Towards Silviculture Guidelines to Produce Large-Sized Silver Birch (Betula pendula Roth) Logs in Western Europe
Abstract
:1. Introduction
- Identify the general dbh growth response to crown release to predict the trunk dimensions that could be reached at age 60 years (maximum age to limit the risk of wood degradation),
- Quantify and compare the gain in dbh increment of different crown release scenarios starting very early (at age 1–5 years) or late (at age 9–19 years) with a scenario without silviculture (control),
- Fit an allometric relationship between dbh and crown diameter to design suitable crop birch silviculture scenarios (e.g., minimum distance between target trees or number of target trees per hectare according to the dbh objective).
2. Materials and Methods
2.1. Study Sites, Plot and Tree Selection
- -
- The first dataset contained 87 target birch trees aged 8–41 years. They were sampled in five experimental plots. Crown release and measurements were carried out for 12 to 19 years (sites 1 to 5).
- -
- The second one contained 142 target birch trees in three experimental plots (sites 6 to 8). The first crown release was carried out at different ages ranging from 1 to 19 years. These were compared with 110 target birch trees in control plots that were identified but never crown-released.
- -
- The third one contained 429 target birch trees aged 7–42 years. They were sampled in 15 plots. Crown release was performed by the local forest manager (sites 9 to 23).
- -
- The fourth one contained 46 forest birch trees that had grown almost free of competition. Given their crown development and the height of the first living branch, they were considered as target birch even though they had not formally undergone crop tree silviculture. These trees were sampled in 15 sites and were aged 27–66 years (sites 24 to 38).
2.1.1. Tree Measurements
2.1.2. Statistical Analyses
3. Results
3.1. Descriptive Statistics of Tree Increment
3.2. Crown Development
3.3. The Effect of Crown-Release Earliness on Dbh
4. Discussion
4.1. Limits of the Sample
4.2. Crown Development of Target Trees
4.3. Diameter at Breast Height Growth According to Age of First Crown Release
4.4. Timber Production Objective
4.5. Silvicultural Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Brang, P.; Spathelf, P.; Larsen, J.B.; Bauhus, J.; Boncına, A.; Chauvin, C.; Drössler, L.; Garcıa-Güemes, C.; Heiri, C.; Kerr, G.; et al. Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry 2014, 87, 492–503. [Google Scholar] [CrossRef] [Green Version]
- Jucker, T.; Bouriaud, O.; Avăcăriei, D.; Coomes, D.A. Stabilizing effects of diversity on aboveground wood production in forest ecosystems: Linking patterns and processes. Ecol. Lett. 2014, 17, 1560–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messier, C.; Bauhus, J.; Doyon, F.; Maure, F.; Sousa-Silva, R.; Nolet, P.; Mina, M.; Aquilué, N.; Fortin, M.-J.; Puettmann, K. The functional complex network approach to foster forest resilience to global changes. Forest Ecosyst. 2019, 16. [Google Scholar] [CrossRef] [Green Version]
- Dubois, H.; Latte, N.; Lecomte, H.; Claessens, H. Le bouleau, une essence qui s’impose. Description de la ressource dans son aire de distribution. For. Nat. 2016, 140, 44–58. (In French) [Google Scholar]
- Dubois, H.; Verkasalo, E.; Claessens, H. Potential of Birch (Betula pendula Roth and B. pubescens Ehrh.) for Forestry and Forest-based Industry Sector within the Changing Climatic and Socio-economic Context of Western Europe. Forests 2020, 11, 336. [Google Scholar] [CrossRef] [Green Version]
- Perala, D.A.; Alm, A.A. Reproductive ecology of birch: A review. For. Ecol. Manag. 1990, 32, 1–38. [Google Scholar] [CrossRef]
- Niemistö, P.; Viherä-Aarnio, A.; Velling, P.; Heräjärvi, H.; Verkasalo, E. Koivun Kasvatus ja Käyttö. [Silviculture and Use of Birch]; Finnish Forest Research Institute and Metsäkustannus Ltd.: Metsäntutkimuslaitos ja Metsäkustannus, Finland, 2008; p. 254. (In Finnish) [Google Scholar]
- Hein, S.; Winterhalter, D.; Wilhelm, G.J.; Kohnle, U. Wertholzproduktion mit der Sandbirke (Betula pendula Roth): Waldbauliche Moglichkeiten und Grenzen. Allg. For. Jagdztg. 2009, 180, 206–219. (In German) [Google Scholar]
- Hynynen, J.; Niemistö, P.; Viherä-Aarnio, A.; Brunner, A.; Hein, S.; Velling, P. Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry 2010, 83, 103–119. [Google Scholar] [CrossRef]
- Kleinschmit, A. The Broadeaf Citizen—Broadening the innovatice use of European hardwoods. In Proceedings of the 6th International Scientific Conference on Hardwood Processing, Lahti, Finland, 25–28 September 2017; Möttönen, V., Heinonen, E., Eds.; Natural Resources Institute Finland: Helsinki, Finland, 2017; pp. 14–15. [Google Scholar]
- Teischinger, A. From Forest to Wood Production—A selection of challenges and opportunities for innovative hardwood utilization. In Proceedings of the 6th International Scientific Conference on Hardwood Processing, Lahti, Finland, 25–28 September 2017; Möttönen, V., Heinonen, E., Eds.; Natural Resources Institute Finland: Helsinki, Finland, 2017; p. 13. [Google Scholar]
- Vanhellemont, M.; Van Acker, J.; Verheyen, K. Exploring life growth patterns in birch (Betula pendula). Scand. J. For. Res. 2016, 31, 7. [Google Scholar] [CrossRef]
- Frauendorfer, R. Forstliche Hilfstafeln Schriftenreihe der forstlichen Bundes-Versuchsans-talt Mariabrunn Band II; Kommissionsverlag der Österreichischen Staatsdruckerei: Wien, Austria, 1954; p. 168. (In German) [Google Scholar]
- Eriksson, H.; Johansson, U.; Kiviste, A. A site-index model for pure and mixed stands of Betula pendula and Betula pubescens in Sweden. Scand. J. For. Res. 1997, 12, 149–156. [Google Scholar] [CrossRef]
- Diéguez-Aranda, U.; Grandas-Arias, J.A.; Álvarez-González, J.G.; Gadow, K.v. Site quality curves for birch stands in north-western Spain. Silva Fenn. 2006, 40, 631–644. [Google Scholar] [CrossRef] [Green Version]
- Lemaire, J. Contribution à l’étude de la sylviculture du Betula pendula Roth. La sylviculture du Betulla pendula Roth au Bois de Lauzelle (Louvain-la-Neuve). Master’s Thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 1998; p. 175. (In French). [Google Scholar]
- Zâlîtis, T.; Zâlîtis, P. Growth of Young Stands of Silver Birch (Betula pendula Roth.) Depending on Pre-Commercial Thinning Intensity. Baltic Forestry 2007, 13, 61–67. [Google Scholar]
- Rytter, L.; Werner, M. Influence of early thinning in broadleaved stands on development of remaining stems. Scand. J. For. Res. 2007, 22, 198–210. [Google Scholar] [CrossRef]
- Rytter, L. Growth dynamics of hardwood stands during the precommercial thinning phase—Recovery of retained stems after competition release. For. Ecol. Manag. 2013, 302, 264–272. [Google Scholar] [CrossRef]
- Prévosto, B.; Agrech, G. Dynamique et typologie des accrus. Le cas des bétulaies dans la chaîne des. Puys. Rev. For. Fr. 1998, 50, 46–58. (In French) [Google Scholar]
- Prévosto, B.; Coquillard, P.; Gueugnot, J. Growth models of silver birch (Betula pendula Roth.) on two volcanic mountains in the French Massif Central. Plant Ecol. 1999, 144, 231–242. [Google Scholar] [CrossRef]
- Cameron, A.D. Managing birch woodlands for the production of quality timber. Forestry 1996, 69, 357–371. [Google Scholar] [CrossRef]
- de Champs, J. Mesures sylvicoles préventives. Rev. For. Fr. 1987, 39, 313–322. (In French) [Google Scholar] [CrossRef] [Green Version]
- Verkasalo, E. Hieskoivun laatu vaneripuuna. Abstract: Quality of White Birch (Betula pubescens Ehrh.) for Veneer and Plywood. Dissertation for D.For. in wood science and forest products. Department of Logging and Utilization of Forest Resources, University of Helsinki, Finland. Finn. For. Res. Inst. Res. Pap. 1997, 632, 483. (In Finnish) [Google Scholar]
- Wilhelm, G.J.; Rieger, H. Naturnahe Waldwirtschaft—Mit der QD-Strategie: Eine Strategie für Den Qualitätsgeleiteten und Schonenden Gebrauch des Waldes Unter Achtung der Gesamten Lebewelt; Eugen Ulme KG: Stuttgart, Germany, 2013; p. 207. (In German) [Google Scholar]
- Luostarinen, K.; Verkasalo, E. Birch as Sawn Timber and in Mechanical Further Processing in Finland. A Literature Study. Silva Fenn. Monogr. 2000, 1, 40. [Google Scholar]
- Niemistö, P.; Kilpeläinen, H.; Heräjärvi, H. Effect of pruning season and tool on knot occlusion and stem discolouration in Betula pendula—Situation five years after pruning. Silva Fenn. 2019, 53, 29. [Google Scholar] [CrossRef] [Green Version]
- Cameron, A.D.; Dunham, R.A.; Petty, J.A. The effects of heavy thinning on stem quality and timber properties of silver birch (Betula pendula Roth). Forestry 1995, 68, 275–285. [Google Scholar] [CrossRef]
- Gómez-García, E.; Crecente-Campo, F.; Tobin, B.; Hawkins, M.; Nieuwenhuis, M.; Dieguez-Aranda, U. A dynamic volume and biomass growth model system for even-aged downy birch stands in south-western Europe. Forestry 2014, 87, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Petit, S.; Claessens, H.; Vincke, C.; Ponette, Q.; Marchal, D. Le Fichier écologique des essences, version 2.0. For. Nat 2017, 143, 12–19. (In French) [Google Scholar]
- Wood, J.E.; Von Althen, F.W.; Mitchell, E.G. Crown release improves growth of 20-year-old Betula alleghaniensis in tolerant northern hardwood stands. New For. 1996, 12, 87–99. [Google Scholar] [CrossRef]
- Meng, S.X.; Rudnicki, M.; Lieffers, V.J.; Reid, D.B.; Silins, U. Preventing crown collisions increases the crown cover and leaf area of maturing lodgepole pine. J. Ecol. 2006, 94, 681–686. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org/ (accessed on 25 March 2021).
- Wickham, H.; François, R.; Henry, L.; Müller, K. dplyr: A Grammar of Data Manipulation. R Package Version 0.8.0.1. 2019. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 25 March 2021).
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-131. 2017. Available online: https://CRAN.R-project.org/package=nlme (accessed on 25 March 2021).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer: New York, NY, USA, 2016; p. 260. [Google Scholar]
- Hemery, G.E.; Savill, P.S.; Pryor, S.N. Applications of the crown diameter–stem diameter relationship for different species of broadleaved trees. For. Ecol. Manag. 2005, 215, 285–294. [Google Scholar] [CrossRef]
- Cole, W.G.; Lorimer, C.G. Predicting tree growth from crown variables in managed northern hardwood stands. For. Ecol. Manag. 1994, 67, 159–175. [Google Scholar] [CrossRef]
- HOMBURG1. Wertholzperspektiven im Biosphärenwald, HOMBURG1, Homburg, Germany; Press Article 13 May 2016. Available online: http://homburg1.de/wertholzperspektiven-im-biosphaerenwald-10909/ (accessed on 25 March 2021). (In German).
- Paillet, Y.; Debaive, N.; Archaux, F.; Cateau, E.; Gilg, O.; Guilbert, E. Nothing else matters? Tree diameter and living status have more effects than biogeoclimatic context on microhabitat number and occurrence: An analysis in French forest reserves. PLoS ONE 2019, 14, e216500. [Google Scholar] [CrossRef] [Green Version]
- Claessens, H.; Oosterbaan, A.; Savill, P.; Rondeux, J. A review of the characteristics of black alder (Alnus glutinosa (L.) Gaertn.) and their implications for silvicultural practices. Forestry 2010, 83, 163–175. [Google Scholar] [CrossRef] [Green Version]
Site | Age of First Crown Release | Measure-ment Period (Years) | Age at the Last Measurement | Final Number of Target Birches | dbh (cm) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | (Min–Max) | Annual Rainfall (mm) | Mean Annual Temperature (°C) | Elevation (m Above Sea Level) | ||||||
Long time series in experimental plots | 1 | 10 | 19 | 29 | 12 | 24.7 | (21.3–28.6) | 1109 | 7.7 | 453 |
2 | 11 | 18 | 29 | 12 | 19.5 | (16.9–25.8) | 1107 | |||
8 | 18 | 26 | 17 | 17.6 | (13.7–21.0) | 7.7 | 450 | |||
3 | 12 | 18 | 30 | 16 | 25.7 | (16.2–32.5) | 923 | 9.1 | 204 | |
20 | 18 | 30 | 3 | 24.0 | (22.0–26.1) | |||||
4 | 23 | 18 | 41 | 22 | 25.7 | (19.1–32.1) | 1073 | 8.8 | 303 | |
5 | 25 | 14 | 39 | 5 | 25.6 | (22.0–29.3) | 1236 | 7.7 | 458 | |
Early thinning experiments | 6 | 1 | 20 | 32 | 10 | 34.6 | (30.6–40.4) | 787 | 9.7 | 77 |
12 | 20 | 32 | 6 | 25.9 | (22.6–29.6) | |||||
19 | 20 | 32 | 8 | 22.9 | (15.9–29.6) | |||||
- | 11 | 32 | 7 | 21.3 | (17.8–24.8) | |||||
7 | 4 | 7 | 10 | 49 | 9.1 | (6.5–14.3) | 1276 | 7.5 | 516 | |
- | 7 | 10 | 61 | 7.9 | (4.1–13.0) | |||||
8 | 5 | 7 | 11 | 36 | 8.6 | (4.3–13.6) | 1276 | 7.7 | 470 | |
9 | 7 | 11 | 33 | 7.7 | (4.5–11.6) | |||||
- | 7 | 11 | 42 | 6.8 | (3.5–12.1) | |||||
Plots in stands benefiting from crop tree silviculture | 9 | 11 | 15 | 25 | 18 | 24.0 | (15.9–29.9) | 1022 | 8.7 | 327 |
11 | 10 | 20 | 24 | 20.2 | (15.6–28.3) | |||||
10 | 8 | 6 | 13 | 68 | 12.2 | (8.1–19.4) | 1089 | 8.6 | 360 | |
11 | 14 | 2 | 16 | 20 | 13.6 | (6.7–21.8) | 1276 | 7.8 | 447 | |
12 | 17 | 4 | 21 | 11 | 18.3 | (14.2–26.8) | 1022 | 8.8 | 321 | |
13 | 23 | 2 | 25 | 15 | 23.0 | (18.0–29.0) | 1072 | 8.1 | 395 | |
14 | 1 | 1 | 17 | 2 | 22.3 | (21.7–22.8) | 952 | 8.6 | 362 | |
15 | 17 | 4 | 21 | 4 | 20.1 | (15.3–25.5) | 1375 | 7 | 549 | |
16 | 30 | 2 | 37 | 8 | 28.6 | (22.8–35.0) | 958 | 7.7 | 368 | |
17 | 4 | 1 | 10 | 28 | 16.0 | (12.4–23.6) | 954 | 8.2 | 360 | |
18 | 10 | 7 | 19 | 73 | 18.6 | (12.4–27.7) | 1053 | 8.4 | 319 | |
19 | 1 | 3 | 42 | 20 | 39.9 | (32.5–56.7) | 789 | 9.8 | 111 | |
20 | 7 | 4 | 11 | 38 | 12.9 | (8.9–19.1) | 975 | 8.9 | 241 | |
21 | 17 | 8 | 25 | 38 | 23.1 | (19.3–33.5) | 864 | 9.9 | 250 | |
22 | 9 | 6 | 15 | 31 | 16.5 | (12.7–23.9) | 843 | 9.8 | 250 | |
23 | 15 | 8 | 23 | 31 | 24.1 | (19.7–30.4) | 973 | 9.6 | 350 | |
Forest birch with large crowns | 24 | - | 1 | / | 9 | 44.8 | (33.7–56.7) | 949 | 8.2 | 360 |
25 | - | 2 | / | 4 | 40.1 | (36.6–44.6) | 1337 | 7.2 | 506 | |
26 | - | 2 | 61 | 1 | 58.6 | 1022 | 8.7 | 358 | ||
27 | - | 5 | / | 2 | 29.2 | (29.0–29.3) | 1276 | 7.7 | 438 | |
28 | - | 3 | 48 | 1 | 50.9 | 1022 | 8.7 | 327 | ||
29 | - | 1 | 66 | 2 | 53.1 | (51.1–55.1) | 952 | 9.2 | 256 | |
30 | - | 4 | 63 | 2 | 46.0 | (45.2–46.8) | 1106 | 7.9 | 437 | |
31 | - | 2 | 58 | 1 | 40.7 | 1022 | 8.6 | 349 | ||
32 | - | 2 | 49 | 1 | 56.3 | 1402 | 7.3 | 505 | ||
33 | - | 2 | / | 1 | 47.5 | 1016 | 8.1 | 419 | ||
34 | - | 2 | 51 | 8 | 39.3 | (32.3–43.9) | 995 | 7.5 | 392 | |
35 | - | 0 | / | 2 | 43.5 | (34.7–52.5) | 928 | 9.2 | 194 | |
36 | - | 2 | 29 | 1 | 47.1 | 926 | 8.9 | 256 | ||
37 | - | 0 | / | 1 | 30.5 | 1129 | 8.2 | 448 | ||
38 | - | 0 | / | 10 | 47.4 | (36.6–58.6) | 1017 | 8.9 | 276 | |
Total | 814 |
Last Measure of Each Target Birch (n = 996) | Mean | Min | Median (Q1–Q2) | Max |
---|---|---|---|---|
dbh (cm) | 18.6 | 2.4 | 16.2 (10.6–23.3) | 58.6 |
Height (m) | 17.4 | 3.4 | 18.2 (12.8–21.3) | 33.6 |
Crown proportion (vertical length of the living crown relative to the total tree height) | 0.60 | 0.29 | 0.59 (0.52–0.66) | 0.91 |
Age (years) | 20.4 | 5 | 19 (12–25) | 66 |
Age at first crown release (years) | 10.4 | 1 | 8 (8–14) | 30 |
Degree of Freedom | 615 | |||
---|---|---|---|---|
Estimate | Std Error/Std Dev | p-Value | ||
Fixed effects | β0 | 0.761 | 0.110 | <0.001 |
β1 | 0.186 | 0.00409 | <0.001 | |
Random plot effects | α | 0.320 | ||
ɛ | 0.0856 |
Mean dbh Increment (cm) and Differences between Treatments (Letters) | Age | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 6 | 7 | 8 | 9 | 10 | 11 | |||||||||
Site 7 | 4-year | 0.81 a | n.s | 0.99 a | n.s | 1.23 a | *** | 1.11 a | *** | 1.19 a | *** | 1.25 a | *** | ||
Control | 1.11 a | 0.87 a | 0.77 b | 0.70 b | 0.71 b | 0.61 b | |||||||||
Site 8 | 5-year | 0.60 a | n.s. | 0.80 a | n.s. | 0.85 a | *** | 0.87 a | *** | 1.03 a | *** | 0.92 a | a–c, b–c: *** a,b: * | ||
9-year | 0.66 a | 0.78 a | 0.54 b | 0.54 b | 0.80 b | 0.80 b | |||||||||
Control | 0.73 a | 0.78 a | 0.51 b | 0.54 b | 0.55 c | 0.47 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubois, H.; Claessens, H.; Ligot, G. Towards Silviculture Guidelines to Produce Large-Sized Silver Birch (Betula pendula Roth) Logs in Western Europe. Forests 2021, 12, 599. https://doi.org/10.3390/f12050599
Dubois H, Claessens H, Ligot G. Towards Silviculture Guidelines to Produce Large-Sized Silver Birch (Betula pendula Roth) Logs in Western Europe. Forests. 2021; 12(5):599. https://doi.org/10.3390/f12050599
Chicago/Turabian StyleDubois, Héloïse, Hugues Claessens, and Gauthier Ligot. 2021. "Towards Silviculture Guidelines to Produce Large-Sized Silver Birch (Betula pendula Roth) Logs in Western Europe" Forests 12, no. 5: 599. https://doi.org/10.3390/f12050599
APA StyleDubois, H., Claessens, H., & Ligot, G. (2021). Towards Silviculture Guidelines to Produce Large-Sized Silver Birch (Betula pendula Roth) Logs in Western Europe. Forests, 12(5), 599. https://doi.org/10.3390/f12050599