Rapid Assessment of Tree Damage Resulting from a 2020 Windstorm in Iowa, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Aerial Survey
2.2.2. Forest Inventory
2.3. Estimation
2.3.1. Pre-Storm Estimates of Forest Attributes
2.3.2. Indirect Estimation of Proportion of Tree Damage and Mortality
2.3.3. Estimating Impact of Midwest Derecho
2.3.4. Validation of Estimates Using Aerial Survey Damage Severity Data
3. Results
3.1. Indirect Estimate
3.2. Midwest Derecho
3.3. Validation
4. Discussion
4.1. Observations Regarding the 2020 Midwest Derecho
4.2. Caveats, Cautions, and Lessons Learned Regarding Estimation for Rapid Assessment
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frelich, L.E. Forest Dynamics and Disturbance Regimes, Studies from the Temperate Deciduous Forests; Cambridge University Press: New York, NY, USA, 2002. [Google Scholar]
- Abrams, M.D.; Scott, M.L. Disturbance-mediated accelerated succession in two Michigan forest types. For. Sci. 1989, 35, 42–49. [Google Scholar]
- Holzmueller, E.J.; Gibson, D.J.; Suchecki, P.F. Accelerated succession following an intense wind storm in an oak-dominated forest. For. Ecol. Manag. 2012, 279, 141–146. [Google Scholar] [CrossRef]
- Daniels, M.K.; Larson, E.R. Effects of forest windstorm disturbance on invasive plants in protected areas of southern Illinois, USA. J. Ecol. 2020, 108, 199–211. [Google Scholar] [CrossRef]
- Wilson, D.C.; Morin, R.S.; Frelich, L.E.; Ek, A.R. Monitoring disturbance intervals in forests: A case study of increasing forest disturbance in Minnesota. Ann. For. Sci. 2019, 76, 78. [Google Scholar] [CrossRef]
- Vogt, J.T.; Gandhi, K.J.K.; Bragg, D.C.; Olatinwo, R.; Klepzig, K.D. Interactions between Weather-Related Disturbance and Forest Insects and Diseases in the Southern United States; U.S. Department of Agriculture Forest Service, Southern Research Station: Asheville, NC, USA, 2020; p. 37.
- Lafon, C.W. Ice-storm disturbance and long-term forest dynamics in the Adirondack Mountains. J. Veg. Sci. 2004, 15, 267–276. [Google Scholar] [CrossRef]
- Bragg, D.; Shelton, M.; Zeide, B. Impacts and management implications of ice storms on forests in the southern United States. For. Ecol. Manag. 2003, 186, 99–123. [Google Scholar] [CrossRef]
- Irland, L.C. Ice storms and forest impacts. Sci. Total Environ. 2000, 262, 231–242. [Google Scholar] [CrossRef]
- Lemon, P.C. Forest Ecology of Ice Storms. Bull. Torrey Bot. Club 1961, 88, 21–29. [Google Scholar] [CrossRef]
- Lugo, A.E. Visible and invisible effects of hurricanes on forest ecosystems: An international review. Austral. Ecol. 2008, 33, 368–398. [Google Scholar] [CrossRef]
- Beard, K.H.; Vogt, K.A.; Vogt, D.J.; Scatena, F.N.; Covich, A.P.; Sigurdardottir, R.; Siccama, T.G.; Crowl, T.A. Structural and functional responses of a subtropical forest to 10 years of hurricanes and droughts. Ecol. Monogr. 2005, 75, 345–361. [Google Scholar] [CrossRef] [Green Version]
- Boucher, D.H.; Vandermeer, J.H.; Yih, K.; Zamora, N. Contrasting Hurricane Damage in Tropical Rain Forest and Pine Forest. Ecology 1990, 71, 2022–2024. [Google Scholar] [CrossRef]
- Everham, E.M.; Brokaw, N.V.L. Forest damage and recovery from catastrophic wind. Bot. Rev. 1996, 62, 113–185. [Google Scholar] [CrossRef]
- Cannon, J.B.; Peterson, C.J.; O’Brien, J.J.; Brewer, J.S. A review and classification of interactions between forest disturbance from wind and fire. For. Ecol. Manag. 2017, 406, 381–390. [Google Scholar] [CrossRef]
- Gardiner, B.; Byrne, K.; Hale, S.; Kamimura, K.; Mitchell, S.J.; Peltola, H.; Ruel, J.-C. A review of mechanistic modelling of wind damage risk to forests. For. Int. J. For. Res. 2008, 81, 447–463. [Google Scholar] [CrossRef] [Green Version]
- Corfidi, S.F.; Coniglio, M.C.; Cohen, A.E.; Mead, C.M. A Proposed Revision to the Definition of “Derecho”. Bull. Am. Meteorol. Soc. 2016, 97, 935–949. [Google Scholar] [CrossRef]
- Guastini, C.T.; Bosart, L.F. Analysis of a progressive derecho climatology and associated formation environments. Mon. Weather Rev. 2016, 144, 1363–1382. [Google Scholar] [CrossRef]
- Vaughn, D.H. Derecho! The forgotten windstorm that changed the Ozarks. For. Hist. Today 2013, 2013, 4–12. [Google Scholar]
- Moser, W.K.; Hansen, M.H.; Nelson, M.D.; Crocker, S.J.; Perry, C.H.; Schulz, B.; Woodall, C.W.; Nagel, L.; Mielke, M.E. After the Blowdown: A Resource Assessment of the Boundary Waters Canoe Area Wilderness, 1999–2003; U.S. Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2007; p. 54.
- Rich, R.L. Large Wind Disturbance in the Boundary Waters Canoe Area Wilderness: Forest Dynamics and Development Changes Associated with the 4 July 1999 Blowdown. Ph.D. Thesis, University of Minnesota, St. Paul, MN, USA, 2005. [Google Scholar]
- Hansen, M.C.; Stehman, S.V.; Potapov, P.T. Quantification of global gross forest cover loss. Proc. Natl. Acad. Sci. USA 2010, 107, 8650–8655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schleeweis, K.; Moisen, G.; Schroeder, T.; Toney, C.; Freeman, E.; Goward, S.; Huang, C.; Dungan, J. US National Maps Attributing Forest Change: 1986–2010. Forests 2020, 11, 653. [Google Scholar] [CrossRef]
- Schleeweis, K.; Goward, S.N.; Huang, C.; Masek, J.G.; Moisen, G.; Kennedy, R.E.; Thomas, N.E. Regional dynamics of forest canopy change and underlying causal processes in the contiguous U.S. J. Geophys. Res. Biogeosci. 2013, 118, 1035–1053. [Google Scholar] [CrossRef]
- Baumann, M.; Ozdogan, M.; Wolter, P.T.; Krylov, A.; Vladimirova, N.; Radeloff, V.C. Landsat remote sensing of forest windfall disturbance. Remote Sens. Environ. 2014, 143, 171–179. [Google Scholar] [CrossRef]
- Coulston, J.W.; Edgar, C.B.; Westfall, J.A.; Taylor, M.E. Estimation of forest disturbance from retrospective observations in a broad-scale inventory. Forests 2020, 11, 1298. [Google Scholar] [CrossRef]
- Staudhammer, C.; Escobedo, F.; Lawrence, A.; Duryea, M.; Smith, P.; Merritt, M. Rapid assessment of change and hurricane impacts to Houston’s urban forest structure. Arboric. Urban. For. 2011, 37, 60–66. [Google Scholar]
- Glass, P.A.; Oswalt, S.N. Initial Estimates of Hurricane Katrina Impacts of Mississippi Gulf Coast Forest Resources; Mississippi Institute for Forest Inventory: Jackson, MI, USA, 2007; pp. 1–4.
- Tetrault, R. Rapid Damage Assessment using FAS’s Global Agricultural and Disaster Assessment System—GADAS. In Proceedings of the 2019 Agricultural Outlook Forum (AOF)—Growing Locally, Selling Globally, Arlington, VA, USA, 21 February 2019. [Google Scholar]
- FAO. Rapid Damage Assessment to the Agriculture and Fisheries Sectors Report: Severe Tropical Cyclone Ian January 2014; Food and Agriculture Organisation of the United Nations Subregional Office for the Pacific Islands: Rome, Italy, 2014. [Google Scholar]
- Miller, J.D.; Knapp, E.E.; Key, C.H.; Skinner, C.N.; Isbell, C.J.; Creasy, R.M.; Sherlock, J.W. Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sens. Environ. 2009, 113, 645–656. [Google Scholar] [CrossRef]
- Norman, S.P.; Hargrove, W.W.; Spruce, J.P.; Christie, W.M.; Schroeder, S.W. Highlights of Satellite-Based Forest Change Recognition and Tracking Using the ForWarn System; Gen. Tech. Rep. SRS-GTR-180; USDA-Forest Service, Southern Research Station: Asheville, NC, USA, 2013; pp. 1–30.
- Rich, R.L.; Frelich, L.; Reich, P.B.; Bauer, M.E. Detecting wind disturbance severity and canopy heterogeneity in boreal forest by coupling high-spatial resolution satellite imagery and field data. Remote Sens. Environ. 2010, 114, 299–308. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Omernik, J.M.; Griffith, G.E. Ecoregions of the Conterminous United States: Evolution of a Hierarchical Spatial Framework. Environ. Manag. 2014, 54, 1249–1266. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.W.; Wittwer, D. Aerial detection surveys in the United States. Aust. For. 2008, 71, 212–215. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture Forest Service. Forest Inventory and Analysis National Core Field Guide, Volume 1: Field Data Collection Procedures for Phase 2 Plots, Version 7.1; Northern Research Station Edition; U.S. Department of Agriculture, Forest Service, Northern Research Station: St. Paul, MN, USA, 2017; p. 407.
- Reams, G.; Smith, W.; Hansen, M.; Bechtold, W.; Roesch, F.; Moisen, G. The enhanced forest inventory and analysis program—National sampling design and estimation procedures. In The Forest Inventory and Analysis Sampling Frame, GTR SRS-80; U.S. Department of Agriculture, Forest Service: Asheville, NC, USA, 2005; pp. 21–36. [Google Scholar]
- Bechtold, W.A.; Patterson, P.L. (Eds.) The Enhanced Forest Inventory and Analysis Program—National Sampling Design and Estimation Procedures, GTR-SRS-80; U.S. Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2005.
- Scott, C.T.; Bechtold, W.A.; Reams, G.A.; Smith, W.D.; Westfall, J.A.; Hansen, M.H.; Moisen, G.G. Sample-based estimators used by the Forest Inventory and Analysis National Information Management System. In The Enhanced Forest Inventory and Analysis Program—National Sampling Design and Estimation Procedures; Bechtold, W.A., Patterson, P.L., Eds.; U.S. Department of Agriculture Forest Service: Asheville, NC, USA, 2005; pp. 43–67. [Google Scholar]
- Suvanto, S.; Peltoniemi, M.; Tuominen, S.; Strandström, M.; Lehtonen, A. High-resolution mapping of forest vulnerability to wind for disturbance-aware forestry. For. Ecol. Manag. 2019, 453, 117619. [Google Scholar] [CrossRef]
- Randolph, K.C. Benefits and Limitations of Using Standard Forest Inventory and Analysis Data to Describe the Extent of a Catastrophic Weather Event. E-Res. Pap. SRS-55; Department of Agriculture Forest Service, Southern Research Station: Asheville, NC, USA, 2015; 10p.
- Liknes, G.C.; Crocker, S.J.; Morin, R.S.; Walters, B.F. Hurricane impacts on forest resources in the Eastern United States: A post-sandy assessment. In Pushing Boundaries: New Directions in Inventory Techniques and Applications, Proceedings of the Forest Inventory and Analysis (FIA) Symposium 2015, Portland, OR, USA, 10–12 December 2015; USDA, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2015; pp. 173–177. [Google Scholar]
- Rao, J.N.K.; Molina, I. Small Area Estimation; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; 441p. [Google Scholar]
- Hale, S.E.; Gardiner, B.A.; Wellpott, A.; Nicoll, B.C.; Achim, A. Wind loading of trees: Influence of tree size and competition. Eur. J. For. Res. 2012, 131, 203–217. [Google Scholar] [CrossRef]
- Suvanto, S.; Henttonen, H.M.; Nöjd, P.; Mäkinen, H. Forest susceptibility to storm damage is affected by similar factors regardless of storm type: Comparison of thunder storms and autumn extra-tropical cyclones in Finland. For. Ecol. Manag. 2016, 381, 17–28. [Google Scholar] [CrossRef]
- Beach, R.H.; Sills, E.O.; Liu, T.-M.; Pattanayak, S. The influence of forest management on vulnerability of forests to severe weather. In Advances in Threat Assessment and Their Application to Forest and Rangeland Management; Pye, J.M., Rauscher, H.M., Sands, Y., Lee, D.C., Beatty, J.S., Eds.; U.S. Department of Agriculture, Forest Service, Pacific Northwest and Southern Research Stations: Portland, OR, USA, 2010; pp. 185–206. [Google Scholar]
- Stueve, K.M.; Perry, C.H.; Nelson, M.D.; Healey, S.P.; Hill, A.D.; Moisen, G.G.; Cohen, W.B.; Gormanson, D.D.; Huang, C. Ecological importance of intermediate windstorms rivals large, infrequent disturbances in the northern Great Lakes. Ecosphere 2011, 2, 1–21. [Google Scholar] [CrossRef]
- Jacobs, D.M. Forest inventory, catastrophic events and historic geospatial assessments in the south. In Proceedings of the ASPRS 2007 Annual Conference, Tampa, FL, USA, 7–11 May 2007. [Google Scholar]
- Morin, R.S.; Pugh, S.A.; Steinman, J. Mapping the Occurrence of Tree Damage in the Forests of the Northern United States; U.S. Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2016; p. 19.
- Randolph, K.C.; Dooley, K.; Shaw, J.D.; Morin, R.S.; Asaro, C.; Palmer, M.M. Past and present individual-tree damage assessments of the US national forest inventory. Environ. Monit. Assess. 2021, 193, 116. [Google Scholar] [CrossRef] [PubMed]
- Masek, J.G.; Goward, S.N.; Kennedy, R.E.; Cohen, W.B.; Moisen, G.G.; Schleeweis, K.; Huang, C. United States forest disturbance trends observed using Landsat Time Series. Ecosystems 2013, 16, 1087–1104. [Google Scholar] [CrossRef] [Green Version]
- McRoberts, R.E. Post-classification approaches to estimating change in forest area using remotely sensed auxiliary data. Remote Sens. Environ. 2014, 151, 149–156. [Google Scholar] [CrossRef]
- Shimada, M.; Itoh, T.; Motooka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31. [Google Scholar] [CrossRef]
Tree Status | Tree Damage Location | Trees in Wind-Disturbed Conditions | Trees with Wind Damage (Live) or Weather Agent (Mortality and Removals) | SE (Percent) | SE (Trees) | Percent of Trees |
---|---|---|---|---|---|---|
Live | Branch | 7,564,768 | 840,663 | 38.18 | 320,965 | 11.11 |
Live | Stem | 7,564,768 | 653,680 | 51.59 | 282,353 | 7.23 |
Live | Total | 1,494,344 | 38.71 | 537,281 | 18.35 | |
Mortality/Removal | N/A | 11,027,638 | 2,809,460 | 38.69 | 1,086,994 | 25.48 |
Total 1 | 4,303,803 | 27.83 | 1,168,032 | 43.82 |
Tree Status | Tree Damage Location | Volume in Wind-Disturbed Conditions | Volume with Wind Damage (Live) Or Weather Agent (Mortality and Removals) | SE (Percent) | SE (Volume) | Percent of Volume |
---|---|---|---|---|---|---|
Live | Branch | 3,856,448 | 549,201 | 45.51 | 249,941 | 14.24 |
Live | Stem | 3,856,448 | 456,253 | 59.43 | 244,150 | 10.65 |
Live | Total | 1,005,454 | 37.70 | 361,928 | 24.89 | |
Mortality/Removal | N/A | 4,927,370 | 1,416,615 | 29.31 | 415,195 | 28.75 |
Total 1 | 2,422,069 | 22.83 | 542,648 | 53.64 |
Pre-Storm (2019) Estimates for Affected Area | Estimate | SE % | SE Estimate |
---|---|---|---|
Area of forest land (ha) | 23,071 | 30.26 | 6981 |
Number of live trees | 5,901,196 | 33.09 | 1,952,706 |
Sound bole volume (m3) of live trees | 3,034,669 | 33.06 | 1,003,262 |
Damage estimates number of trees on forest land | Estimate | ||
Trees with branch damage | 655,792 | ||
Trees with stem damage | 509,929 | ||
Total trees with damage | 1,165,722 | ||
Trees mortality/removals | 1,503,420 | ||
Total number of trees mortality and damage | 2,669,142 | ||
Damage estimate sound bole volume (m3) of live trees on forest land | Estimate | ||
Volume with branch damage | 432,170 | ||
Volume with stem damage | 359,029 | ||
Total volume with damage | 791,199 | ||
Volume of mortality/removals | 872,465 | ||
Total sound bole volume for damaged trees, mortality, and removals | 1,663,664 |
Severity Category | Number of Live Trees | Midpoint (%) | Number of Damaged Trees |
---|---|---|---|
Moderate (11–29%) | 1,175,421 | 20 | 235,084 |
Severe (30–50%) | 4,073,732 | 40 | 1,629,493 |
Very Severe (>50%) | 652,044 | 75 | 489,033 |
Total | 5,901,197 | 2,353,610 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goff, T.C.; Nelson, M.D.; Liknes, G.C.; Feeley, T.E.; Pugh, S.A.; Morin, R.S. Rapid Assessment of Tree Damage Resulting from a 2020 Windstorm in Iowa, USA. Forests 2021, 12, 555. https://doi.org/10.3390/f12050555
Goff TC, Nelson MD, Liknes GC, Feeley TE, Pugh SA, Morin RS. Rapid Assessment of Tree Damage Resulting from a 2020 Windstorm in Iowa, USA. Forests. 2021; 12(5):555. https://doi.org/10.3390/f12050555
Chicago/Turabian StyleGoff, Thomas C., Mark D. Nelson, Greg C. Liknes, Tivon E. Feeley, Scott A. Pugh, and Randall S. Morin. 2021. "Rapid Assessment of Tree Damage Resulting from a 2020 Windstorm in Iowa, USA" Forests 12, no. 5: 555. https://doi.org/10.3390/f12050555
APA StyleGoff, T. C., Nelson, M. D., Liknes, G. C., Feeley, T. E., Pugh, S. A., & Morin, R. S. (2021). Rapid Assessment of Tree Damage Resulting from a 2020 Windstorm in Iowa, USA. Forests, 12(5), 555. https://doi.org/10.3390/f12050555