Transcriptome Analysis Reveals Regulatory Framework for Salt and Drought Tolerance in Hibiscus hamabo Siebold & Zuccarini
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Illumina Sequencing for Transcriptome Analysis
2.3. Bioinformatic Analysis of RNA-Seq Data
2.4. Quantitative Real-Time PCR (RT-qPCR)
3. Results
3.1. Summary of H. hamabo Sequences
3.2. Global Comparisons of Salt-Treated and Drought-Treated Transcriptomes
3.3. Validation of Gene Expression Levels with RT-qPCR Analysis
3.4. Time Course RNA-seq Analysis in Response to Salt and Drought
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, W.; Vinocur, B.; Altman, A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 2003, 218, 1–14. [Google Scholar] [CrossRef]
- De Zelicourt, A.; Colcombet, J.; Hirt, H. The role of mapk modules and aba during abiotic stress signaling. Trends Plant Sci. 2016, 21, 677–685. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol. 2018, 217, 523–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.-K. Abiotic stress signaling and responses in plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.-K. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 2002, 53, 247–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutler, S.R.; Rodriguez, P.L.; Finkelstein, R.R.; Abrams, S.R. Abscisic acid: Emergence of a core signaling network. Annu. Rev. Plant Biol. 2010, 61, 651–679. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.; Raina, S.K.; Sultan, S.M. Arabidopsis MAPK signaling pathways and their cross talks in abiotic stress response. J. Plant Biochem. Biotechnol. 2020, 29, 700–714. [Google Scholar] [CrossRef]
- Zhou, H.; Ren, S.; Han, Y.; Zhang, Q.; Qin, L.; Xing, Y. Identification and analysis of mitogen-activated protein kinase (MAPK) cascades in Fragaria vesca. Int. J. Mol. Sci. 2017, 18, 1766. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Jiang, Y.; Liang, Y.; Chen, L.; Chen, W.; Cheng, B. Expression of the maize MYB transcription factor ZmMYB3R enhances drought and salt stress tolerance in transgenic plants. Plant Physiol. Biochem. 2019, 137, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhao, H.; Gao, F.; Yao, P.; Deng, R.; Li, C.; Chen, H.; Wu, Q. A R2R3-MYB transcription factor gene, FtMYB13, from Tartary buckwheat improves salt/drought tolerance in Arabidopsis. Plant Physiol. Biochem. 2018, 132, 238–248. [Google Scholar] [CrossRef]
- Schuster, S.C. Next-generation sequencing transforms today’s biology. Nat. Methods 2008, 5, 16–18. [Google Scholar] [CrossRef]
- Yu, C.; Xu, S.; Yin, Y. Transcriptome analysis of the Taxodium ‘Zhongshanshan 405’ roots in response to salinity stress. Plant Physiol. Biochem. 2016, 100, 156–165. [Google Scholar] [CrossRef]
- Gu, C.-S.; Liu, L.-Q.; Deng, Y.-M.; Zhang, Y.-X.; Wang, Z.-Q.; Yuan, H.-Y.; Huang, S.-Z. De novo characterization of the Iris lactea var. chinensis transcriptome and an analysis of genes under cadmium or lead exposure. Ecotoxicol. Environ. Saf. 2017, 144, 507–513. [Google Scholar]
- Wu, P.; Cogill, S.; Qiu, Y.; Li, Z.; Zhou, M.; Hu, Q.; Chang, Z.; Noorai, R.E.; Xia, X.; Saski, C. Comparative transcriptome profiling provides insights into plant salt tolerance in seashore paspalum (Paspalum vaginatum). BMC Genom. 2020, 21, 131. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liao, J.; Guan, M.; Wang, E.; Zhang, J. Salt tolerance of Hibiscus hamabo seedlings: A candidate halophyte for reclamation areas. Acta Physiol. Plant. 2012, 34, 1747–1755. [Google Scholar] [CrossRef]
- Shi, Q.; Bao, X.W.; Hua, J.F.; Yu, C.G.; Yin, Y.L.; Lu, Z.G. Effects of drought stress and recovery on photosynthesis and physiological characteristics of Hibiscus hamabo. J. Appl. Ecol. 2019, 30, 2600–2606. [Google Scholar]
- Wang, Z.; Xu, X.; Ni, L.; Guo, J.; Gu, C. Efficient virus-induced gene silencing in Hibiscus hamabo sieb. et zucc. using tobacco rattle virus. PeerJ 2019, 7, e7505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ernst, J.; Bar-Joseph, Z. Stem: A tool for the analysis of short time series gene expression data. BMC Bioinform. 2006, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chen, H.; He, Y.; Xia, R. TBtools, a toolkit for biologists integrating various biological data handling tools with a user-friendly interface. bioRxiv 2018, 289660. [Google Scholar] [CrossRef]
- Wang, Z.; Ni, L.; Guo, J.; Liu, L.; Li, H.; Yin, Y.; Gu, C. Phylogenetic and transcription analysis of Hibiscus hamabo sieb. et zucc. WRKY transcription factors. DNA Cell Biol. 2020, 39, 1141–1154. [Google Scholar] [CrossRef]
- Yin, H.; Li, M.; Li, D.; Khan, S.-A.; Hepworth, S.R.; Wang, S.-M. Transcriptome analysis reveals regulatory framework for salt and osmotic tolerance in a succulent xerophyte. BMC Plant Biol. 2019, 19, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Cai, M.; Yu, X.; Wang, L.; Guo, C.; Ming, R.; Zhang, J. Transcriptome dynamics of camellia sinensis in response to continuous salinity and drought stress. Tree Genet. Genomes 2017, 13, 1–17. [Google Scholar] [CrossRef]
- Ma, Q.; Bao, A.-K.; Chai, W.-W.; Wang, W.-Y.; Zhang, J.-L.; Li, Y.-X.; Wang, S.-M. Transcriptomic analysis of the succulent xerophyte Zygophyllum xanthoxylum in response to salt treatment and osmotic stress. Plant Soil 2016, 402, 343–361. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Y. Unraveling salt stress signaling in plants. J. Integr. Plant Biol. 2018, 60, 796–804. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Jing, W.; Zhang, W. The mitogen-activated protein kinase cascade MKK1–MPK4 mediates salt signaling in rice. Plant Sci. 2014, 227, 181–189. [Google Scholar] [CrossRef]
- Chan, Z. Expression profiling of aba pathway transcripts indicates crosstalk between abiotic and biotic stress responses in Arabidopsis. Genomics 2012, 100, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Muchate, N.S.; Nikalje, G.C.; Rajurkar, N.S.; Suprasanna, P.; Nikam, T.D. Plant salt stress: Adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Bot. Rev. 2016, 82, 371–406. [Google Scholar] [CrossRef]
- Tang, Y.; Bao, X.; Zhi, Y.; Wu, Q.; Guo, Y.; Yin, X.; Zeng, L.; Li, J.; Zhang, J.; He, W. Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Front. Plant Sci. 2019, 10, 168. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Han, G.; Sun, C.; Sui, N. Research advances of myb transcription factors in plant stress resistance and breeding. Plant Signal. Behav. 2019, 14, 1613131. [Google Scholar] [CrossRef]
- Butt, H.I.; Yang, Z.; Gong, Q.; Chen, E.; Wang, X.; Zhao, G.; Ge, X.; Zhang, X.; Li, F. GaMYB85, an R2R3 MYB gene, in transgenic Arabidopsis plays an important role in drought tolerance. BMC Plant Biol. 2017, 17, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Zhou, J.; Deng, R.-Y.; Zhao, H.-X.; Li, C.-L.; Chen, H.; Suzuki, T.; Park, S.-U.; Wu, Q. Overexpression of a tartary buckwheat R2R3-MYB transcription factor gene, FtMYB9, enhances tolerance to drought and salt stresses in transgenic Arabidopsis. J. Plant Physiol. 2017, 214, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Julkowska, M.M.; Testerink, C. Tuning plant signaling and growth to survive salt. Trends Plant Sci. 2015, 20, 586–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Küfner, I.; Koch, W. Stress regulated members of the plant organic cation transporter family are localized to the vacuolar membrane. BMC Res. Notes 2008, 1, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahuja, A.; Kumar, R.R.; Sakhare, A.; Watts, A.; Singh, B.; Goswami, S.; Sachdev, A.; Praveen, S. Role of abc transporters in maintaining plant homeostasis under abiotic and biotic stresses. Physiol. Plant. 2020, 171, 785–801. [Google Scholar] [CrossRef]
Sample | Clean Reads Pairs | Clean Base (bp) | Length | Q20 (%) | Q30 (%) | GC (%) |
---|---|---|---|---|---|---|
CK_1 | 33,187,452 | 9,956,235,600 | 150;150 | 98.1;97.6 | 94.5;93.1 | 48.7;48.8 |
CK_2 | 41,835,177 | 12,550,553,100 | 150;150 | 98.1;97.4 | 94.5;92.4 | 48.1;48.1 |
CK_3 | 29,667,431 | 8,900,229,300 | 150;150 | 98.0;97.6 | 94.3;93.0 | 46.1;46.2 |
P6_1 | 27,041,273 | 8,112,381,900 | 150;150 | 97.6;96.7 | 93.0;90.9 | 45.2;45.3 |
P6_2 | 28,359,168 | 8,507,750,400 | 150;150 | 97.7;96.9 | 93.3;91.3 | 46.9;46.9 |
P6_3 | 27,797,544 | 8,339,263,200 | 150;150 | 97.7;96.9 | 93.3;91.4 | 48.0;48.0 |
P24_1 | 30,032,491 | 9,009,747,300 | 150;150 | 97.7;96.7 | 93.5;90.9 | 46.6;46.6 |
P24_2 | 28,182,367 | 8,454,710,100 | 150;150 | 97.6;96.8 | 93.2;91.2 | 46.4;46.4 |
P24_3 | 28,148,479 | 8,444,543,700 | 150;150 | 97.5;96.7 | 92.9;90.8 | 45.3;45.4 |
CL6_1 | 29,023,247 | 8,706,974,100 | 150;150 | 97.7;97.3 | 96.3;95.6 | 49.4;49.4 |
CL6_2 | 34,393,028 | 10,317,908,400 | 150;150 | 97.4;95.8 | 96.0;93.6 | 47.7;47.8 |
CL6_3 | 27,607,372 | 8,282,211,600 | 150;150 | 97.7;97.1 | 96.3;95.4 | 46.4;46.4 |
CL24_1 | 28,320,012 | 8,496,003,600 | 150;150 | 97.5;96.4 | 96.1;94.4 | 46.8;46.9 |
CL24_2 | 33,286,710 | 9,986,013,000 | 150;150 | 97.8;97.2 | 96.5;95.5 | 48.2;48.2 |
CL24_3 | 37,889,245 | 11,366,773,500 | 150;150 | 97.7;96.8 | 96.4;95.0 | 48.6;48.6 |
Sample | Total Read Pairs | Total Mapped Ratio | Unique Mapped Reads | Multiple Mapped Reads | Discordant Reads Ratio |
---|---|---|---|---|---|
CK_1 | 33,187,452 | 64.08% | 60.63% | 1.94% | 1.51% |
CK_2 | 41,835,177 | 67.26% | 63.55% | 2.14% | 1.57% |
CK_3 | 29,667,431 | 83.25% | 78.85% | 2.57% | 1.83% |
P6_1 | 27,041,273 | 88.92% | 83.12% | 3.01% | 2.79% |
P6_2 | 28,359,168 | 81.30% | 76.26% | 2.68% | 2.36% |
P6_3 | 27,797,544 | 73.64% | 69.13% | 2.54% | 1.97% |
P24_1 | 30,032,491 | 81.14% | 75.79% | 2.80% | 2.55% |
P24_2 | 28,182,367 | 80.92% | 75.72% | 2.74% | 2.46% |
P24_3 | 28,148,479 | 87.26% | 81.55% | 3.02% | 2.69% |
CL6_1 | 29,023,247 | 64.74% | 61.12% | 1.93% | 1.69% |
CL6_2 | 34,393,028 | 70.68% | 66.10% | 2.27% | 2.31% |
CL6_3 | 27,607,372 | 81.11% | 76.54% | 2.39% | 2.18% |
CL24_1 | 28,320,012 | 77.77% | 73.18% | 2.40% | 2.19% |
CL24_2 | 33,286,710 | 71.65% | 66.99% | 2.22% | 2.44% |
CL24_3 | 37,889,245 | 69.79% | 65.75% | 2.12% | 1.92% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Ni, L.; Hua, J.; Liu, L.; Yin, Y.; Li, H.; Gu, C. Transcriptome Analysis Reveals Regulatory Framework for Salt and Drought Tolerance in Hibiscus hamabo Siebold & Zuccarini. Forests 2021, 12, 454. https://doi.org/10.3390/f12040454
Wang Z, Ni L, Hua J, Liu L, Yin Y, Li H, Gu C. Transcriptome Analysis Reveals Regulatory Framework for Salt and Drought Tolerance in Hibiscus hamabo Siebold & Zuccarini. Forests. 2021; 12(4):454. https://doi.org/10.3390/f12040454
Chicago/Turabian StyleWang, Zhiquan, Longjie Ni, Jianfeng Hua, Liangqin Liu, Yunlong Yin, Huogen Li, and Chunsun Gu. 2021. "Transcriptome Analysis Reveals Regulatory Framework for Salt and Drought Tolerance in Hibiscus hamabo Siebold & Zuccarini" Forests 12, no. 4: 454. https://doi.org/10.3390/f12040454
APA StyleWang, Z., Ni, L., Hua, J., Liu, L., Yin, Y., Li, H., & Gu, C. (2021). Transcriptome Analysis Reveals Regulatory Framework for Salt and Drought Tolerance in Hibiscus hamabo Siebold & Zuccarini. Forests, 12(4), 454. https://doi.org/10.3390/f12040454