Evaluation of Moisture and Decay Models for a New Design Framework for Decay Prediction of Wood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Detail Type
2.2. Weather Data
2.3. Modelling Wood Moisture Content
2.3.1. Finite Element Model (FEM)
2.3.2. Semi-Empirical Model (SMM)
2.4. Modelling Wood Decay
3. Results and Discussion
3.1. Comparison Between Moisture Models
3.1.1. Moisture Content
3.1.2. Annual Dose
3.2. Comparison of Decay Models
Factorized Design, Relative Dose
3.3. Utilization and Implementation of Models
3.3.1. Estimation of Model Parameters
3.3.2. Implementation
3.3.3. In-Ground Contact
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brischke, C.; Bayerbach, R.; Rapp, A.O. Decay-influencing factors: A basis for service life prediction of wood and wood-based products. Wood Mater. Sci. Eng. 2006, 1, 91–107. [Google Scholar] [CrossRef]
- EN 1995-1-1. Eurocode 5: Design of Timber Structures–Part 1-1: General–Common Rules and Rules for Buildings; European Committee for Standardization: Brussels, Belgium, 2004. [Google Scholar]
- EN 460. Durability of Wood and Wood-Based Products–Natural Durability of Solid Wood–Guide to the Durability Requirements for Wood to be Used in Hazard Classes; European Committee for Standardization: Brussels, Belgium, 1994. [Google Scholar]
- EN 350. Durability of Wood and Wood-Based Products—Testing and Classification of the Durability to Biological Agents of Wood and Wood-Based Materials; European Committee for Standardization: Brussels, Belgium, 2016. [Google Scholar]
- EN 335. Durability of Wood and Wood-Based Products–Use-Classes, Definition, Application to Solid Wood and Wood-Based Products; European Committee for Standardization: Brussels, Belgium, 2013. [Google Scholar]
- Scheffer, T.C. A climate index for estimating potential for decay in wood structures above ground. For. Prod. J. 1971, 21, 25–31. [Google Scholar]
- Cornick, S.; Dalgliesh, W.A. A moisture index to characterize climates for building envelope design. J. Therm. Envel. Build. Sci. 2003, 27, 151–178. [Google Scholar] [CrossRef]
- Fernandez-Golfin, J.; Larrumbide, E.; Ruano, A.; Galvan, J.; Conde, M. Wood decay hazard in Spain using the Scheffer index: Proposal for an improvement. Eur. J. Wood Wood Prod. 2016, 74, 591–599. [Google Scholar] [CrossRef]
- Wang, C.H.; Leicester, R.; Nguyen, M. Manual 4–Decay above Ground; Tech. Rept. PN07; Forest and Wood Products Australia (FWPA): Melbourne, Australia, 2008. [Google Scholar]
- Brischke, C.; Rapp, A.O. Dose–response relationships between wood moisture content, wood temperature and fungal decay determined for 23 European field test sites. Wood Sci. Technol. 2008, 42, 507–518. [Google Scholar] [CrossRef]
- Viitanen, H.A. Modelling the Time Factor in the Development of Brown Rot Decay in Pine and Spruce Sapwood—The Effect of Critical Humidity and Temperature Conditions. Holzforschung 1997, 51, 99–106. [Google Scholar] [CrossRef]
- Nofal, M.; Kumaran, K. Biological damage function models for durability assessments of wood and wood-based products in building envelopes. Eur. J. Wood Wood Prod. 2011, 69, 619–631. [Google Scholar] [CrossRef] [Green Version]
- Vandemeulebroucke, I.; Caluwaerts, S.; Bossche, N.V.D. Factorial Study on the Impact of Climate Change on Freeze-Thaw Damage, Mould Growth and Wood Decay in Solid Masonry Walls in Brussels. Buildings 2021, 11, 134. [Google Scholar] [CrossRef]
- Viitanen, H.; Toratti, T.; Makkonen, L.; Peuhkuri, R.; Ojanen, T.; Ruokolainen, L.; Räisänen, J. Towards modelling of decay risk of wooden materials. Eur. J. Wood Wood Prod. 2010, 68, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Niklewski, J.; Brischke, C.; Frühwald Hansson, E. Numerical study on the effects of macro climate and detailing on the relative decay hazard of Norway spruce. Wood Mater. Sci. Eng. 2021, 16, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Thelandersson, S.; Isaksson, T.; Suttie, E.; Frühwald, E.; Toratti, T.; Grüll, G. Service Life of Wood in Outdoor above Ground Applications: Engineering Design Guideline–Background Document; Technical Report; TVBK-Lund University, Division of Structural Engineering: Lund, Sweden, 2011. [Google Scholar]
- Pousette, A.; Malo, K.A.; Thelandersson, S.; Fortino, S.; Salokangas, L.; Wacker, J. Durable Timber Bridges–Final Report and Guidelines; Technical Report; SP: Skellefteå, Sweden, 2017. [Google Scholar]
- Silva, A.; Prieto, A. Modelling the service life of timber claddings using the factor method. J. Build. Eng. 2021, 37, 102137. [Google Scholar] [CrossRef]
- Meyer-Veltrup, L.; Brischke, C.; Niklewski, J.; Frühwald Hansson, E.F. Design and performance prediction of timber bridges based on a factorization approach. Wood Mater. Sci. Eng. 2018, 13, 167–173. [Google Scholar] [CrossRef]
- Meyer-Veltrup, L.; Brischke, C.; Alfredsen, G.; Humar, M.; Flæte, P.-O.; Isaksson, T.; Brelid, P.L.; Westin, M.; Jermer, J. The combined effect of wetting ability and durability on outdoor performance of wood: Development and verification of a new prediction approach. Wood Sci. Technol. 2017, 51, 615–637. [Google Scholar] [CrossRef]
- Brischke, C.; Alfredsen, G.; Humar, M.; Conti, E.; Cookson, L.; Emmerich, L.; Flæte, P.; Fortino, S.; Francis, L.; Hundhausen, U.; et al. Modelling the Material Resistance of Wood—Part 2: Validation and Optimization of the Meyer-Veltrup Model. Forests 2021, 12, 576. [Google Scholar] [CrossRef]
- Frühwald, E.; Brischke, C.; Meyer, L.; Isaksson, T.; Thelandersson, S.; Kavurmaci, D. Durability of timber outdoor structures–modelling performance and climate impacts. In Proceedings of the World Conference on Timber Engineering, Auckland, New Zealand, 16–19 July 2012. [Google Scholar]
- Niklewski, J.; Isaksson, T.; Frühwald Hansson, E.; Thelandersson, S. Moisture conditions of rain-exposed glue-laminated timber members: The effect of different detailing. Wood Mater. Sci. Eng. 2017, 13, 129–140. [Google Scholar] [CrossRef]
- Niklewski, J.; Fredriksson, M. The effects of joints on the moisture behaviour of rain exposed wood: A numerical study with experimental validation. Wood Mater. Sci. Eng. 2021, 16, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Meteonorm. Available online: www.meteonorm.com (accessed on 5 April 2016).
- Koponen, H. Dependences of moisture diffusion coefficients of wood and wooden panels on moisture content and wood properties. Paperi Ja Puu 1984, 66, 740–745. [Google Scholar]
- Koponen, H. Dependence of moisture transfer and diffusion coefficients on temperature. Paperi Ja Puu 1985, 8, 428–439. [Google Scholar]
- Wadsö, L. Surface mass transfer coefficients for wood. Dry. Technol. 1993, 11, 1227–1249. [Google Scholar] [CrossRef]
- Isaksson, T.; Brischke, C.; Thelandersson, S. Development of decay performance models for outdoor timber construction. Mater. Struct. 2013, 46, 1209–1225. [Google Scholar] [CrossRef]
- EN 252. Field Test Method for Determining the Relative Protective Effectiveness of a Wood Preservative in Ground Contact; European Committee for Standardization: Brussels, Belgium, 2014. [Google Scholar]
- Brischke, C.; Meyer-Veltrup, L. Modelling timber decay caused by brown rot fungi. Mater. Struct. 2015, 49, 3281–3291. [Google Scholar] [CrossRef]
- Meyer-Veltrup, L.; Brischke, C.; Källander, B. Testing the durability of timber above ground: Evaluation of different test meth-ods. Eur. J. Wood Wood Prod. 2017, 75, 291–304. [Google Scholar] [CrossRef]
- Isaksson, T.; Thelandersson, S. Experimental investigation on the effect of detail design on wood moisture content in outdoor above ground applications. Build. Environ. 2013, 59, 239–249. [Google Scholar] [CrossRef]
- Brischke, C.; Selter, V. Mapping the Decay Hazard of Wooden Structures in Topographically Divergent Regions. Forests 2020, 11, 510. [Google Scholar] [CrossRef]
- Marais, B.N.; Brischke, C.; Militz, H. Wood durability in terrestrial and aquatic environments—A review of biotic and abiotic influence factors. Wood Mater. Sci. Eng. 2020, 1–24. [Google Scholar] [CrossRef]
- Brischke, C.; Alfredsen, G.; Humar, M.; Conti, E.; Cookson, L.; Emmerich, L.; Flæte, P.; Fortino, S.; Francis, L.; Hundhausen, U.; et al. Modelling the Material Resistance of Wood—Part 3: Relative Resistance in above- and in-Ground Situations—Results of a Global Survey. Forests 2021, 12, 590. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niklewski, J.; van Niekerk, P.B.; Brischke, C.; Frühwald Hansson, E. Evaluation of Moisture and Decay Models for a New Design Framework for Decay Prediction of Wood. Forests 2021, 12, 721. https://doi.org/10.3390/f12060721
Niklewski J, van Niekerk PB, Brischke C, Frühwald Hansson E. Evaluation of Moisture and Decay Models for a New Design Framework for Decay Prediction of Wood. Forests. 2021; 12(6):721. https://doi.org/10.3390/f12060721
Chicago/Turabian StyleNiklewski, Jonas, Philip Bester van Niekerk, Christian Brischke, and Eva Frühwald Hansson. 2021. "Evaluation of Moisture and Decay Models for a New Design Framework for Decay Prediction of Wood" Forests 12, no. 6: 721. https://doi.org/10.3390/f12060721
APA StyleNiklewski, J., van Niekerk, P. B., Brischke, C., & Frühwald Hansson, E. (2021). Evaluation of Moisture and Decay Models for a New Design Framework for Decay Prediction of Wood. Forests, 12(6), 721. https://doi.org/10.3390/f12060721