Post-Fire Impacts of Vegetation Burning on Soil Properties and Water Repellency in a Pine Forest, South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Measurement Design
2.3. Soil Sampling and Analysis
2.4. Soil Water Repellency Measurement
2.5. Statistical Analysis
3. Results
3.1. Soil Characteristics
3.2. Variation of Soil Water Repellency with Burn Severity
3.3. Variation of Soil Water Repellency with Topography
4. Discussion
4.1. The Impacts of Vegetation Burning on Soil Properties
4.2. The Impacts of Vegetation Burning and Topography on Soil Water Repellency
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, C.; Lee, W.-K.; Byun, J.-K.; Kim, Y.-K.; Jeong, J.-H. Short-term effects of fire on soil properties in Pinus densiflora stands. J. For. Res. 1999, 4, 23–25. [Google Scholar] [CrossRef]
- Kim, E.J.; Choi, S.-D.; Chang, Y.-S. Levels and patterns of polycyclic aromatic hydrocarbons (PAHs) in soils after forest fires in South Korea. Environ. Sci. Pollut. Res. 2011, 18, 1508–1517. [Google Scholar] [CrossRef]
- Ahn, Y.S.; Ryu, S.-R.; Lim, J.; Lee, C.H.; Shin, J.H.; Choi, W.I.; Lee, B.; Jeong, J.-H.; An, K.W.; Seo, J.I. Effects of forest fires on forest ecosystems in eastern coastal areas of Korea and an overview of restoration projects. Landsc. Ecol. Eng. 2014, 10, 229–237. [Google Scholar] [CrossRef]
- Korea Forest Service. Statistical Yearbook of Wildfire 2019; Korea Forest Service: Daejeon, Korea, 2020; pp. 135–168.
- Zavala, L.; De Celis, R.; Jordán, A. How wildfires affect soil properties. A brief review. Cuad. Investig. Geográf. 2014, 40, 311–332. [Google Scholar] [CrossRef] [Green Version]
- Doerr, S.H.; Santín, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150345. [Google Scholar] [CrossRef]
- Ketterings, Q.M.; Bigham, J.M.; Laperche, V. Changes in Soil Mineralogy and Texture Caused by Slash-and-Burn Fires in Sumatra, Indonesia. Soil Sci. Soc. Am. J. 2000, 64, 1108–1117. [Google Scholar] [CrossRef]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Raison, R.J. Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: A review. Plant Soil 1979, 51, 73–108. [Google Scholar] [CrossRef]
- Wondafrash, T.T.; Sancho, I.M.; Miguel, V.G.; Serrano, R.E. Relationship between soil color and temperature in the surface horizon of mediterranean soils. Soil Sci. 2005, 170, 495–503. [Google Scholar] [CrossRef]
- Neary, D.G.; Ryan, K.C.; DeBano, L.F. Wildland fire in ecosystems: Effects of fire on soils and water. Gen. Tech. Rep. 2005, 42, 42. [Google Scholar] [CrossRef] [Green Version]
- DeBano, L. The role of fire and soil heating on water repellency in wildland environments: A review. J. Hydrol. 2000, 231–232, 195–206. [Google Scholar] [CrossRef]
- Robichaud, P.; Hungerford, R. Water repellency by laboratory burning of four northern Rocky Mountain forest soils. J. Hydrol. 2000, 231–232, 207–219. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wu, L.; Wu, Q. Water-entry value as an alternative indicator of soil water-repellency and wettability. J. Hydrol. 2000, 231–232, 76–83. [Google Scholar] [CrossRef]
- Imeson, A.; Verstraten, J.; van Mulligen, E.; Sevink, J. The effects of fire and water repellency on infiltration and runoff under Mediterranean type forest. Catena 1992, 19, 345–361. [Google Scholar] [CrossRef]
- Shakesby, R.; Doerr, S.; Walsh, R. The erosional impact of soil hydrophobicity: Current problems and future research directions. J. Hydrol. 2000, 231–232, 178–191. [Google Scholar] [CrossRef]
- Burch, G.J.; Moore, I.D.; Burns, J. Soil hydrophobic effects on infiltration and catchment runoff. Hydrol. Process. 1989, 3, 211–222. [Google Scholar] [CrossRef]
- Goebel, M.-O.; Bachmann, J.; Woche, S.K.; Fischer, W.R.; Horton, R. Water Potential and Aggregate Size Effects on Contact Angle and Surface Energy. Soil Sci. Soc. Am. J. 2004, 68, 383–393. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Doerr, S. Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in southeastern Spain. Geoderma 2004, 118, 77–88. [Google Scholar] [CrossRef]
- DeBano, L.F. Water Repellent Soils: A State-of-the-Art; Pacific Southwest Forest and Range Experiment Station: Berkeley, CA, USA, 1981; pp. 2–7. [Google Scholar]
- McNabb, D.H.; Gaweda, F.; Froehlich, H.A. Infiltration, water repellency, and soil moisture content after broadcast burning a forest site in southwest Oregon. J. Soil Water Conserv. 1989, 44, 87–90. [Google Scholar]
- Doerr, S.H. On standardizing the ‘Water Drop Penetration Time’ and the ‘Molarity of an Ethanol Droplet’ techniques to classify soil hydrophobicity: A case study using medium textured soils. Earth Surf. Process. Landf. 1998, 23, 663–668. [Google Scholar] [CrossRef]
- Letey, J.; Carrillo, M.; Pang, X. Approaches to characterize the degree of water repellency. J. Hydrol. 2000, 231–232, 61–65. [Google Scholar] [CrossRef]
- Bachmann, J.; Ellies, A.; Hartge, K. Development and application of a new sessile drop contact angle method to assess soil water repellency. J. Hydrol. 2000, 231–232, 66–75. [Google Scholar] [CrossRef]
- Roy, J.L.; McGill, W.B. Assessing soil water repellency using the molarity of ethanol droplet (med) test. Soil Sci. 2002, 167, 83–97. [Google Scholar] [CrossRef]
- Wallis, M.; Scotter, D.; Horne, D. An evaluation of the intrinsic sorptivity water repellency index on a range of New Zealand soils. Soil Res. 1991, 29, 353–362. [Google Scholar] [CrossRef]
- Watson, C.L.; Letey, J. Indices for Characterizing Soil-Water Repellency Based upon Contact Angle-Surface Tension Relationships. Soil Sci. Soc. Am. J. 1970, 34, 841–844. [Google Scholar] [CrossRef]
- Kawamoto, K.; Moldrup, P.; Komatsu, T.; De Jonge, L.W.; Oda, M. Water Repellency of Aggregate Size Fractions of a Volcanic Ash Soil. Soil Sci. Soc. Am. J. 2007, 71, 1658–1666. [Google Scholar] [CrossRef]
- King, P. Comparison of methods for measuring severity of water repellence of sandy soils and assessment of some factors that affect its measurement. Soil Res. 1981, 19, 275–285. [Google Scholar] [CrossRef]
- Buczko, U.; Bens, O.; Hüttl, R. Variability of soil water repellency in sandy forest soils with different stand structure under Scots pine (Pinus sylvestris) and beech (Fagus sylvatica). Geoderma 2005, 126, 317–336. [Google Scholar] [CrossRef]
- Huffman, E.L.; Macdonald, L.H.; Stednick, J.D. Strength and persistence of fire-induced soil hydrophobicity under ponderosa and lodgepole pine, Colorado Front Range. Hydrol. Process. 2001, 15, 2877–2892. [Google Scholar] [CrossRef]
- Scott, A. The Pre-Quaternary history of fire. Palaeogeogr. Palaeoclim. Palaeoecol. 2000, 164, 281–329. [Google Scholar] [CrossRef]
- Arcenegui, V.; Mataix-Solera, J.; Guerrero, C.; Zornoza, R.; Mayoral, A.M.; Morales, J. Factors controlling the water repellency induced by fire in calcareous Mediterranean forest soils. Eur. J. Soil Sci. 2007, 58, 1254–1259. [Google Scholar] [CrossRef]
- Raison, R.J.; McGarity, J.W. Some effects of plant ash on the chemical properties of soils and aqueous suspensions. Plant Soil 1980, 55, 339–352. [Google Scholar] [CrossRef]
- Soto, B.; Diaz-Fierros, F. Interactions Between Plant Ash Leachates and Soil. Int. J. Wildland Fire 1993, 3, 207–216. [Google Scholar] [CrossRef]
- Bryant, R.; Doerr, S.H.; Helbig, M. Effect of oxygen deprivation on soil hydrophobicity during heating. Int. J. Wildland Fire 2005, 14, 449–455. [Google Scholar] [CrossRef]
- Forgeard, F.; Frenot, Y. Effects of Burning on Heathland Soil Chemical Properties: An Experimental Study on the Effect of Heating and Ash Deposits. J. Appl. Ecol. 1996, 33, 803. [Google Scholar] [CrossRef]
- Stoof, C.R.; Wesseling, J.G.; Ritsema, C.J. Effects of fire and ash on soil water retention. Geoderma 2010, 159, 276–285. [Google Scholar] [CrossRef]
- Bodí, M.B.; Doerr, S.H.; Cerdà, A.; Mataix-Solera, J. Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma 2012, 191, 14–23. [Google Scholar] [CrossRef]
- Wieting, C.; Ebel, B.A.; Singha, K. Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory. J. Hydrol. Reg. Stud. 2017, 13, 43–57. [Google Scholar] [CrossRef]
- Linn, R.; Winterkamp, J.; Edminster, C.; Colman, J.J.; Smith, W.S. Coupled influences of topography and wind on wildland fire behaviour. Int. J. Wildland Fire 2007, 16, 183–195. [Google Scholar] [CrossRef]
- Dupuy, J.-L.; Marechal, J.C.; Portier, D.; Valette, J.-C. The effects of slope and fuel bed width on laboratory fire behaviour. Int. J. Wildland Fire 2011, 20, 272–288. [Google Scholar] [CrossRef]
- Rothermel. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; Department of Agriculture, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1972; pp. 21–24. [Google Scholar]
- Estes, B.L.; Knapp, E.E.; Skinner, C.N.; Miller, J.D.; Preisler, H.K. Factors influencing fire severity under moderate burning conditions in the Klamath Mountains, northern California, USA. Ecosphere 2017, 8, e01794. [Google Scholar] [CrossRef] [Green Version]
- Doerr, S.; Thomas, A. The role of soil moisture in controlling water repellency: New evidence from forest soils in Portugal. J. Hydrol. 2000, 231–232, 134–147. [Google Scholar] [CrossRef]
- Doerr, S.H.; Llewellyn, C.T.; Douglas, P.; Morley, C.P.; Mainwaring, K.A.; Haskins, C.; Johnsey, L.; Ritsema, C.J.; Stagnitti, F.; Allinson, G.; et al. Extraction of compounds associated with water repellency in sandy soils of different origin. Soil Res. 2005, 43, 225–237. [Google Scholar] [CrossRef]
- Doerr, S.H.; Shakesby, R.A.; Walsh, R.P. Spatial variability of soil hydrophobicity in fire-prone eucalyptus and pine forests, portugal. Soil Sci. 1998, 163, 313–324. [Google Scholar] [CrossRef]
- Stoof, C.R.; Moore, D.; Ritsema, C.J.; Dekker, L.W. Natural and Fire-Induced Soil Water Repellency in a Portuguese Shrubland. Soil Sci. Soc. Am. J. 2011, 75, 2283–2295. [Google Scholar] [CrossRef]
- Scott, D.; Van Wyk, D. The effects of wildfire on soil wettability and hydrological behaviour of an afforested catchment. J. Hydrol. 1990, 121, 239–256. [Google Scholar] [CrossRef]
- Madsen, M.D.; Zvirzdin, D.L.; Petersen, S.L.; Hopkins, B.G.; Roundy, B.A.; Chandler, D.G. Soil Water Repellency within a Burned Piñon-Juniper Woodland: Spatial Distribution, Severity, and Ecohydrologic Implications. Soil Sci. Soc. Am. J. 2011, 75, 1543–1553. [Google Scholar] [CrossRef] [Green Version]
- Woods, S.W.; Birkas, A.; Ahl, R. Spatial variability of soil hydrophobicity after wildfires in Montana and Colorado. Geomorphology 2007, 86, 465–479. [Google Scholar] [CrossRef]
- Nakaya, N.; Motomura, S.; Yokoi, H. Some aspects on water repellency of soils. Soil Sci. Plant Nutr. 1977, 23, 409–415. [Google Scholar] [CrossRef]
- Korea Meteorological Administration. Open MET Data Portal. Available online: https://data.kma.go.kr/resources/html/en/aowdp.html (accessed on 5 February 2021).
- Rural Development Administration. Korean Soil Information System. Available online: http://soil.rda.go.kr/eng/ (accessed on 15 February 2021).
- Won, M.; Jang, K.; Yoon, S.; Lee, H. Change Detection of Damaged Area and Burn Severity due to Heat Damage from Gangwon Large Fire Area in 2019. Korean J. Remote Sens. 2019, 35, 1083–1093. [Google Scholar] [CrossRef]
- Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.; Benson, N.C. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J. Wildland Fire 2006, 15, 319–345. [Google Scholar] [CrossRef]
- Morgan, P.; Hardy, C.C.; Swetnam, T.W.; Rollins, M.G.; Long, D.G. Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns. Int. J. Wildland Fire 2001, 10, 329. [Google Scholar] [CrossRef] [Green Version]
- National Institute of Forest Science. A Study on Damage Characteristics and Development of Burn Severity Evaluation Methods; National Institute of Forest Science: Seoul, Korea, 2013. [CrossRef]
- Shin, J.-I.; Seo, W.-W.; Kim, T.; Park, J.; Woo, C.-S. Using UAV Multispectral Images for Classification of Forest Burn Severity—A Case Study of the 2019 Gangneung Forest Fire. Forest 2019, 10, 1025. [Google Scholar] [CrossRef] [Green Version]
- Clarke, P.J.; Lawes, M.; Midgley, J.J.; Lamont, B.; Ojeda, F.; Burrows, G.E.; Enright, N.J.; Knox, K.J.E. Resprouting as a key functional trait: How buds, protection and resources drive persistence after fire. New Phytol. 2013, 197, 19–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pausas, J.G.; Keeley, J.E. Epicormic Resprouting in Fire-Prone Ecosystems. Trends Plant Sci. 2017, 22, 1008–1015. [Google Scholar] [CrossRef] [Green Version]
- Worsham, L.; Markewitz, D.; Nibbelink, N.P.; West, L.T. A Comparison of Three Field Sampling Methods to Estimate Soil Carbon Content. For. Sci. 2012, 58, 513–522. [Google Scholar] [CrossRef]
- Ramsey, M.H.; Ellison, S.L.R.; Rostron, P. Eurachem/Eurolab/ Citac/Nordtest/AMC Guide: Measurement Uncertainty Arising from Sampling: A Guide to Methods and Approaches, 2nd ed.; Eurachem: Teddington, UK, 2019; pp. 5–13. [Google Scholar]
- Wallenius, K.T.; Niemi, R.; Rita, H. Using stratified sampling based on pre-characterisation of samples in soil microbiological studies. Appl. Soil Ecol. 2011, 51, 111–113. [Google Scholar] [CrossRef]
- Miller, W.P.; Miller, D.M. A micro-pipette method for soil mechanical analysis. Commun. Soil Sci. Plant Anal. 1987, 18, 1–15. [Google Scholar] [CrossRef]
- Walter, K.; Don, A.; Tiemeyer, B.; Freibauer, A. Determining Soil Bulk Density for Carbon Stock Calculations: A Systematic Method Comparison. Soil Sci. Soc. Am. J. 2016, 80, 579–591. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; DeSutter, T.; Prunty, L.; Hopkins, D.; Jia, X.; Wysocki, D.A. Evaluation of 1:5 soil to water extract electrical conductivity methods. Geoderma 2012, 185–186, 12–17. [Google Scholar] [CrossRef]
- Little, I. The relationship between soil pH measurements in calcium chloride and water suspensions. Soil Res. 1992, 30, 587–592. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Chapman, H. Cation-Exchange Capacity. In Agronomy Monographs; Wiley: Hoboken, NJ, USA, 2016; pp. 891–901. [Google Scholar]
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Fisher, R.A. Statistical Methods for Research Workers. J. R. Stat. Soc. 1939, 102, 66–70. [Google Scholar] [CrossRef]
- Soil Science Division Staff. In Soil Survey Manual; Ditzler, K.S.C.; Monger, H.C. (Eds.) Government Printing Office: Washington, DC, USA, 2017; p. 125. [Google Scholar]
- Brook, A.; Wittenberg, L. Ash-soil interface: Mineralogical composition and physical structure. Sci. Total. Environ. 2016, 572, 1403–1413. [Google Scholar] [CrossRef]
- Badía-Villas, D.; Martí, C. Plant Ash and Heat Intensity Effects on Chemicaland Physical Properties of Two Contrasting Soils. Arid. Land Res. Manag. 2003, 17, 23–41. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Y.; Cerdà, A.; Cao, M.; Zhang, Y.; Yin, J.; Jiang, Y.; Chen, L. Changes in soil chemical properties as affected by pyrogenic organic matter amendment with different intensity and frequency. Geoderma 2017, 289, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Heydari, M.; Rostamy, A.; Najafi, F.; Dey, D.C. Effect of fire severity on physical and biochemical soil properties in Zagros oak (Quercus brantii Lindl.) forests in Iran. J. For. Res. 2017, 28, 95–104. [Google Scholar] [CrossRef]
- Giovannini, G.; Lucchesi, S.; Givachetti, M. Effect of heating on some physical and chemical parameters related to soil aggregation and erodibility. Soil Sci. 1988, 146, 255–261. [Google Scholar] [CrossRef]
- Rashid, G.H. Effects of fire on soil carbon and nitrogen in a Mediterranean oak forest of Algeria. Plant Soil 1987, 103, 89–93. [Google Scholar] [CrossRef]
- González-Pérez, J.A.; González-Vila, F.J.; Almendros, G.; Knicker, H. The effect of fire on soil organic matter—A review. Environ. Int. 2004, 30, 855–870. [Google Scholar] [CrossRef]
- Bodí, M.B.; Martin, D.A.; Balfour, V.N.; Santín, C.; Doerr, S.H.; Pereira, P.; Cerdà, A.; Mataix-Solera, J. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects. Earth-Sci. Rev. 2014, 130, 103–127. [Google Scholar] [CrossRef]
- Pallozzi, E.; Lusini, I.; Cherubini, L.; Hajiaghayeva, R.A.; Ciccioli, P.; Calfapietra, C. Differences between a deciduous and a conifer tree species in gaseous and particulate emissions from biomass burning. Environ. Pollut. 2018, 234, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Doerr, S.H.; Shakesby, R.A.; Walsh, R.P. Soil hydrophobicity variations with depth and particle size fraction in burned and unburned Eucalyptus globulus and Pinus pinaster forest terrain in the Águeda Basin, Portugal. Catena 1996, 27, 25–47. [Google Scholar] [CrossRef]
- Ahn, S.; Sangjun, I. Formation of Soil Water Repellency by Laboratory Burning and Its Effects on Soil Evaporation; Seoul National University: Seoul, Korea, 2008; pp. 7–31. [Google Scholar]
- Peng, X.; Zhang, B.; Zhao, Q.; Horn, R.; Hallett, P. Influence of types of restorative vegetation on the wetting properties of aggregates in a severely degraded clayey Ultisol in subtropical China. Geoderma 2003, 115, 313–324. [Google Scholar] [CrossRef]
- Harper, R.; Gilkes, R. Soil attributes related to water repellency and the utility of soil survey for predicting its occurrence. Soil Res. 1994, 32, 1109–1124. [Google Scholar] [CrossRef]
- DeBano, L.F.; Mann, L.D.; Hamilton, D.A. Translocation of Hydrophobic Substances into Soil by Burning Organic Litter. Soil Sci. Soc. Am. J. 1970, 34, 130–133. [Google Scholar] [CrossRef]
- Granged, A.J.; Jordán, A.; Zavala, L.M.M.; Muñoz-Rojas, M.; Mataix-Solera, J. Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia). Geoderma 2011, 167–168, 125–134. [Google Scholar] [CrossRef]
- Vogelmann, E.S.; Reichert, J.; Prevedello, J.; Consensa, C.; Oliveira, A.; Awe, G.; Mataix-Solera, J. Threshold water content beyond which hydrophobic soils become hydrophilic: The role of soil texture and organic matter content. Geoderma 2013, 209–210, 177–187. [Google Scholar] [CrossRef]
- Badía, D.; López-García, S.; Martí, C.; Ortíz-Perpiñá, O.; Girona-García, A.; Casanova-Gascón, J. Burn effects on soil properties associated to heat transfer under contrasting moisture content. Sci. Total Environ. 2017, 601–602, 1119–1128. [Google Scholar] [CrossRef]
- Rodríguez-Alleres, M.; Varela, M.; Benito, E. Natural severity of water repellency in pine forest soils from NW Spain and influence of wildfire severity on its persistence. Geoderma 2012, 191, 125–131. [Google Scholar] [CrossRef]
- Doerr, S.H.; Blake, W.H.; Shakesby, R.A.; Stagnitti, F.; Vuurens, S.H.; Humphreys, G.S.; Wallbrink, P. Heating effects on water repellency in Australian eucalypt forest soils and their value in estimating wildfire soil temperatures. Int. J. Wildland Fire 2004, 13, 157. [Google Scholar] [CrossRef]
- Jordán, A.; Zavala, L.M.M.; Mataix-Solera, J.; Nava, A.L.; Alanís, N. Effect of fire severity on water repellency and aggregate stability on Mexican volcanic soils. Catena 2011, 84, 136–147. [Google Scholar] [CrossRef]
- Beadle, N.C.W. Soil Temperatures During Forest Fires and Their Effect on the Survival of Vegetation. J. Ecol. 1940, 28, 180. [Google Scholar] [CrossRef]
Burn Severity | Fire Intensity | Fuel Consumption and Tree Damage |
---|---|---|
Unburned (UB) | No burning | Control, with no evidence of surface fire |
Surface-fuel consumption (SC) | Low to moderate surface fire | Ground fuel, grass, and shrubs burned, and >60% tree canopy not damaged |
Foliage necrosis (FN) | Low to moderate crown fire | Canopy partially scorched, and >60% tree crown necrosis due to thermal radiation |
Crown-fuel consumption (CC) | High intensity crown fire | Canopy completely burned, with ash and charred organic matter deposited on the soil surface |
Layer | Burn Severity | p | ||
---|---|---|---|---|
SC | FN | CC | ||
0–5 cm | 31% | 62% | 37% | 0.007 * |
0–1 cm | 22% | 56% | 8% | 0.055 |
1–2 cm | 100% | 100% | 67% | 0.027 * |
2–3 cm | 33% | 78% | 73% | 0.128 |
3–4 cm | 0% | 44% | 33% | 0.076 |
4–5 cm | 0% | 33% | 8% | 0.156 |
Layer | Slope | p | ||
---|---|---|---|---|
Gentle | Mild | Steep | ||
0–5 cm | 40% | 38% | 49% | 0.464 |
0–1 cm | 44% | 44% | 0% | 0.015 * |
1–2 cm | 89% | 78% | 92% | 0.805 |
2–3 cm | 44% | 50% | 83% | 0.169 |
3–4 cm | 11% | 11% | 50% | 0.137 |
4–5 cm | 11% | 0% | 25% | 0.348 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Ahn, S.; Kim, T.; Im, S. Post-Fire Impacts of Vegetation Burning on Soil Properties and Water Repellency in a Pine Forest, South Korea. Forests 2021, 12, 708. https://doi.org/10.3390/f12060708
Li Q, Ahn S, Kim T, Im S. Post-Fire Impacts of Vegetation Burning on Soil Properties and Water Repellency in a Pine Forest, South Korea. Forests. 2021; 12(6):708. https://doi.org/10.3390/f12060708
Chicago/Turabian StyleLi, Qiwen, Sujung Ahn, Taehyun Kim, and Sangjun Im. 2021. "Post-Fire Impacts of Vegetation Burning on Soil Properties and Water Repellency in a Pine Forest, South Korea" Forests 12, no. 6: 708. https://doi.org/10.3390/f12060708
APA StyleLi, Q., Ahn, S., Kim, T., & Im, S. (2021). Post-Fire Impacts of Vegetation Burning on Soil Properties and Water Repellency in a Pine Forest, South Korea. Forests, 12(6), 708. https://doi.org/10.3390/f12060708