Differences in Characteristics of Photosynthesis and Nitrogen Utilization in Leaves of the Black Locust (Robinia pseudoacacia L.) According to Leaf Position
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Plant Material
2.2. Photosynthetic Rate
2.3. Chlorophyll Fluorescence
2.4. LMA and Leaf Nitrogen Concentration
2.5. Chlorophyll and RuBisCo Concentration in Leaves
Chl b (µg·mg−1) = (25.48 A665 − 7.36 A648) × (a/b)
2.6. N Allocation Pattern
2.7. Statistical Analysis
3. Results
3.1. Nitrogen, RuBisCo and Chl Concentration, and Structural Characteristic in Sun and Shade Leaves
3.2. Photosynthetic Responses and Physiological Traits
3.3. Nitrogen Allocation Patterns
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Keresztesi, B. The Black Locust. Forestry Monograph Series of the Agricultural Science Department of the Hungarian Academy of Science; Keresztesi, B., Ed.; Akademiai Kiado: Budapest, Hungary, 1988; p. 197. [Google Scholar]
- Kurokochi, H.; Toyama, K.; Hogetsu, T. Regeneration of Robinia pseudoacacia riparian forests after clear-cutting along the Chikumagawa River in Japan. Plant Ecol. 2010, 210, 31–41. [Google Scholar] [CrossRef]
- Lopez, M.L.; Mizota, C.; Nobori, Y.; Sasaki, T.; Yamanaka, T. Temporal changes in nitrogen acquisition of Japanese black pine (Pinus thunbergii) associated with black locust (Robinia pseudoacacia). J. For. Res. 2014, 25, 585–589. [Google Scholar] [CrossRef]
- Malcolm, G.M.; Bush, D.S.; Rice, S.K. Soil Nitrogen Conditions Approach Preinvasion Levels following Restoration of Nitrogen—Fixing Black Locust (Robinia pseudoacacia) Stands in a Pine–Oak Ecosystem. Restor. Ecol. 2007, 16, 70–78. [Google Scholar] [CrossRef]
- Rice, S.; Westerman, B.; Federici, R. Impacts of the exotic, nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogen-cycling in a pine-oak ecosystem. Plant Ecol. 2004, 174, 97–107. [Google Scholar] [CrossRef]
- Maekawa, M.; Nakagoshi, N. Impact of biological invasion of Robinia pseudo-acacia on zonation and species diversity of dune vegetation in Central Japan. Jpn. J. Ecol. 1997, 47, 131–143. [Google Scholar]
- Takahashi, A. Habitat expansion of Robinia pseudoacacia L. and role of seed—Seed heteromorphism and its importance. J. Jpn. For. Soc. 2007, 781, 8–11. [Google Scholar]
- Usui, E. Robinia pseudoacacia—Hanafuru kokage (Cultural history of plant 157). Iden 1993, 47, 58. [Google Scholar]
- Taniguchi, T.; Tamai, S.; Yamanaka, N.; Futai, K. Inhibition of the regeneration of Japanese black pine (Pinus thunbergii) by black locust (Robinia pseudoacacia) in coastal sand dunes. J. For. Res. 2007, 12, 350–357. [Google Scholar] [CrossRef]
- Yamada, K.; Masaka, K. Present distribution and historical background of the invasive alien species Robinia pseudoacacia on former coalmine land in Hokkaido. Jpn J. Conserv. Ecol. 2007, 12, 94–102. [Google Scholar]
- Chang, C.S.; Bongarten, B.; Hamrick, J. Genetic structure of natural populations of black locust (Robinia pseudoacacia L.) at Coweeta. North Carolina. J. Plant Res. 1998, 111, 17–24. [Google Scholar] [CrossRef]
- Morimoto, J.; Kominami, R.; Koike, T. Distribution and characteristics of the soil seed bank of the black locust (Robinia pseudoacacia) in a headwater basin in northern Japan. Landsc. Ecol. Eng. 2010, 6, 193–199. [Google Scholar] [CrossRef]
- Sakio, H. Why did the black locust expand broadly at the river basin in Japan? J. Jpn. Soc. Reveg. Technol. 2015, 40, 465–471. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Cho, H.; Yi, H. Stand dynamics of introduced black locust (Robinia pseudoacacia L.) plantation under different disturbance regimes in Korea. For. Ecol. Manag. 2004, 189, 281–293. [Google Scholar] [CrossRef]
- Richardson, D. Forestry trees as invasive aliens. Conserv. Biol. 1998, 12, 18–26. [Google Scholar] [CrossRef]
- Ecological Society of Japan (Ed.) Handbook of Alien Species in Japan; Chijinshokan: Tokyo, Japan, 2002. (In Japanese) [Google Scholar]
- Hoshino, Y.; Fukamachi, A.; Hasegawa, N. Girdling of young Robinia pseudoacacia trees on the Tama River terrace, central Japan. Landsc. Ecol. Eng. 2021. [Google Scholar] [CrossRef]
- Uraguchi, S.; Watanabe, I.; Kuno, K.; Hoshino, Y.; Fujii, Y. Allelopathy of floodplain vegetation species in the middlecourse of Tama river. J. Weed Sci. Technol. 2003, 48, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Ogura, N.; TRRG (Tama River Research Group in River Ecological Scientific Study Society). Let’s Talk to the Heart of the Water; Japan River Front Research Center: Tokyo, Japan, 2003. [Google Scholar]
- Lee, S.H.; Fujita, K.; Tsukahara, T.; Watanabe, S.; Yamamoto, K.; Mochizuki, T. Roles of floods and fine sediment transport to wood land expansion on a gravel river-bed. Proc. Hydraul. Eng. 1998, 42, 433–438. [Google Scholar] [CrossRef]
- Lee, S.H.; Fujita, K.; Yamamoto, K. A scenario of area expansion of stable vegetation in a gravel-bed river based on the upper Tama river case. Proc. Hydraul. Eng. 1999, 43, 977–982. [Google Scholar] [CrossRef] [Green Version]
- Asaeda, T.; Rashid, M.H.; Kotagiri, S.; Uchida, T. The role of soil characteristics in the succession of two herbaceous lianas in a modified river floodplain. River Res. Appl. 2011, 27, 591–601. [Google Scholar] [CrossRef]
- Choi, D.; Watanabe, Y.; Guy, R.D.; Sugai, T.; Toda, H.; Koike, T. Photosynthetic characteristics and nitrogen allocation in the black locust (Robinia pseudoacacia L.) grown in a FACE system. Acta Physiol. Plant. 2017, 39, 71. [Google Scholar] [CrossRef]
- Farquhar, G.D. Models of integrated photosynthesis of cells and leaves. Philos. Trans. R. Soc. Lond. 1989, B323, 357–367. [Google Scholar] [CrossRef]
- Niinemets, Ü.; Kull, O.; Tenhunen, J.D. Variability in leaf morphology and chemical composition as a function of canopy light environment in coexisting deciduous trees. Int. J. Plant Sci. 1999, 160, 837–848. [Google Scholar] [CrossRef]
- Poorter, L.; Oberbauer, S.F.; Clark, D.B. Leaf optical properties along a vertical gradient in a tropical rain forest canopy in Costa Rica. Am. J. Bot. 1995, 82, 1257–1263. [Google Scholar] [CrossRef]
- Terashima, I.; Hanba, Y.T.; Tazoe, Y.; Vyas, P.; Yano, S. Irradiance and phenotype: Comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J. Exp. Bot. 2006, 57, 343–354. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.E.; Asner, G.P.; Bentley, L.P.; Shenkin, A.; Salinas, N.; Huaypar, K.Q.; Pillco, M.M.; Ccori Álvarez, F.D.; Enquist, B.J.; Diaz, S.; et al. Covariance of sun and shade leaf traits along a tropical forest elevation gradient. Front. Plant Sci. 2020, 10, 1810. [Google Scholar] [CrossRef] [Green Version]
- Japan Meteorological Agency; Japan Meteorological Agency. Past Weather Data of Fuchu City. 2002. Available online: https://www.data.jma.go.jp/obd/stats/etrn/view/annually_a.php?prec_no=44&block_no=1133&year=2019&month=&day=&view=p1 (accessed on 16 January 2021).
- Thornley, J.H.M. Mathematical Models in Plant Physiology; Academic Press: London, UK, 1976. [Google Scholar]
- Choi, D.S.; Kayama, M.; Jin, H.O.; Lee, C.H.; Izuta, T.; Koike, T. Growth and photosynthetic responses of two pine species (Pinus koraiensis and Pinus rigida) in a polluted industrial region in Korea. Environ. Pollut. 2006, 139, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.S.; Quoreshi, A.M.; Maruyama, Y.; Jin, H.O.; Koike, T. Effect of ectomycorrhizal infection on growth and photosynthetic characteristics of Pinus densiflora seedlings grown under elevated CO2 concentrations. Photosynthetica 2005, 43, 223–229. [Google Scholar] [CrossRef]
- Han, Q.; Kawasaki, T.; Katahata, S.; Mukai, Y.; Chiba, Y. Horizontal and vertical variations in photosynthetic capacity in a Pinus densiflora crown in relation to leaf nitrogen allocation and acclimation to irradiance. Tree Physiol. 2003, 23, 851–857. [Google Scholar] [CrossRef] [Green Version]
- Larcher, W. Physiological Plant Ecology, 4th ed.; Springer: New York, NY, USA, 2003; p. 534. [Google Scholar]
- Farquhar, G.D.; von Caemmerer, S.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Harley, P.C.; Sharkey, T.D. An improved model of C3 photosynthesis at high CO2: Reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast. Photosynth. Res. 1991, 27, 169–178. [Google Scholar]
- Harley, P.C.; Loreto, F.; Marco, G.D.; Sharkey, T.D. Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol. 1992, 98, 1429–1436. [Google Scholar] [CrossRef] [Green Version]
- Sharkey, T.D. Photosynthesis in intact leaves of C3 plants: Physics, physiology and rate limitations. Bot. Rev. 1985, 51, 53–105. [Google Scholar] [CrossRef]
- von Caemmerer, S.; Farquhar, G.D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 1981, 153, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.S.; Toda, H.; Kim, Y. Effect of sulfur dioxide (SO2) on growth and physiological activity in Alnus sieboldiana at Miyakejima Island in Japan. Ecol. Res. 2014, 29, 103–110. [Google Scholar] [CrossRef]
- Barnes, J.D.; Balaguer, L.; Manrique, E.; Elvira, S.; Davison, A.W. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ. Exp. Bot. 1992, 32, 85–100. [Google Scholar] [CrossRef]
- Shinano, T.; Lei, T.T.; Kawamukai, T.; Inoue, M.T.; Koike, T.; Tadano, T. Dimethyl sulfoxide method for the extraction of chlorophyll a and b from the leaves of wheat, field bean, dwarf bamboo, and oak. Photosynthetica 1996, 32, 409–415. [Google Scholar]
- Hikosaka, K.; Terashima, I. Nitrogen partitioning among photosynthetic components and its consequence in sun and shade plants. Funct. Ecol. 1996, 10, 335–343. [Google Scholar] [CrossRef]
- Kitaoka, S.; Koike, T. Invasion of broad-leaf tree species into a larch plantation: Seasonal light environment, photosynthesis and nitrogen allocation. Physiol. Plant 2004, 121, 604–611. [Google Scholar] [CrossRef]
- Makino, A.; Mae, T.; Ohira, K. Differences between wheat and rice in the enzymic properties of ribulose-1,5-bisphosphate carboxylase/oxygenase and the relationship to photosynthetic gas exchange. Planta 1988, 174, 30–38. [Google Scholar] [CrossRef]
- Makino, A.; Mae, T.; Ohira, K. Enzymic properties of ribulose-1,5-bisphosphate carboxylase/oxygenase purified from rice leaves. Plant Physiol. 1985, 79, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.R.; Seemann, J.R. The allocation of protein nitrogen in the photosynthetic apparatus: Cost, consequences and control. In Photosynthesis; Brigs, W.R., Ed.; Alan R. Liss: New York, NY, USA, 1989; pp. 171–203. [Google Scholar]
- Hikosaka, K.; Terashima, I. A model of the acclimation of photosynthesis in the leaves of C-3 plants to sun and shade with respect to nitrogen use. Plant Cell Environ. 1995, 18, 605–618. [Google Scholar] [CrossRef]
- Niinemets, Ü.; Tenhunen, J.D. A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell Environ. 1997, 20, 845–866. [Google Scholar] [CrossRef]
- Von Caemmerer, S.; Evans, J.R.; Hudson, G.S.; Andrews, T.J. The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta 1994, 195, 88–97. [Google Scholar] [CrossRef]
- Wang, W.; Kayama, M.; Kitaoka, S.; Osaki, M.; Koike, T. Photosynthetic characteristics of Sasa senanensis grown under low nitrogen, potassium and phosphorus nutrient conditions. Bamboo 2001, 18, 23–36. [Google Scholar]
- Ishii, H.; Asano, S. The role of crown architecture, leaf phenology and photosynthetic activity in promoting complemen- tary use of light among coexisting species in temperate forests. Ecol. Res. 2010, 25, 715–722. [Google Scholar] [CrossRef]
- García-Plazaola, J.J.; Hernµndez, A.; Becerril, J.M. Antioxidant and pigment composition during autumnal leaf senescence in woody deciduous species differing in their ecological traits. Plant Biol. 2003, 5, 557–566. [Google Scholar] [CrossRef]
- Niinemets, Ü. A review of interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res. 2010, 25, 693–714. [Google Scholar] [CrossRef]
- Szöllösi, E.; Oläh, V.; Kanalas, P.; Kis, J.; Fenyvesi, A.; Mëszáros, I. Seasonal variation of leaf ecophysiological traits within the canopy of Quercus petraea (Matt.) Liebl. trees. Acta Biol. Hung. 2010, 61, 172–188. [Google Scholar] [CrossRef] [PubMed]
- Holscher, D. Leaf traits and photosynthetic parameters of saplings and adult trees of co-existing species in a temperate broad-leaved forest. Basic App. Ecol. 2004, 5, 163–172. [Google Scholar] [CrossRef]
- Kubiske, M.E.; Pregitzer, K.S. Ecophysiological responses to simulated canopy gaps of two tree species of contrasting shade tolerance in elevated CO2. Funct. Ecol. 1997, 11, 24–32. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Babani, F.; Langsdorf, G.; Buschmann, C. Measurement of differences in red chlorophyll fluorescence and photosynthetic activity between sun and shade leaves by fluorescence imaging. Photosynthetica 2000, 38, 521–529. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Alexander, A.; Marek, M.V.; Kalina, J.; Urban, O. Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiol. Biochem. 2007, 45, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Kumar, S.; Nagar, P.K. Photosynthetic performance of Ginkgo biloba, L. grown under high and low irradiance. Photosynthetica 2003, 41, 505–511. [Google Scholar] [CrossRef]
- Priwitzer, T.; Urban, O.; Sprtova, M.; Marek, M.V. Chloroplastic carbon dioxide concentration of Norway spruce (Picea abies [L.] Karst) needles relates to the position within the crown. Photosynthetica 1998, 34, 109–112. [Google Scholar] [CrossRef]
- Spunda, V.; Cÿajanek, M.; Kalina, J.; Lachetov, I.; Sprtova, M.; Marek, M.V. Mechanistic differences in utilization of absorbed excitation energy within photosynthetic apparatus of Norway spruce induced by the vertical distribution of photosynthetically active radiation through the tree crown. Plant Sci. 1998, 133, 155–165. [Google Scholar] [CrossRef]
- Mao, L.Z.; Lu, H.F.; Wang, Q.; Cai, M.M. Comparative photosynthesis characteristics of Calycanthus chinensis and Chimonanthus praecox. Photosynthetica 2007, 45, 601–605. [Google Scholar] [CrossRef]
- Schiefthaler, U.; Russell, A.W.; Bolhàr-Nordenkampf, H.R.; Critchley, C. Photoregulation and photodamage in Schefflera arboricola leaves adapted to different light environments. Aust. J. Plant Physiol. 1997, 26, 485–494. [Google Scholar] [CrossRef]
- Dai, Y.; Shen, Z.; Liu, Y.; Wang, L.; Hannaway, D.; Lu, H. Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environ. Exp. Bot. 2009, 65, 177–182. [Google Scholar] [CrossRef]
- Lusk, C.H.; Reich, P.B. Relationships of leaf dark respiration with light environment and tissue nitrogen content in juveniles of 11 cold-temperate tree species. Oecologia 2000, 123, 318–329. [Google Scholar] [CrossRef]
- Wittmann, C.; Aschan, G.; Pfanz, H. Leaf and twig photosynthesis of young beech (Fagus sylvatica) and aspen (Populus tremula) trees grown under different light regime. Basic Appl. Ecol. 2001, 2, 145–154. [Google Scholar] [CrossRef]
- Givnish, T.J. Adaptation to sun and shade: A whole-plant perspective. Aust. J. Plant Physiol. 1988, 15, 63–92. [Google Scholar] [CrossRef] [Green Version]
- Grime, J.P. Shade tolerance in flowering plants. Nature 1965, 208, 161–163. [Google Scholar] [CrossRef]
- Herrick, J.D.; Thomas, R.D. Effects of CO2 enrichment on the photosynthetic light response of sun and shade leaves of canopy sweetgum trees (Liquidambar styraciflua) in a forest ecosystem. Tree Physiol. 1999, 19, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Dilcher, D.L.; Beerling, D.J.; Zhang, C.; Yan, D.; Kowalski, E. Variation in Ginkgo biloba, L. leaf characters across a climate gradient in China. Proc. Natl. Acad. Sci. USA 2003, 100, 7141–7146. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.R. The relationship between electron transport components and photosynthetic capacity in pea leaves grown at different irradiances. Aust. J. Plant Physiol. 1987, 14, 157–170. [Google Scholar] [CrossRef]
- Onoda, Y.; Hikosaka, K.; Hirose, T. Seasonal change in the balance between capacities of RuBP carboxylation and RuBP regeneration affects CO2 response of photosynthesis in Polygonum cuspidatum. J. Exp. Bot. 2005, 56, 755–763. [Google Scholar] [CrossRef]
- Yamori, W.; Noguchi, K.; Hikosaka, K.; Terashima, I. Phenotypic plasticity in photosynthetic temperature acclimation among crop species with different cold tolerances. Plant Physiol. 2010, 152, 388–399. [Google Scholar] [CrossRef] [Green Version]
- Katahata, S.; Naramoto, M.; Kakubari, Y.; Mukai, Y. Seasonal changes in photosynthesis and nitrogen allocation in leaves of different ages in evergreen understory shrub Daphniphyllum humile. Trees 2007, 21, 619–629. [Google Scholar] [CrossRef]
- Lambers, H.; Chapin, F.S., III; Ponds, T.L. Plant Physiological Ecology, 2nd ed.; Springer: New York, NY, USA, 2008; p. 605. [Google Scholar]
- Boardman, N.K. Comparative photosynthesis of sun and shade plants. Annu. Rev. Plant Physiol. 1977, 28, 355–377. [Google Scholar] [CrossRef]
- Poorter, H.; Niinemets, U.; Poorter, L.; Wright, I.J.; Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol. 2009, 182, 565–588. [Google Scholar] [CrossRef]
Parameter | Leaf Position | Shade/Sun | p value | |
---|---|---|---|---|
Sun Leaf | Shade Leaf | (Ratio) | ||
Chl a (mg m−2) | 248.24 (29.34) | 163.60 (24.26) | 0.66 | <0.001 |
Chl b (mg m−2) | 52.18 (8.45) | 44.92 (10.99) | 0.86 | 0.034 |
Chl a + b (mg m−2) | 300.42 (32.62) | 208.53 (26.06) | 0.69 | <0.001 |
Chl a/b ratio | 4.85 (0.83) | 3.88 (1.23) | 0.80 | 0.010 |
Fv/Fm | 0.81 (0.01) | 0.78 (0.05) | 0.96 | 0.006 |
LMA (g m−2) | 146.53 (23.5) | 115.31 (29.55) | 0.78 | <0.001 |
Parameter | Leaf Position | Shade/Sun | p value | |
---|---|---|---|---|
Sun Leaves | Shade Leaves | (ratio) | ||
Pmax (µmol m−2s−1) | 25.84 (0.85) | 13.49 (0.47) | 0.52 | <0.001 |
Amax (µmol m−2s−1) | 35.43 (1.80) | 25.02 (1.91) | 0.71 | <0.001 |
Rd (µmol m−2s−1) | 1.81 (0.33) | 0.74 (0.31) | 0.41 | <0.001 |
Jmax (µmol m−2s−1) | 148.26 (22.28) | 103.67 (16.88) | 0.70 | <0.001 |
Vcmax (µmol m−2s−1) | 15.92 (0.99) | 10.37 (0.48) | 0.65 | <0.001 |
Parameter | Leaf Position | Shade/Sun | p value | |
---|---|---|---|---|
Sun Leaf | Shade Leaf | (Ratio) | ||
RuBisCo/N (g m−2/g m−2) | 2.45 (0.42) | 1.05 (0.17) | 0.43 | <0.001 |
Chl/N (g m−2/g m−2) | 0.14 (0.03) | 0.11 (0.01) | 0.78 | 0.012 |
Jmax/N (µmol m−2s−1/mg m−2) | 66.30 (19.84) | 55.26 (10.61) | 0.83 | ns |
Vcmax/N (µmol m−2s−1/mg m−2) | 7.14 (1.79) | 5.60 (1.13) | 0.71 | ns |
Jmax/Vcmax (µmol m−2s−1/µmol m−2s−1) | 9.39 (1.84) | 10.02 (1.74) | 1.06 | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, D.; Jang, W.; Toda, H.; Yoshikawa, M. Differences in Characteristics of Photosynthesis and Nitrogen Utilization in Leaves of the Black Locust (Robinia pseudoacacia L.) According to Leaf Position. Forests 2021, 12, 348. https://doi.org/10.3390/f12030348
Choi D, Jang W, Toda H, Yoshikawa M. Differences in Characteristics of Photosynthesis and Nitrogen Utilization in Leaves of the Black Locust (Robinia pseudoacacia L.) According to Leaf Position. Forests. 2021; 12(3):348. https://doi.org/10.3390/f12030348
Chicago/Turabian StyleChoi, Dongsu, Woongsoon Jang, Hiroto Toda, and Masato Yoshikawa. 2021. "Differences in Characteristics of Photosynthesis and Nitrogen Utilization in Leaves of the Black Locust (Robinia pseudoacacia L.) According to Leaf Position" Forests 12, no. 3: 348. https://doi.org/10.3390/f12030348
APA StyleChoi, D., Jang, W., Toda, H., & Yoshikawa, M. (2021). Differences in Characteristics of Photosynthesis and Nitrogen Utilization in Leaves of the Black Locust (Robinia pseudoacacia L.) According to Leaf Position. Forests, 12(3), 348. https://doi.org/10.3390/f12030348