Decline in Aboveground Biomass Due to Fragmentation in Subtropical Forests of China
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structure and Composition of Forest Fragments and Continuous Forests
3.2. Abovegrond Biomass Density of Forest Fragments
3.3. Aboveground Biomass of Continuous Forests and Its Drivers
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
DBH-Class | Equations | Adjusted R2 | Standard Error of the Mean | R. Error (%) |
---|---|---|---|---|
DBH ≤ 5 cm | WT = 0.05549 × D2.87776 | 0.91164 | 0.60826 | −0.23 |
WB = 0.01124 × D3.16237 | 0.81933 | 0.30284 | 0.00 | |
WL = 0.01551 × D2.32693 | 0.86555 | 0.08602 | 0.42 | |
WR = 0.02838 × D2.65348 | 0.90495 | 0.22077 | −0.27 | |
5 < DBH ≤ 10 cm | WT = 0.11701 × D2.36933 | 0.88428 | 2.05700 | 0.04 |
WB = 0.01621 × D2.93859 | 0.76490 | 1.79321 | 0.63 | |
WL = 0.04169 × D1.90082 | 0.68922 | 0.44047 | 0.39 | |
WR = 0.04977 × D2.19517 | 0.95730 | 0.32819 | −0.16 | |
10 < DBH ≤ 20 cm | WT = 0.10769 × D2.34891 | 0.77761 | 4.15734 | 4.55 |
WB = 0.00385 × D3.15093 | 0.88184 | 3.81171 | 3.69 | |
WL = 0.00372 × D2.65113 | 0.82848 | 0.96151 | 0.57 | |
WR = 0.03538 × D2.29567 | 0.81687 | 3.46518 | 0.45 | |
DBH > 20 cm | WT = 0.03541 × D2.65146 | 0.97844 | 36.71034 | −2.34 |
WB = 0.00583 × D2.94383 | 0.85965 | 52.85291 | −1.61 | |
WL = 0.07709 × D1.55399 | 0.71000 | 4.94167 | −0.30 | |
WR = 0.01128 × D2.67850 | 0.92962 | 24.5010 | −1.11 |
References
- Brinck, K.; Fischer, R.; Groeneveld, J. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 2017, 8, 14855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogueira, E.M.; Yanai, A.M.; Fonseca, F.O.R. Carbon stock loss from deforestation through 2013 in Brazilian Amazonia. Glob. Chang. Biol. 2015, 21, 1271–1292. [Google Scholar] [CrossRef] [PubMed]
- Magnago, L.F.S.; Magrach, A.; Laurance, W.F. Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+? Glob. Chang. Biol. 2015, 21, 3455–3468. [Google Scholar] [CrossRef]
- Bregman, T.P.; Lees, A.C.; Seddon, N. Species interactions regulate the collapse of biodiversity and ecosystem function in tropical forest fragments. Ecology 2015, 96, 2692–2704. [Google Scholar] [CrossRef] [Green Version]
- Bastin, J.F.; Rutishauser, E.; Kellner, J.R. Pan tropical prediction of forest structure from the largest trees. Glob. Ecol. Biogeogr. 2018, 27, 1366–1383. [Google Scholar] [CrossRef]
- Osuri, A.M.; Sankaran, M. Seed size predicts community composition and carbon storage potential of tree communities in rain forest fragments in India’s Western Ghats. J. Appl. Ecol. 2016, 53, 837–845. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef] [Green Version]
- Strassburg, B.B.N.; Rodrigues, A.S.L.; Gusti, M. Impacts of incentives to reduce emissions from deforestation on global species extinctions. Nat. Clim. Chang. 2012, 2, 350–355. [Google Scholar] [CrossRef]
- Schmidt, M.; Jochheim, H.; Kersebaum, K.C. Gradients of microclimate, carbon and nitrogen in transition zones of fragmented landscapes—A review. Agr. For. Meteorol. 2017, 232, 659–671. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wilson, M.; Hu, G. How does habitat fragmentation affect the biodiversity and ecosystem functioning relationship? Landsc. Ecol. 2018, 33, 341–352. [Google Scholar] [CrossRef]
- Pütz, S.; Groeneveld, J.; Henle, K. Long-term carbon loss in fragmented Neotropical forests. Nat. Commun. 2014, 5, 5037. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Coomes, D.A.; Gibson, L. Forest fragmentation in China and its effect on biodiversity. Biol. Rev. 2019, 94, 1636–1657. [Google Scholar] [CrossRef] [PubMed]
- Osuri, A.M.; Kumar, V.S.; Sankaran, M. Altered stand structure and tree allometry reduce carbon storage in evergreen forest fragments in India’s Western Ghats. For. Ecol. Manag. 2014, 329, 375–383. [Google Scholar] [CrossRef]
- Laurance, W.F.; Camargo, J.L.C.; Luizão, R.C.C. The fate of Amazonian forest fragments: A 32-year investigation. Biol. Conserv. 2011, 144, 56–67. [Google Scholar] [CrossRef]
- Magnago, L.F.S.; Magrach, A.; Barlow, J. Do fragment size and edge effects predict carbon stocks in trees and lianas in tropical forests? Funct. Ecol. 2017, 31, 542–552. [Google Scholar] [CrossRef] [Green Version]
- Smith, I.A.; Hutyra, L.R.; Reinmann, A.B. Piecing together the fragments: Elucidating edge effects on forest carbon dynamics. Front. Ecol. Environ. 2018, 16, 213–221. [Google Scholar] [CrossRef]
- Harper, K.A.; Macdonald, S.E.; Burton, P.J. Edge Influence on Forest Structure and Composition in Fragmented Landscapes. Conserv. Biol. 2005, 19, 768–782. [Google Scholar] [CrossRef]
- Slik, J.W.F.; Paoli, G.; McGuire, K. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeogr. 2013, 22, 1261–1271. [Google Scholar] [CrossRef]
- Matlack, G.R. Microenvironment variation within and among forest edge sites in the eastern United States. Biol. Conserv. 1993, 66, 185–194. [Google Scholar] [CrossRef]
- Wekesa, C.; Maranga, E.K.; Kirui, B.K. Interactions between native tree species and environmental variables along forest edge-interior gradient in fragmented forest patches of Taita Hills, Kenya. For. Ecol. Manag. 2018, 409, 789–798. [Google Scholar] [CrossRef]
- Latimer, C.E.; Zuckerberg, B. Forest fragmentation alters winter microclimates and microrefugia in human-modified landscapes. Ecography 2017, 40, 158–170. [Google Scholar] [CrossRef]
- Laurance, W.F. Biomass collapse in Amazonian forest fragments. Science 1997, 278, 1117–1118. [Google Scholar] [CrossRef]
- Numata, I.; Silva, S.S.; Cochrane, M.A. Fire and edge effects in a fragmented tropical forest landscape in the southwestern Amazon. For. Ecol. Manag. 2017, 401, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Baker, T.P.; Jordan, G.J.; Baker, S.C. Microclimatic edge effects in a recently harvested forest: Do remnant forest patches create the same impact as large forest areas? For. Ecol. Manag. 2016, 365, 128–136. [Google Scholar] [CrossRef]
- Campbell, M.J.; Edwards, W.; Magrach, A. Forest edge disturbance increases rattan abundance in tropical rain forest fragments. Sci. Rep. 2017, 7, 6071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berenguer, E.; Ferreira, J.; Gardner, T.A. A large-scale field assessment of carbon stocks in human-modified tropical forests. Glob. Chang. Biol. 2014, 20, 3713–3726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Shen, C.; Lou, D. Ecosystem carbon storage in forest fragments of differing patch size. Sci. Rep. 2017, 7, 13173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziter, C.; Bennett, E.M.; Gonzalez, A. Temperate forest fragments maintain aboveground carbon stocks out to the forest edge despite changes in community composition. Oecologia 2014, 176, 893–902. [Google Scholar] [CrossRef]
- Chisholm, R.A.; Muller-Landau, H.C.; Abdul Rahman, K. Scale-dependent relationships between tree species richness and ecosystem function in forests. J. Ecol. 2013, 101, 1214–1224. [Google Scholar] [CrossRef]
- Ma, L.; Huang, M.; Shen, Y. Species diversity and community structure in forest fragments of Guangzhou, South China. J. Trop. For. Sci. 2015, 27, 148–157. [Google Scholar]
- Ma, L.; Shen, C.; Lou, D. Patterns of ecosystem carbon density in edge affected fengshui forests. Ecol. Eng. 2017, 107, 216–223. [Google Scholar] [CrossRef]
- Condit, R. Research in large, long-term tropical forest plots. Trends Ecol. Evol. 1995, 10, 18–22. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, H.Y.H.; Lian, J. Using functional trait diversity patterns to disentangle the scale-dependent ecological processes in a subtropical forest. Funct. Ecol. 2018, 32, 1379–1389. [Google Scholar] [CrossRef]
- He, F.; Hubbell, S.P. Species–area relationships always overestimate extinction rates from habitat loss. Nature 2011, 473, 368–371. [Google Scholar] [CrossRef]
- Ye, H.; Xu, Z.; Wu, M. Geomantic Woods in Guangzhou; Central China Science Technology Press: Wuhan, China, 2013. [Google Scholar]
- Wen, D.; Wei, P.; Kong, G. Biomass study of the community of Castanopsis chinensis + Cryptocarya concinna + Schima supera in a Southern China reserve. Acta Ecol. Sin. 1997, 17, 497–504. [Google Scholar]
- Team, R.C. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 11 May 2021).
- Liu, X.; Trogisch, S.; He, J.S.; Niklaus, P.A.; Bruelheide, H.; Tang, Z.; Erfmeier, A.; Scherer-Lorenzen, M.; Pietsch, K.A.; Yang, B.; et al. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. R. Soc. B 2018, 285, 20181240. [Google Scholar] [CrossRef] [Green Version]
- Tomimatsu, H.; Yamagishi, H.; Suzuki, S.N. Long-term dynamics of small fragmented forests inferred from patterns along a gradient of fragment sizes. Ecol. Res. 2015, 30, 1057–1064. [Google Scholar] [CrossRef]
- Magrach, A.; Laurance, W.F.; Larrinaga, A.R. Meta-analysis of the effects of forest fragmentation on interspecific interactions. Conserv. Biol. 2014, 28, 1342–1348. [Google Scholar] [CrossRef] [Green Version]
- Magnago, L.F.S.; Rocha, M.F.; Meyer, L. Microclimatic conditions at forest edges have significant impacts on vegetation structure in large Atlantic forest fragments. Biodiv. Conserv. 2015, 24, 2305–2318. [Google Scholar] [CrossRef]
- Laurance, W.F.; Nascimento, H.E.M.; Laurance, S.G. Rapid decay of tree-community composition in Amazonian forest fragments. Proc. Natl. Acad. Sci. USA 2006, 103, 19010–19014. [Google Scholar] [CrossRef] [Green Version]
- Pütz, S.; Groeneveld, J.; Alves, L.F. Fragmentation drives tropical forest fragments to early successional states: A modelling study for Brazilian Atlantic forests. Ecol. Model. 2011, 222, 1986–1997. [Google Scholar] [CrossRef]
- Crockatt, M.E.; Bebber, D.P. Edge effects on moisture reduce wood decomposition rate in a temperate forest. Glob. Chang. Biol. 2015, 21, 698–707. [Google Scholar] [CrossRef]
- Thompson, P.L.; Rayfield, B.; Gonzalez, A. Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography 2017, 40, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Crowther, T.W.; Picard, N. Positive biodiversity-productivity relationship predominant in global forests. Science 2016, 354, 6309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barlow, J.; Peres, C.A.; Lagan, B.O. Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecol. Lett. 2003, 6, 6–8. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Laurance, W.F.; Franklin, J.F. Global decline in large old trees. Science 2012, 338, 1305–1306. [Google Scholar] [CrossRef] [PubMed]
- Baker, T.P.; Jordan, G.J.; Steel, E.A. Microclimate through space and time: Microclimatic variation at the edge of regeneration forests over daily, yearly and decadal time scales. For. Ecol. Manag. 2014, 334, 174–184. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; Ramler, I.; Sharp, R. Degradation in carbon stocks near tropical forest edges. Nat. Commun. 2015, 6, 10158. [Google Scholar] [CrossRef]
- Johnson, D.J.; Needham, J.; Xu, C. Climate sensitive size-dependent survival in tropical trees. Nat. Ecol. Evol. 2018, 2, 1436–1442. [Google Scholar] [CrossRef]
- Damschen, E.I.; Baker, D.V.; Bohrer, G. How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats. Proc. Natl. Acad. Sci. USA 2014, 111, 3484–3489. [Google Scholar] [CrossRef] [Green Version]
- Hallinger, M.; Johansson, V.; Schmalholz, M. Factors driving tree mortality in retained forest fragments. For. Ecol. Manag. 2016, 368, 163–172. [Google Scholar] [CrossRef]
- Honey, O.; Hermy, M.; Coppin, P. Effects of area, age and diversity of forest patches in Belgium on plant species richness, and implications for conservation and reforestation. Biol. Conserv. 1999, 87, 73–84. [Google Scholar] [CrossRef]
- Liu, H.M.; Xu, Z.F.; Xu, Y.K. Practice of conserving plant diversity through traditional beliefs: A case study in Xishuangbanna, Southwest China. Biodiv. Conserv. 2002, 11, 705–713. [Google Scholar]
- Zhu, H.; Xu, Z.F.; Wang, H. Tropical rain forest fragmentation and its ecological and species diversity changes in southern Yunan. Biodiv. Conserv. 2004, 13, 1355–1372. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.Y.; Chen, Y.; Castro-Izaguirre, N. Impacts of species richness on productivity in a large-scale subtropical experiment. Science 2018, 362, 80–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Fragments-Dinghu Plot | Fragments-Heishiding Plot | ||
---|---|---|---|---|
F Value | Sig 1. | F Value | Sig. | |
Biomass | 21.2 | *** | 41.39 | *** |
Richness | 186.4 | *** | 313.1 | *** |
Abundance | 27.0 | *** | 45.57 | *** |
Mean DBH | 140.5 | *** | 195.7 | *** |
Variables | Fragments | Dinghu Plot | Heishiding Plot | |||
---|---|---|---|---|---|---|
Est. Coef. | Sig 1. | Est. Coef. | Sig 1. | Est. Coef. | Sig 1. | |
Biomass | 124.35 | *** | 189.64 | *** | 224.16 | *** |
Richness | 3.46 | *** | 7.08 | *** | 2.21 | *** |
Abundance | 2235.52 | *** | 4069.36 | *** | 5302.61 | *** |
Mean DBH | −0.17 | *** | −0.02 | *** | −0.001 | ** |
Variables | Est. Coef. | Std. Err. | Sig 1. |
---|---|---|---|
Intercept | −0.08 | 0.009 | *** |
Richness | 0.029 | 0.004 | *** |
Abundance | 0.723 | 0.010 | *** |
Mean DBH | 0.026 | 0.004 | *** |
Patch size | 0.262 | 0.010 | *** |
Fragmentation | −0.115 | 0.012 | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, C.; Shi, N.; Fu, S.; Ye, W.; Ma, L.; Guan, D. Decline in Aboveground Biomass Due to Fragmentation in Subtropical Forests of China. Forests 2021, 12, 617. https://doi.org/10.3390/f12050617
Shen C, Shi N, Fu S, Ye W, Ma L, Guan D. Decline in Aboveground Biomass Due to Fragmentation in Subtropical Forests of China. Forests. 2021; 12(5):617. https://doi.org/10.3390/f12050617
Chicago/Turabian StyleShen, Chunyu, Nannan Shi, Shenglei Fu, Wanhui Ye, Lei Ma, and Dongsheng Guan. 2021. "Decline in Aboveground Biomass Due to Fragmentation in Subtropical Forests of China" Forests 12, no. 5: 617. https://doi.org/10.3390/f12050617
APA StyleShen, C., Shi, N., Fu, S., Ye, W., Ma, L., & Guan, D. (2021). Decline in Aboveground Biomass Due to Fragmentation in Subtropical Forests of China. Forests, 12(5), 617. https://doi.org/10.3390/f12050617