Estimation of Surface Canopy Water in Pacific Northwest Forests by Fusing Radar, Lidar, and Meteorological Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Input Data
2.2.1. Weather Data
2.2.2. Radar Data and Image Processing
2.2.3. Lidar
2.3. Tree Segmentation
2.4. Evaporation Modelling
2.4.1. Priestley-Taylor Model
2.4.2. Penman Model
2.4.3. Brutsaert Model
2.4.4. AMC, Time since Rain, and Time since Dry
2.5. Data Analysis
3. Results
3.1. Backscatter and Tree Height
3.2. GLM Model
3.3. Orbit Path
4. Discussion
4.1. Orbital Path and Local Time of Acquisition
4.2. AMC and Evapotranspiration Adjusted AMC
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AMC | Antecedent Moisture Condition, in this paper, is taken to mean the cumulative amount of water over a given period of time (e.g., AMC30 is the accumulated precipitation over 30 min). |
ET | EvapoTranspiration, the combined effect of evaporation and transpiration that accounts for the loss of AMC over time. |
ESA | European Space Agency |
LUT | Look Up Table, each Sentinel-1 Level-1 product includes in the metadata a look up table with calibration operators specific to that image. |
PNW | Pacific NorthWest, the region of North America comprising Northern California, Oregon, Washington, and British Colombia. This region is typified by thick evergreen forests and high annual rainfall. |
SAR | Synthetic Aperture Radar, a form of radar that uses either (1) the motion of a sensor over time, or (2) radar images taken at different times to produce a radar image of finer spatial resolution than traditional beam-scanning radar. SAR is commonly used in most modern radar sensors. |
SCW | Surface Canopy Water, how much water is contained within the canopy on the surface (as opposed to water contained within the biological structure of the canopy components) |
SNAP | SeNtinel Application Platform, a computer program for processing ESA Sentinel mission images |
TSD | Time Since Dry, a variable that indicates how long it has been since a rain event began (defined as <0.02 mm rainfall in 30 min) |
TSR | Time Since Rain, a variable that indicates how long it has been since a rain event ended (defined as >0.02 mm rainfall in 30 min) |
VH | Vertical Horizontal polarization, one of several polarization modes used in radar imaging. This means vertically polarized microwaves are sent out through the antenna and only horizontally polarized backscatter is measured. |
VV | Vertical-Vertical polarization means vertically polarized signals are sent by the antennae, and vertically polarized backscatter is measured. |
References
- De Ridder, K. Rain Water Storage on Plant Canopies. J. Geophys. Res. 2001, 106, 819–825. [Google Scholar]
- Moghaddam, M.; Saatchi, S.S. Monitoring Tree Moisture Using an Estimation Algorithm Applied to SAR Data from BOREAS. IEEE Trans. Geosci. Remote Sens. 1999, 37, 901–916. [Google Scholar] [CrossRef]
- Mcnaughton, K.G.; Black, T.A. A Study of Evapotranspiration from a Douglas Fir Forest Using Energy Balance Approach. Water Resour. Res. 1973, 9, 1579–1590. [Google Scholar] [CrossRef] [Green Version]
- Van Dijk, A.I.J.M.; Gash, J.H.; van Gorsel, E.; Blanken, P.D.; Cescatti, A.; Emmel, C.; Gielen, B.; Harman, I.N.; Kiely, G.; Merbold, L.; et al. Rainfall Interception and the Coupled Surface Water and Energy Balance. Agric. For. Meteorol. 2015, 214–215, 402–415. [Google Scholar] [CrossRef] [Green Version]
- Sinha, S.; Jeganathan, C.; Sharma, L.K.; Nathawat, M.S. A Review of Radar Remote Sensing for Biomass Estimation. Int. J. Environ. Sci. Technol. 2015, 12, 1779–1792. [Google Scholar] [CrossRef] [Green Version]
- Le Toan, T.; Beaudoin, A.; Riom, J.; Guyon, D. Relating Forest Biomass to SAR Data. IEEE Trans. Geosci. Remote Sens. 1992, 30, 403–411. [Google Scholar] [CrossRef]
- Mitchard, E.T.A.; Saatchi, S.S.; Woodhouse, I.H.; Nangendo, G.; Ribeiro, N.S.; Williams, M.; Ryan, C.M.; Lewis, S.L.; Feldpausch, T.R.; Meir, P. Using Satellite Radar Backscatter to Predict Above-Ground Woody Biomass: A Consistent Relationship across Four Different African Landscapes. Geophys. Res. Lett. 2009, 36, 1–6. [Google Scholar] [CrossRef]
- Small, D.; Miranda, N.; Zuberbuhler, L.; Schubert, A.; Meier, E. Terrain-Corrected Gamma: Improved Thematic Land-Cover Retrieval for SAR with Robust Radiometric Terrain Correction. ESA Living Planet Symposium. 2010. Available online: https://www.zora.uzh.ch/id/eprint/41236/ (accessed on 28 December 2020).
- Small, D. Flattening Gamma: Radiometric Terrain Correction for SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3081–3093. [Google Scholar] [CrossRef]
- Hornacek, M.; Wagner, W.; Sabel, D.; Truong, H.-L.; Snoeij, P.; Hahmann, T.; Diedrich, E.; Doubkova, M. Potential for High Resolution Systematic Global Surface Soil Moisture Retrieval via Change Detection Using Sentinel-1. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1303–1311. [Google Scholar] [CrossRef]
- Brancato, V.; Liebisch, F.; Hajnsek, I. Impact of Plant Surface Moisture on Differential Interferometric Observables: A Controlled Electromagnetic Experiment. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3949–3964. [Google Scholar] [CrossRef]
- Steele-Dunne, S.C.; Friesen, J.; Van De Giesen, N. Using Diurnal Variation in Backscatter to Detect Vegetation Water Stress. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2618–2629. [Google Scholar] [CrossRef]
- The National Wildfire Coordinating Group NWCG Glossary of Wildland Fire. NWCG Glossary Wildland Fire. 2021. Available online: https://www.nwcg.gov/glossary/a-z (accessed on 28 December 2020).
- Andersen, H.E.; McGaughey, R.; Reutebuch, S.; Schreuder, G.; Agee, J.; Mercer, B. Estimating Canopy Fuel Parameters in a Pacific Northwest Conifer Forest Using Multifrequency Polarimetric IFSAR. Isprs Comm. 2004, 900, 74. [Google Scholar]
- Saatchi, S.; Halligan, K.; Despain, D.G.; Crabtree, R.L. Estimation of Forest Fuel Load from Radar Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1726–1740. [Google Scholar] [CrossRef]
- Tanase, M.A.; Panciera, R.; Lowell, K.; Aponte, C. Monitoring Live Fuel Moisture in Semiarid Environments Using L-Band Radar Data. Int. J. Wildland Fire 2015, 24, 560–572. [Google Scholar] [CrossRef]
- Nizalapur, V.; Jha, C.S.; Madugundu, R. Estimation of above Ground Biomass in Indian Tropical Forested Area Using Multi-Frequency DLR-ESAR Data. Int. J. Geomat. Geosci. 2010, 1, 167–178. [Google Scholar]
- Ranson, K.J.; Sun, G. Mapping Biomass for a Northern Forest Ecosystem Using Multi-Frequency SAR Data. Int. Geosci. Remote Sens. Symp. (IGARSS) 1992, 2, 1220–1222. [Google Scholar] [CrossRef]
- Wang, Y.; Davis, F.W.; Melack, J.M. The Effects of Changes in Forest Biomass on Radar Backscatter from Tree Canopies. Int. J. Remote Sens. 1995, 16, 503–513. [Google Scholar] [CrossRef]
- Dobson, M.C.; Ulaby, F.T.; LeToan, T.; Beaudoin, A.; Kasischke, E.S.; Christensen, N. Dependence of Radar Backscatter on Coniferous Forest Biomass. IEEE Trans. Geosci. Remote Sens. 1992, 30, 412–415. [Google Scholar] [CrossRef]
- Robinson, C.; Saatchi, S.; Neumann, M.; Gillespie, T. Impacts of Spatial Variability on Aboveground Biomass Estimation from L-Band Radar in a Temperate Forest. Remote Sens. 2013, 5, 1001–1023. [Google Scholar] [CrossRef] [Green Version]
- Kasischke, E.S.; Melack, J.M.; Dobson, M.C. The Use of Imaging Radars for Ecological Applications—A Review. Remote Sens. Environ. 1997, 59, 141–156. [Google Scholar] [CrossRef]
- Saatchi, S.S.; Moghaddam, M. Estimation of Crown and Stem Water Content and Biomass of Boreal Forest Using Polarimetric SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2000, 38, 697–709. [Google Scholar] [CrossRef] [Green Version]
- Steele-Dunne, S.C.; McNairn, H.; Monsivais-Huertero, A.; Judge, J.; Liu, P.W.; Papathanassiou, K. Radar Remote Sensing of Agricultural Canopies: A Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Moreau, S.; Le Toan, T. Biomass Quantification of Andean Wetland Forages Using ERS Satellite SAR Data for Optimizing Livestock Management. Remote Sens. Environ. 2003, 84, 477–492. [Google Scholar] [CrossRef]
- Dobson, M.C.; Pierce, L.E.; McDonald, K.; Sharik, T. Seasonal Change in Radar Backscatter from Mixed Conifer and Hardwood Frorests in Northern Michigan. Int. Geosci. Remote Sens. Symp. (Igarss) 1991, 1121–1124. [Google Scholar] [CrossRef]
- Dobson, M.C.; Sharik, T.L.; Pierce, L.E.; Bergen, K.M.; Kellndorfer, J.; Kendra, J.R.; Li, E.; Lin, Y.C.; Nashashibi, A.; Sarabandi, K.; et al. Estimation of Forest Biophysical Characteristics in Northern Michigan with SIR-C/X-SAR. IEEE Trans. Geosci. Remote Sens. 1995, 33, 877–895. [Google Scholar] [CrossRef]
- Van Emmerik, T.; Steele-Dunne, S.C.; Judge, J.; Van De Giesen, N. Impact of Diurnal Variation in Vegetation Water Content on Radar Backscatter from Maize During Water Stress. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3855–3869. [Google Scholar] [CrossRef]
- Watanabe, M.; Motohka, T.; Shiraishi, T.; Thapa, R.B.; Yonezawa, C.; Nakamura, K.; Shimada, M. Multitemporal Fluctuations in L-Band Backscatter From a Japanese Forest. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5799–5813. [Google Scholar] [CrossRef]
- Schoonmaker, P.; Mckee, A. Species Composition and Diversity during Secondary Succession of Coniferous Forests in the Western Cascade Mountains of Oregon. For. Sci. 1988, 34, 960–979. [Google Scholar] [CrossRef]
- Daly, C. Meteorological Data from Benchmark Stations at the Andrews Experimental Forest, 1957 to Present. Available online: https://andrewsforest.oregonstate.edu/data/streaming/provisional-data-portal (accessed on 17 April 2017).
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 Mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Lee, J. Sen Digital Image Smoothing and the Sigma Filter. Comput. Vis. Graph. Image Process. 1983, 24, 255–269. [Google Scholar] [CrossRef]
- Foucher, S.; López-martínez, C. An Evaluation of Polsar Speckle Filters. In 2009 IEEE International Geoscience and Remote Sensing Symposium; IEEE: Cape Town, South Africa, 2009; pp. 845–848. [Google Scholar]
- Farr, T.; Rosen, P.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Schubert, A.; Miranda, N.; Geudtner, D.; Small, D. Sentinel-1A/B Combined Product Geolocation Accuracy. Remote Sens. 2017, 9, 607. [Google Scholar] [CrossRef] [Green Version]
- Stage, A.R. Forest Vegetation Simulator/Prognosis; US Forest Service: Ogden, UT, USA, 1973.
- Burkhart, H.E.; Amateis, R.L.; Westfall, J.A.; Daniels, R.F. PTaeda4.0: Simulation of Individual Tree Growth, Stand Development and Economic Evaluation in Loblolly Pine Plantations; Virginia Tech University: Blacksburg, VA, USA, 2008; p. 28. [Google Scholar]
- Menard, A.; Dube, P.; Bouchard, A.; Canham, C.D.; Marceau, D.J. Evaluating the Potential of the SORTIE Forest Succession Model for Spatio-Temporal Analysis of Small-Scale Disturbances. Ecol. Model. 2002, 153, 81–96. [Google Scholar] [CrossRef]
- Kimmins, J.P.; Mailly, D.; Seely, B. Modelling Forest Ecosystem Net Primary Production: The Hybrid Simulation Approach Used in FORECAST. Ecol. Model. 1999, 122, 195–224. [Google Scholar] [CrossRef]
- Landsberg, J.J.; Waring, R.H. A Generalised Model of Forest Productivity Using Simplified Concepts of Radiation-Use Efficiency, Carbon Balance and Partitioning. For. Ecol. Manag. 1997, 95, 209–228. [Google Scholar] [CrossRef]
- Seidl, R.; Rammer, W.; Scheller, R.M.; Spies, T.A. An Individual-Based Process Model to Simulate Landscape-Scale Forest Ecosystem Dynamics. Ecol. Model. 2012, 231, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Saatchi, S.; Marlier, M.; Chazdon, R.L.; Clark, D.B.; Russell, A.E. Impact of Spatial Variability of Tropical Forest Structure on Radar Estimation of Aboveground Biomass. Remote Sens. Environ. 2011, 115, 2836–2849. [Google Scholar] [CrossRef]
- Edwards, J. State of Oregon Department of Geology and Mineral Industries. Available online: http://www.oregongeology.org/lidar/ (accessed on 25 January 2017).
- Spatial, Q. 2016 McKenzie River. 2016. Available online: https://www.mckenziewc.org/wp-content/uploads/2016/12/McKenzieRiverAction-Plan_FINAL.pdf (accessed on 25 January 2017).
- Strîmbu, V.F.; Strîmbu, B.M. A Graph-Based Segmentation Algorithm for Tree Crown Extraction Using Airborne LiDAR Data. Isprs J. Photogramm. Remote Sens. 2015, 104, 30–43. [Google Scholar] [CrossRef] [Green Version]
- Kaartinen, H.; Hyyppä, J.; Yu, X.; Vastaranta, M.; Hyyppä, H.; Kukko, A.; Holopainen, M.; Heipke, C.; Hirschmugl, M.; Morsdorf, F.; et al. An International Comparison of Individual Tree Detection and Extraction Using Airborne Laser Scanning. Remote Sens. 2012, 4, 950. [Google Scholar] [CrossRef] [Green Version]
- Ene, L.; Næsset, E.; Gobakken, T. Single Tree Detection in Heterogeneous Boreal Forests Using Airborne Laser Scanning and Area-Based Stem Number Estimates. Int. J. Remote Sens. 2012, 33, 5171–5193. [Google Scholar] [CrossRef]
- Priestly, C.H.B.; Taylor, J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Weather. Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Penman, H.L. Natural Evaporation from Open Water, Bare Soil and Grass. Proc. R. Soc. A Math. Phys. Eng. Sci. 1948, 193, 120–145. [Google Scholar] [CrossRef] [Green Version]
- Brutsaert, W. A Generalized Complementary Principle with Physical Constraints for Land-Surface Evaporation. Water Resour. Res. 2015, 1353–1358. [Google Scholar] [CrossRef] [Green Version]
- Ai, Z.; Wang, Q.; Yang, Y.; Manevski, K.; Zhao, X.; Eer, D. Estimation of Land-Surface Evaporation at Four Forest Sites across Japan with the New Nonlinear Complementary Method. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Klaassen, W. Evaporation from Rain-Wetted Forest in Relation to Canopy Wetness, Canopy Cover, and Net Radiation. Water Resour. Res. 2001, 37, 3227–3236. [Google Scholar] [CrossRef] [Green Version]
- Murray, F.W. On the Computation of Saturation Vapor Pressure. J. Appl. Meteorol. 1967, 6, 203–204. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56. Irrig. Drain. 1998, 1–15. [Google Scholar] [CrossRef]
- Ogunjemiyo, S.; Parker, G.; Roberts, D. Reflections in Bumpy Terrain: Implications of Canopy Surface Variations for the Radiation Balance of Vegetation. IEEE Geosci. Remote Sens. Lett. 2005, 2, 90–93. [Google Scholar] [CrossRef]
- Bennett, W.B.; Wang, J.; Bras, R.L. Estimation of Global Ground Heat Flux. J. Hydrometeorol. 2008, 9, 744–759. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, L.; Brutsaert, W. Estimation of Land Surface Evaporation Using a Generalized Nonlinear Complementary Relationship. J. Geophys. Res. Atmos. 2017, 122, 1475–1487. [Google Scholar] [CrossRef]
- Neter, J.; Kutner, M.H.; Nachtsheim, C.J.; Wasserman, W. Applied Linear Statistical Models; WCB McGraw Hill: New York, NY, USA, 1996. Available online: https://d1b10bmlvqabco.cloudfront.net/attach/is282rqc4001vv/is6ccr3fl0e37q/iwfnjvgvl53z/Michael_H_Kutner_Christopher_J._Nachtsheim_JohnBookFi.org.pdf (accessed on 28 December 2020).
- Strimbu, V.F. A Graph-Based Segmentation Algorithm for Tree Crown Extraction Using Airborne LiDAR Data; Louisiana Tech University: Ruston, LA, USA, 2014. [Google Scholar]
- Keim, R.F.; Link, T.E. Linked Spatial Variability of Throughfall Amount and Intensity during Rainfall in a Coniferous Forest. Agric. For. Meteorol. 2018, 248, 15–21. [Google Scholar] [CrossRef]
- Klamerus-Iwan, A.; Błońska, E. Canopy Storage Capacity and Wettability of Leaves and Needles: The Effect of Water Temperature Changes. J. Hydrol. 2018, 559, 534–540. [Google Scholar] [CrossRef]
- Paun, M.; Gunaime, N.; Strimbu, B.M. Impact of Algorithm Selection on Modeling Ozone Pollution: A Perspective on Box and Tiao (1975). Forests 2020, 11, 1311. [Google Scholar] [CrossRef]
- Seppelt, R.; Richter, O. “It Was an Artefact Not the Result”: A Note on Systems Dynamic Model Development Tools. Environ. Model. Softw. 2005, 20, 1543–1548. [Google Scholar] [CrossRef]
- Strimbu, B.M.; Petritan, I.C.; Montes, C.; Biris, I.A. An Assessment of the O-Ring Methodology Using Virgin Stands of Mixed European Beech—Sessile Oak. For. Ecol. Manag. 2017, 384, 378–388. [Google Scholar] [CrossRef]
- Skidmore, E.L.; Jacobs, H.S.; Powers, W.L. Potential Evapotranspiration as Influenced by Wind. Agron. J. 1969, 61, 543–546. [Google Scholar] [CrossRef]
Stand | Area [ha] | Age [Years] | Number of Trees | Total Height [m] | Elevation (Min-Max) [m above Sea Level] |
---|---|---|---|---|---|
1 | 7.1 | ~85 | 640 | 38 | 878–961 |
2 | 6.4 | 35 | 2104 | 23 | 840–881 |
3 | 7.6 | 65 | 1204 | 37 | 802–833 |
4 | 5.0 | 35 | 1427 | 24 | 886–924 |
5 | 10.0 | ~130 | 1071 | 51 | 837–903 |
6 | 4.8 | 65 | 799 | 35 | 805–831 |
Stand | Number of Trees | Vegetation Height [m] std. dev/min/max | Backscatter [dB] Mean (min/max) | Backscatter Variance (Kurtosis/Skewness) |
---|---|---|---|---|
1 | 640 | 11.5/17/77 | −7.38 (−11.11/−0.85) | 1.222 (0.07/−0.07) |
2 | 2104 | 2.7/14/38 | −7.50 (−12.47/1.02) | 1.402 (0.37/−0.02) |
3 | 1204 | 3.4/19/44 | −7.59 (−10.98/−3.72) | 1.134 (−0.16/−0.01) |
4 | 1427 | 2.0/17/30 | −7.58 (−11.79/−3.63) | 1.284 (0.20/−0.01) |
5 | 1071 | 12.1/17/77 | −7.75 (−11.16/−3.53) | 1.178 (0.08/0.13) |
6 | 799 | 4.6/7/45 | −7.50 (−12.02/−1.99) | 1.233 (0.25/0.03) |
Stand | Age | Commission Error | Omission Error | Accuracy |
---|---|---|---|---|
1 | Mature | 0.08 | 0.05 | 0.95 |
2 | Young | 0.04 | 0.12 | 0.88 |
3 | Old | 0.00 | 0.25 | 0.75 |
4 | Young | 0.02 | 0.17 | 0.83 |
5 | Old | 0.06 | 0.06 | 0.94 |
6 | Mature | 0.01 | 0.19 | 0.81 |
Total | 0.03 | 0.16 | 0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heffernan, S.; Strimbu, B.M. Estimation of Surface Canopy Water in Pacific Northwest Forests by Fusing Radar, Lidar, and Meteorological Data. Forests 2021, 12, 339. https://doi.org/10.3390/f12030339
Heffernan S, Strimbu BM. Estimation of Surface Canopy Water in Pacific Northwest Forests by Fusing Radar, Lidar, and Meteorological Data. Forests. 2021; 12(3):339. https://doi.org/10.3390/f12030339
Chicago/Turabian StyleHeffernan, Scott, and Bogdan M Strimbu. 2021. "Estimation of Surface Canopy Water in Pacific Northwest Forests by Fusing Radar, Lidar, and Meteorological Data" Forests 12, no. 3: 339. https://doi.org/10.3390/f12030339
APA StyleHeffernan, S., & Strimbu, B. M. (2021). Estimation of Surface Canopy Water in Pacific Northwest Forests by Fusing Radar, Lidar, and Meteorological Data. Forests, 12(3), 339. https://doi.org/10.3390/f12030339