Titanium Trisulfide Nanoribbons Affect the Downy Birch and Poplar × Aspen Hybrid in Plant Tissue Culture via the Emission of Hydrogen Sulfide
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. TiS3 Sample Analysis
3.2. Initiation Stage
3.3. Proliferation Stage
3.4. Rooting Stage
3.5. Proliferation Stage
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Beck, P.; Caudullo, G.; de Rigo, D.; Tinner, W. Betula pendula, Betula Pubescens and Other Birches in Europe: Distribution, Habitat, Usage and Threats; Publication Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Skovsgaard, J.P.; Johansson, U.; Holmström, E.; Tune, R.M.; Ols, C.; Attocchi, G. Effects of Thinning Practice, High Pruning and Slash Management on Crop Tree and Stand Growth in Young Even-Aged Stands of Planted Silver Birch (Betula pendula Roth). Forests 2021, 12, 225. [Google Scholar] [CrossRef]
- Kutsokon, N.; Libantová, J.; Rudas, V.; Rashydov, N.; Grodzinsky, D.; Ďurechová, D. Advancing protocols for poplars in vitro propagation, regeneration and selection of transformants. J. Microbiol. Biotechnol. Food Sci. 2013, 2, 1447–1454. [Google Scholar]
- Rosso, L.; Facciotto, G.; Bergante, S.; Vietto, L.; Nervo, G. Selection and testing of Populus alba and Salix spp. as bioenergy feedstock: Preliminary results. Appl. Energy 2013, 102, 87–92. [Google Scholar] [CrossRef]
- Castiglione, S.; Todeschini, V.; Franchin, C.; Torrigiani, P.; Gastaldi, D.; Cicatelli, A.; Rinaudo, C.; Berta, G.; Biondi, S.; Lingua, G. Clonal differences in survival capacity, copper and zinc accumulation, and correlation with leaf polyamine levels in poplar: A large-scale field trial on heavily polluted soil. Environ. Pollut. 2009, 157, 2108–2117. [Google Scholar] [CrossRef] [PubMed]
- Rédei, K. Early performance of promising white poplar (Populus alba) clones in sandy ridges between the rivers Danube and Tisza in Hungary. For. Int. J. For. Res. 2000, 73, 407–413. [Google Scholar] [CrossRef]
- Park, Y.; Bonga, J. Application of Somatic Embryogenesis in Forest Management and Research. In Proceedings of the IUFRO Working Party 2.09.02: “Somatic Embryogenesis of Trees” Conference, Suwon, Korea, 19–21 August 2010; pp. 3–8. [Google Scholar]
- Zeng, F.; Qian, J.; Luo, W.; Zhan, Y.; Xin, Y.; Yang, C. Stability of transgenes in long-term micropropagation of plants of transgenic birch (Betula platyphylla). Biotechnol. Lett. 2009, 32, 151–156. [Google Scholar] [CrossRef]
- Ziauka, J.; Kuusiene, S. Multiplication and growth of hybrid poplar (Populus alba × P. tremula) shoots on a hormone-free medium. Acta Biol. Hung. 2014, 65, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D. Challenges for the large-scale propagation of forest trees by somatic embryogenesis—A review. In Proceedings of the 3rd International Conference of the IUFRO Unit 2.09.02 on “Woody Plant Production Integrating Genetic and Vegetative Propagation Technologies”, Vitoria-Gasteiz, Spain, 8–12 September 2014; pp. 81–91. [Google Scholar]
- Ballester, A.; Corredoira, E.; Vieitez, A.M. Limitations of Somatic Embryogenesis in Hardwood Trees; National Institute of Forest Science: Seoul, Korea, 2016. [Google Scholar]
- Vaičiukynė, M.; Žiauka, J.; Žūkienė, R.; Vertelkaitė, L.; Kuusienė, S. Abscisic acid promotes root system development in birch tissue culture: A comparison to aspen culture and conventional rooting-related growth regulators. Physiol. Plant. 2019, 165, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Paulraj, S.; Yeung, E.C. Improved shoot regeneration from root explants using an abscisic Acid-containing medium. Methods Mol. Biol. 2012, 877, 183–189. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Liu, H.; Tang, R.; Zhang, H. An efficient Agrobacterium-mediated transformation and regeneration system for leaf explants of two elite aspen hybrid clones Populus alba × P. berolinensis and Populus davidiana × P. bolleana. Plant Cell Rep. 2011, 30, 2037–2044. [Google Scholar] [CrossRef]
- Vinocur, B.; Carmi, T.; Altman, A.; Ziv, M. Enhanced bud regeneration in aspen (Populus tremula L.) roots cultured in liquid media. Plant Cell Rep. 2000, 19, 1146–1154. [Google Scholar] [CrossRef]
- De Block, M. Factors Influencing the Tissue Culture and the Agrobacterium tumefaciens-Mediated Transformation of Hybrid Aspen and Poplar Clones. Plant Physiol. 1990, 93, 1110–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez, S.P.; Tapia, M.A.M.; Vega, M.E.G.; Ardisana, E.F.H.; Medina, J.A.C.; Zamora, G.L.F.; Bustamante, D.V. Nanotechnology and Plant Tissue Culture. In Plant Nanobionics: Volume 1, Advances in the Understanding of Nanomaterials Research and Applications; Prasad, R., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 333–370. [Google Scholar]
- Wang, P.; Lombi, E.; Zhao, F.-J.; Kopittke, P.M. Nanotechnology: A New Opportunity in Plant Sciences. Trends Plant Sci. 2016, 21, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Aslani, F.; Bagheri, S.; Muhd Julkapli, N.; Juraimi, A.; Hashemi, F.; Baghdadi, A. Effects of Engineered Nanomaterials on Plants Growth: An Overview. Sci. World J. 2014, 2014, 641759. [Google Scholar] [CrossRef]
- Morales-Díaz, A.; Ortega-Ortíz, H.; Juárez Maldonado, A.; cadenas-pliego, G.; González-Morales, S.; Benavides-Mendoza, A. Application of nanoelements in plant nutrition and its impact in ecosystems. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 1–13. [Google Scholar] [CrossRef]
- Nemček-Korenkova, L.; Šebesta, M.; Urík, M.; Kolencik, M.; Kratošová, G.; Bujdoš, M.; Vávra, I.; Dobrocka, E. Physiological response of culture media-grown barley (Hordeum vulgare L.) to titanium oxide nanoparticles. Acta Agric. Scand. Sect. B Soil Plant. Sci. 2017, 67, 1–7. [Google Scholar] [CrossRef]
- Kim, D.H.; Gopal, J.; Sivanesan, I. Nanomaterials in plant tissue culture: The disclosed and undisclosed. RSC Adv. 2017, 7, 36492–36505. [Google Scholar] [CrossRef] [Green Version]
- Mahna, N.; Zununi Vahed, S.; Khani, S. Plant In vitro Culture goes Nano: Nanosilver-Mediated Decontamination of Ex vitro Explants. Nanomed. Nanotechnol. 2013, 4, 1000161. [Google Scholar] [CrossRef] [Green Version]
- Rostami, A.A.; Shahsavar, A. Nano-Silver Particles Eliminate the in vitro Contaminations of Olive ‘Mission’ Explants. Asian J. Plant Sci. 2009, 8, 505–509. [Google Scholar] [CrossRef] [Green Version]
- Safavi, K.; Mortazaeinezahad, F.; Esfahani, M.; Asgari, M. In Vitro Antibacterial Activity of Nanomaterial for Using in Tobacco Plants Tissue Culture. World Acad. Sci. Eng. Technol. 2011, 55, 372–373. [Google Scholar] [CrossRef]
- Sarmast, M.K.; Niazi, A.; Salehi, H.; Abolimoghadam, A. Silver nanoparticles affect ACS expression in Tecomella undulata in vitro culture. Plant Cell Tissue Organ. Cult. (PCTOC) 2015, 121, 227–236. [Google Scholar] [CrossRef]
- Talankova-Sereda, T.; Liapina, K.; Shkopinskij, E.; Ustinov, A.; Kovalyova, A.; Dulnev, P.; Kucenko, N. The Influence of Cu и Co Nanoparticles on Growth Characteristics and Biochemical Structure of Mentha Longifolia In Vitro. In Nanophysics, Nanophotonics, Surface Studies, and Applications; Fesenko, O., Yatsenko, L., Eds.; Springer Proceedings in Physics; Springer: Cham, Switzerland, 2016; Volume 183. [Google Scholar] [CrossRef]
- Javed, R.; Usman, M.; Yücesan, B.; Zia, M.; Gürel, E. Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiol. Biochem. PPB 2017, 110, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Ghorbanpour, M.; Hadian, J. Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro. Carbon 2015, 94, 749–759. [Google Scholar] [CrossRef]
- Khodakovskaya, M.V.; de Silva, K.; Biris, A.S.; Dervishi, E.; Villagarcia, H. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 2012, 6, 2128–2135. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, D.; Gaur, S.; Singh, S.; Singh, S.; Pandey, R.; Singh, D.V.; Sharma, N.; Prasad, S.; Dubey, N.; Chauhan, D. An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiol. Biochem. 2016, 110, 2–12. [Google Scholar] [CrossRef]
- Serrano, L.; Feregrino-Perez, A.; Guevara-Gonzalez, R.; Mendoza, S.; Escalante, K. Nanoparticles in Agroindustry: Applications, Toxicity, Challenges, and Trends. Nanomaterials 2020, 10, 1654. [Google Scholar] [CrossRef]
- Raliya, R.; Nair, R.; Chavalmane, S.; Wang, W.-N.; Biswas, P. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 2015, 7, 1584–1594. [Google Scholar] [CrossRef] [PubMed]
- Samadi, N.; Yahyaabadi, S.; Rezayatmand, Z. Effect of TiO2 and TiO2 nanoparticle on germination, root and shoot length and photosynthetic pigments of Mentha piperita. Int. J. Plant Soil Sci. 2014, 3, 408–418. [Google Scholar] [CrossRef]
- Castiglione, M.; Giorgetti, L.; Geri, C.; Cremonini, R. The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L.and Zea mays L. J. Nanopart. Res. 2011, 13, 2443–2449. [Google Scholar] [CrossRef]
- Wang, S.; Kurepa, J.; Smalle, J. Ultra-small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ. 2011, 34, 811–820. [Google Scholar] [CrossRef]
- Li, Y.; Jin, Q.; Yang, D.; Cui, J. Molybdenum Sulfide Induce Growth Enhancement Effect of Rice (Oryza sativa L.) through Regulating the Synthesis of Chlorophyll and the Expression of Aquaporin Gene. J. Agric. Food Chem. 2018, 66, 4013–4021. [Google Scholar] [CrossRef] [PubMed]
- Evlakov, P.; Fedorova, O.; Grodetskaya, T.; Zakharova, O.; Gusev, A.; Krutyakov, Y.; Baranov, O. Influence of Copper Oxide and Silver Nanoparticles on Microclonal Sprouts of Downy Birch (Betula pubescens Ehrh.). Nanotechnol. Russ. 2020, 15, 476–482. [Google Scholar] [CrossRef]
- Zakharova, O.; Kolesnikova, E.; Muratov, D.; Gusev, A. Stimulating and toxic effects of graphene oxide on Betula pubescens microclones. IOP Conf. Ser. Earth Environ. Sci. 2020, 595, 012010. [Google Scholar] [CrossRef]
- Zakharova, O.V.; Gusev, A.A.; Abourahma, J.; Vorobeva, N.S.; Sokolov, D.V.; Muratov, D.S.; Kuznetsov, D.V.; Sinitskii, A. Nanotoxicity of ZrS3 Probed in a Bioluminescence Test on E. coli Bacteria: The Effect of Evolving H2S. Nanomaterials 2020, 10, 1401. [Google Scholar] [CrossRef]
- Ferrer, I.; Ares, J.R.; Clamagirand, J.; Barawi, M.; Sanchez, C. Optical properties of titanium trisulphide (TiS3) thin films. Thin Solid Film 2013, 535, 398–401. [Google Scholar] [CrossRef]
- Lipatov, A.; Wilson, P.; Shekhirev, M.; Teeter, J.; Netusil, R.; Sinitskii, A. Few-layer titanium trisulfide (TiS3) field-effect transistors. Nanoscale 2015, 7, 12291–12296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 2006, 15, 473–497. [Google Scholar] [CrossRef]
- Genty, B.; Briantais, J.-M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta BBA Gen. Subj. 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef]
- Lloyd, G.; McCown, B. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb. Proc. Int. Plant. Propagators Soc. 1980, 30, 421–427. [Google Scholar]
- Azizi-lalabadi, M.; Ehsani, A.; Divband, B.; Alizadeh-Sani, M. Antimicrobial activity of Titanium dioxide and Zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Sci. Rep. 2019, 9, 17439. [Google Scholar] [CrossRef] [Green Version]
- Durango Giraldo, G.; Cardona, A.; Zapata, J.; Santa, J.; Buitrago-Sierra, R. Titanium dioxide modified with silver by two methods for bactericidal applications. Heliyon 2019, 5, e01608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filpo, G.; Palermo, A.; Rachiele, F.; Nicoletta, F. Preventing fungal growth in wood by titanium dioxide nanoparticles. Int. Biodeterior. Biodegrad. 2013, 85, 217–222. [Google Scholar] [CrossRef]
- Tedla, B.; Dang, Q.-L.; Inoue, S. White birch has limited phenotypic plasticity to take advantage of increased photoperiods at higher latitudes north of the seed origin. For. Ecol. Manag. 2019, 451, 117565. [Google Scholar] [CrossRef]
- Blarquez, O.; Carcaillet, C. Fire, fuel composition and resilience threshold in subalpine ecosystem. PLoS ONE 2010, 5, e12480. [Google Scholar] [CrossRef]
- Heim, R.J.; Bucharova, A.; Brodt, L.; Kamp, J.; Rieker, D.; Soromotin, A.V.; Yurtaev, A.; Hölzel, N. Post-fire vegetation succession in the Siberian subarctic tundra over 45 years. Sci. Total Environ. 2021, 760, 143425. [Google Scholar] [CrossRef] [PubMed]
- Murr, L.; Guerrero, P.A. Carbon Nanotubes in Wood Soot. Atmos. Sci. Lett. 2006, 7, 93–95. [Google Scholar] [CrossRef]
- Chaudhary, I.J.; Singh, V. Titanium Dioxide Nanoparticles and its Impact on Growth, Biomass and Yield of Agricultural Crops under Environmental Stress: A Review. Res. J. Nanosci. Nanotechnol. 2020, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Khater, M. Effect of Titanium Nanoparticles (TiO2) on Growth, Yield and Chemical Constituents of Coriander Plants. Arab J. Nuclear Sci. Appl. 2015, 48, 187–194. [Google Scholar]
- Gohari, G.; Mohammadi, A.; Akbari, A.; Panahirad, S.; Dadpour, M.R.; Fotopoulos, V.; Kimura, S. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci. Rep. 2020, 10, 912. [Google Scholar] [CrossRef]
- Lyu, S.; Wei, X.; Chen, J.; Wang, C.; Wang, X.; Pan, D. Titanium as a Beneficial Element for Crop Production. Front. Plant Sci. 2017, 8, 597. [Google Scholar] [CrossRef] [Green Version]
- Mei, Y.; Chen, H.; Shen, W.; Shen, W.; Huang, L. Hydrogen peroxide is involved in hydrogen sulfide-induced lateral root formation in tomato seedlings. BMC Plant Biol. 2017, 17, 162. [Google Scholar] [CrossRef] [PubMed]
- Xuan, L.; Li, J.; Wang, X.; Wang, C. Crosstalk between Hydrogen Sulfide and Other Signal Molecules Regulates Plant Growth and Development. Int. J. Mol. Sci. 2020, 21, 4593. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Li, Y.; Liu, Y.; Kang, D.I.; Wei, H.; Jeong, B.R. Hydrogen Sulfide Affects the Root Development of Strawberry During Plug Transplant Production. Agriculture 2020, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Corpas, F.J.; Palma, J.M. H2S signaling in plants and applications in agriculture. J. Adv. Res. 2020, 24, 131–137. [Google Scholar] [CrossRef] [PubMed]
Parameters | Hybrid Poplar × Aspen | Downy Birch | ||
---|---|---|---|---|
Control | Hormones + TiS3 | Control | Hormones + TiS3 | |
Stomatal pore area, µm2 | 74.88 ± 5.1 | 86.06 ± 3.2 | 86.04 ± 5.32 | 142.94 ± 6.24 |
Stomatal area, µm2 | 553.41 ± 16.4 | 499.88 ± 15.1 | 1208.93 ± 76.31 | 1151.28 ± 69.45 |
Stomatal density, pcs./mm2 | 5.18 ± 0.9 | 3.99 ± 0.7 | 2.99 ± 0.5 | 2.59 ± 0.3 |
Degree of stomatal pore opening, S stom./S open | 0.13 ± 0.01 | 0.17 ± 0.01 | 0.07 ± 0.005 | 0.12 ± 0.008 |
Leaf lamina thickness, µm | 100.06 ± 9.6 | 89.71 ± 5.8 | 65.07 ± 4.46 | 71.89 ± 3.04 |
Stem diameter, µm | 1206.38 ± 75.9 | 1193.50 ± 63.1 | 630.90 ± 28.18 | 810.13 ± 69.23 |
Variant | Number of Surviving Microclones, % | Number of Microclones with Roots, % | Number of Roots Per Explant | Microclones Condition According to a 5-Point Scale | ||||
---|---|---|---|---|---|---|---|---|
Poplar × Aspen | Birch | Poplar × Aspen | Birch | Poplar × Aspen | Birch | Poplar × Aspen | Birch | |
Control | 100 | 100 | 50 ± 3 | 35 ± 5 | 1 | 1 | 4 | 4 |
TiS3 | 100 | 100 | 100 | 98 ± 1 | 4 | 3 | 5 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakharova, O.V.; Gusev, A.A.; Muratov, D.S.; Shuklinov, A.V.; Strekalova, N.S.; Matveev, S.M. Titanium Trisulfide Nanoribbons Affect the Downy Birch and Poplar × Aspen Hybrid in Plant Tissue Culture via the Emission of Hydrogen Sulfide. Forests 2021, 12, 713. https://doi.org/10.3390/f12060713
Zakharova OV, Gusev AA, Muratov DS, Shuklinov AV, Strekalova NS, Matveev SM. Titanium Trisulfide Nanoribbons Affect the Downy Birch and Poplar × Aspen Hybrid in Plant Tissue Culture via the Emission of Hydrogen Sulfide. Forests. 2021; 12(6):713. https://doi.org/10.3390/f12060713
Chicago/Turabian StyleZakharova, Olga V., Alexander A. Gusev, Dmitry S. Muratov, Alexey V. Shuklinov, Nataliya S. Strekalova, and Sergey M. Matveev. 2021. "Titanium Trisulfide Nanoribbons Affect the Downy Birch and Poplar × Aspen Hybrid in Plant Tissue Culture via the Emission of Hydrogen Sulfide" Forests 12, no. 6: 713. https://doi.org/10.3390/f12060713
APA StyleZakharova, O. V., Gusev, A. A., Muratov, D. S., Shuklinov, A. V., Strekalova, N. S., & Matveev, S. M. (2021). Titanium Trisulfide Nanoribbons Affect the Downy Birch and Poplar × Aspen Hybrid in Plant Tissue Culture via the Emission of Hydrogen Sulfide. Forests, 12(6), 713. https://doi.org/10.3390/f12060713