991. J. Geophys. Res. 1998, 103, 18567–18589. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.A.; Arblaster, J.M. The Tropospheric Biennial Oscillation and Indian Monsoon rainfall. Geophys. Res. Lett. 2002, 28, 1731–1734. [Google Scholar] [CrossRef]
Statistical Item | Value |
---|---|
Mean sensitivity | 0.14 |
Standard deviation | 0.17 |
Skewness | 0.01 |
Kurtosis | 4.28 |
First order autocorrelation | 0.52 |
Mean correlation between all series | 0.52 |
Expressed population signal (EPS) | 0.96 |
First year where EPS ≥ 0.85 (No. of Cores) | 1825 (11) |
Total number of trees (cores) | 204 (349) |
Observational Parameters | Period | Trends of Annual Climate | Trends of Growing Season (May–October) Climate |
---|---|---|---|
Temperature | 1951–1999 | 0.018 ℃/year | 0.006 ℃/year |
2000–2013 | –0.01 ℃/year | –0.06 ℃/year | |
Precipitation | 1951–1999 | –0.046 mm/year | –0.065 mm/year |
2000–2013 | 1.391 mm/year | 2.752 mm/year | |
PDSI | 1951–1999 | 0.002/year | 0.001/year |
2000–2013 | 0.168/year | 0.202/year |
Controlled Variable | CNDVIJJ vs. Mean PJJ | CNDVIJJ vs. Mean TJJ |
---|---|---|
PJJ | 0.43, p < 0.017 | |
TJJ | 0.47, p < 0.008 |
Calibration (1982–2013CE) Statistic | Verification (1982–2013 CE) | ||
---|---|---|---|
Bootstrap (100 Iterations) Mean (Range) | Jackknife Mean (Range) | ||
r | 0.68 | 0.66 (0.14–0.83) | 0.68 (0.57–0.72) |
R2(%) | 45.8 | 44.3 (1.8–68.8) | 45.8( 31.9–51.3) |
R2adj(%) | 44.0 | 42.5 (–1.4–67.8) | 43.9 (29.5–49.7) |
F | 25.40 | 27.65 (0.56–66.21) | 24.65 (13.57–30.58) |
p | 0.0001 | 0.006 (0.0001–0.460) | 0.0001 (0.0000–0.0009) |
D/W | 1.29 | 2.01 (1.26–3.00) | 1.29 (1.10–1.47) |
Rank | Year | Low CNDVIJJ | Year | High CNDVIJJ |
---|---|---|---|---|
1 | 1856 | 101.76 | 2013 | 156.83 |
2 | 1907 | 105.15 | 1848 | 154.28 |
3 | 1987 | 106.25 | 1847 | 146.98 |
4 | 2007 | 110.87 | 1868 | 146.32 |
5 | 1892 | 111.66 | 1849 | 144.34 |
6 | 1951 | 111.66 | 1846 | 144.25 |
7 | 1857 | 111.97 | 1948 | 142.32 |
8 | 1893 | 112.89 | 1957 | 142.14 |
9 | 1865 | 114.65 | 1962 | 140.21 |
10 | 1836 | 115.71 | 1888 | 140.16 |
Climate Forcing. | Month | r, p |
---|---|---|
Atlantic Multidecadal Oscillation (AMO) (HadSST) | Previous October | 0.40, p < 0.02 |
Global Average Temperature (HadCRUT4) | May | 0.41, p < 0.02 |
Northern Hemisphere Temperature | June | 0.49, p < 0.005 |
Summer North Atlantic Oscillation (SNAO) (NCAR) | Previous August–March | –0.36, p < 0.05 |
Pacific Decadal Oscillation (PDO) (ERSST) | February | –0.55, p < 0.001 |
Teleconnection patterns (west Pacific region) | April–July | –0.69, p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Song, Y.; Liu, Y.; Li, X.; Song, H.; Sun, C.; Li, Q.; Cai, Q.; Ren, M.; Wang, L. Changes in the Tree-Ring Width-Derived Cumulative Normalized Difference Vegetation Index over Northeast China during 1825 to 2013 CE. Forests 2021, 12, 241. https://doi.org/10.3390/f12020241
Liu R, Song Y, Liu Y, Li X, Song H, Sun C, Li Q, Cai Q, Ren M, Wang L. Changes in the Tree-Ring Width-Derived Cumulative Normalized Difference Vegetation Index over Northeast China during 1825 to 2013 CE. Forests. 2021; 12(2):241. https://doi.org/10.3390/f12020241
Chicago/Turabian StyleLiu, Ruoshi, Yi Song, Yu Liu, Xuxiang Li, Huiming Song, Changfeng Sun, Qiang Li, Qiufang Cai, Meng Ren, and Lu Wang. 2021. "Changes in the Tree-Ring Width-Derived Cumulative Normalized Difference Vegetation Index over Northeast China during 1825 to 2013 CE" Forests 12, no. 2: 241. https://doi.org/10.3390/f12020241
APA StyleLiu, R., Song, Y., Liu, Y., Li, X., Song, H., Sun, C., Li, Q., Cai, Q., Ren, M., & Wang, L. (2021). Changes in the Tree-Ring Width-Derived Cumulative Normalized Difference Vegetation Index over Northeast China during 1825 to 2013 CE. Forests, 12(2), 241. https://doi.org/10.3390/f12020241