The Effect of Repeated Prescribed Burning on Soil Properties: A Review
Abstract
:1. Introduction
2. Changes in Soil Properties after Repeated Prescribed Fires
2.1. Physical Properties
2.2. Chemical Properties
2.3. Soil Microbiological Properties
2.4. Soil Mesofauna
3. Some Reflections on the Information Analysed and Research Needs
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- McCaw, W.L. Managing forest fuels using prescribed fire—A perspective from southern Australia. For. Ecol. Manag. 2013, 294, 217–224. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Botelho, H.S. A review of prescribed burning effectiveness in fire hazard reduction. Int. J. Wildland Fire 2003, 12, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Volkova, L.; Roxburgh, R.H.; Weston, C.H. Effects of prescribed fire frequency on wildfire emissions and carbon sequestration in a fire adapted ecosystem using a comprehensive carbon model. J. Environ. Manag. 2021, 290, 112673. [Google Scholar] [CrossRef] [PubMed]
- Fulé, P.Z.; Crouse, J.E.; Roccaforte, J.P.; Kalies, E.L. Do thinning and/or burning treatments in western USA ponderosa or Jeffrey pine-dominated forests help restore natural fire behavior? For. Ecol. Manag. 2012, 269, 68–81. [Google Scholar] [CrossRef]
- Ryan, K.C.; Knapp, E.E.; Varner, J.M. Prescribed fire in North American forests and woodlands: History, current practice, and challenges. Front. Ecol. Environ. 2013, 11, e15–e24. [Google Scholar] [CrossRef]
- Davies, M.G.; Gray, A.; Hamilton, A.; Legg, C.J. The future of fire management in the British uplands. Int. J. Biodivers. Manag. 2018, 4, 127–147. [Google Scholar] [CrossRef] [Green Version]
- Burrows, N.; McCaw, L. Prescribed burning in southwestern Australian forests. Front. Ecol. Environ. 2013, 11, e25–e34. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Davies, G.M.; Ascoli, D.; Fernández, C.; Moreira, F.; Rigolot, E.; Stoof, C.R.; Vega, J.A.; Molina, D. Prescribed burning in southern Europe: Developing fire management in a dynamic landscape. Front. Ecol. Environ. 2013, 11, e4–e14.3. [Google Scholar] [CrossRef] [Green Version]
- Neary, D.G.; Klopatek, C.C.; DeBano, L.F.; Folliott, P.F. Fire effects on belowground sustainability, a review and synthesis. For. Ecol. Manag. 1999, 122, 51–71. [Google Scholar] [CrossRef]
- Certini, G. Effects of fire on properties of forest soils, a review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Alcañiz, M.; Outeiro, L.; Francos, M.; Úbeda, X. Effects of prescribed fires on soil properties, A review. Sci. Total Environ. 2018, 613–614, 944–957. [Google Scholar] [CrossRef]
- Vega, J.A.; Fernández, C.; Fonturbel, T. Throughfall, runoff and soil erosion after prescribed burning in gorse shrubland in Galicia (NW Spain). Land Degrad. Dev. 2005, 15, 1–15. [Google Scholar] [CrossRef]
- Fernández, C.; Vega, J.A.; Fonturbel, T. The effects of fuel reduction treatments on runoff, infiltration and erosion in two shrubland areas in the north of Spain. J. Environ. Manag. 2012, 105, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Stoof, C.R.; Vervoort, R.; Iwema, J.; Elsen, E.; Ferreira, A.; Ritsema, C.J. Hydrological response of a small catchment burned by experimental fire. Hydrol. Earth Syst. Sci. 2012, 16, 267–285. [Google Scholar] [CrossRef] [Green Version]
- Carter, M.; Foster, C. Prescribed burning and productivity in southern pine forests: A review. For. Ecol. Manag. 2004, 191, 93–109. [Google Scholar] [CrossRef]
- Moghaddas, E.E.Y.; Stephens, S.L. Soil responses to the fire and fire surrogate study in the Sierra Nevada. In Restoring Fire-Adapted Ecosystems: Proceedings of the 2005 National Silviculture Workshop; Technical Report PSW-GTR-203; Powers, R.F., Ed.; Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture: Albany, CA, USA, 2007; 305p, p. 305. [Google Scholar]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Libertà, G.; Branco, A.; de Rigo, D.; Ferrari, D.; Maianti, P.; Artés Vivancos, T.; Costa, H.; et al. Forest fires in Europe, Middle East and North Africa 2017; EUR 29318 EN; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-92831-4. [Google Scholar]
- González-Pelayo, O.; Andreu, V.; Gimeno-García, E.; Campo, J.; Rubio, J.L. Rainfall influence on plot-scale runoff and soil loss from repeated burning in a Mediterranean-shrub ecosystem, Valencia, Spain. Geomorphology 2010, 118, 444–452. [Google Scholar] [CrossRef] [Green Version]
- Scharenbroch, B.C.; Nix, B.; Jacobs, K.A.; Bowles, M.L. Two decades of low-severity prescribed fire increases soil nutrient availability in Midwestern, USA oak (Quercus) forest. Geoderma 2012, 183–184, 89–91. [Google Scholar] [CrossRef]
- Brye, K.R. Soil physiochemical changes following 12 years of annual burning in a humid–subtropical tallgrass prairie: A hypothesis. Acta Oecol. 2006, 30, 407–413. [Google Scholar] [CrossRef]
- Ralston, C.W.; Hatchell, G.E. Effects of prescribed burning on physical properties of soil. In Prescribed Burning Symposium Proceedings; USDA Forest Service: Asheville, NC, USA, 1971; pp. 68–85. [Google Scholar]
- Guinto, D.F.; Xu, Z.H.; House, A.P.N.; Saffigna, P.G. Soil chemical properties and forest floor nutrients under repeated prescribed-burning in eucalypt forests of southeast Queensland. Australia. N. Z. J. For. Sci. 2001, 31, 170–187. [Google Scholar]
- Boyer, W.; Miller, J. Effect of burning and brush treatments on nutrient and soil physical properties in young longleaf pine stands. For. Ecol. Manag. 1994, 70, 311–318. [Google Scholar] [CrossRef]
- Vega, J.A. Efectos del Fuego Prescrito Sobre el Suelo en Pinares de Pinus pinaster Ait. de Galicia. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2001. [Google Scholar]
- Neill, C.; Patterson, W.; Crary, D. Responses of soil carbon, nitrogen, and cations to the frequency and seasonality of prescribed burning in a Cape Cod oak-pine forest. For. Ecol. Manag. 2007, 250, 234–243. [Google Scholar] [CrossRef]
- Williams, R.J.; Hallgren, S.W.; Wilson, G.W.T. Frequency of prescribed burning in an upland oak forest determines soil and litter properties and alters the soil microbial community. For. Ecol. Manag. 2012, 265, 241–247. [Google Scholar] [CrossRef]
- Godwin, D.; Kobziar, L.; Robertson, K. Effects of fire frequency and soil temperature on soil CO2 efflux rates in old-field pine-grassland forests. Forests 2017, 8, 274. [Google Scholar] [CrossRef] [Green Version]
- Bird, M.I.; Veenendaal, E.M.; Moyo, C.; Lloyd, J.; Frost, P. Effect of fire and soil texture on soil carbon in a sub-humid savanna (Matopos, Zimbabwe). Geoderma 2000, 94, 71–90. [Google Scholar] [CrossRef]
- González-Pérez, J.A.; González-Vila, F.J.; Almendros, G. The effect of fire on soil organic matter—A review. Environ. Int. 2004, 30, 855–870. [Google Scholar] [CrossRef] [PubMed]
- Knicker, H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 2007, 85, 91–118. [Google Scholar] [CrossRef]
- Alcañiz, M.; Úbeda, X.; Cerdà, A. A 13-year approach to understand the effect of prescribed fires and livestock grazing on soil chemical properties in Tivissa, NE Iberian Peninsula. Forests 2020, 11, 1013. [Google Scholar] [CrossRef]
- Taylor, Q.A.; Midgley, M.G. Prescription side effects: Long-term, high frequency controlled burning enhances nitrogen availability in an Illinois oak-dominated forest. For. Ecol. Manag. 2018, 41, 82–89. [Google Scholar] [CrossRef]
- Wells, C.G. Effects of prescribed burning on soil chemical properties and nutrients availability. In Prescribed Burning Symposium Proceedings; USDA Forest Service: Asheville, NC, USA, 1971; pp. 86–97. [Google Scholar]
- Hatten, J.A.; Zabowski, D.; Ogden, A.; Thies, W. Soil organic matter in a ponderosa pine forest with varying seasons and intervals of prescribed burn. For. Ecol. Manag. 2008, 255, 2555–2565. [Google Scholar] [CrossRef]
- Trabaud, L. The effect of different fire regimes on soil nutrient levels in a Quercus coccifera garriga. In Mediterranean Type Ecosystems. Ecological Studies (Analysis and Synthesis); Kruger, F.J., Mitchell, D.J., Jarvis, J.V., Eds.; Springer: Berlin/Heidelberg, Germany, 1983; Volume 43, pp. 234–243. [Google Scholar]
- Trabaud, L. Influence of fire on chemical properties of the upper layer of a garrigue soil. Rev. Ecol. Biol. Sol 1990, 27, 383–394. [Google Scholar]
- Hopmans, P. Effects of repeated low-intensity fire on carbon, nitrogen and phosphorus in the soils of a mixed eucalypt foothill forest in south-eastern Australia. In Research Report No. 60; Fire Management, Department of Sustainability and Environment: Melbourne, VIC, Australia, 2003. [Google Scholar]
- Bennett, L.; Aponte, C.; Baker, T.; Tolhurst, K. Evaluating effects of prescribed fire regimes on carbon stocks in a temperate eucalypt forest. For. Ecol. Manag. 2014, 328, 219–228. [Google Scholar] [CrossRef]
- Muqaddas, B.; Zhou, X.; Lewis, T.; Wild, C.; Chen, C. Long-term frequent prescribed fire decreases surface soil carbon and nitrogen pools in a wet sclerophyll forest of Southeast Queensland Australia. Sci. Total Environ. 2015, 536, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Muqaddas, B.; Chen, C.; Lewis, T.; Wild, C. Temporal dynamics of carbon and nitrogen in the surface soil and forest floor under different prescribed burning regimes. For. Ecol. Manag. 2016, 382, 110–119. [Google Scholar] [CrossRef]
- Eivazi, F.; Bayan, M.R. Effects of long term prescribed burning on the activity of select soil enzymes in an oak hickory forest. Can. J. For. Res. 1996, 26, 1799–1804. [Google Scholar] [CrossRef]
- Boerner, R.; Brinkman, J.A.; Sutherland, E. Effects of fire at two frequencies on nitrogen transformations and soil chemistry in a nitrogen-enriched forest landscape. Can. J. For. Res. 2004, 34, 609–618. [Google Scholar] [CrossRef]
- Dukes, C.J. Long-term effects of repeated prescribed fire and fire surrogate treatments on forest soil chemistry in the Southern Appalachian forest mountains (USA). Fire 2020, 3, 20. [Google Scholar] [CrossRef]
- McKee, W.H. Changes in Soil Fertility Following Prescribed Burning on Coastal Plain Pine Sites; USDA Forest Service Southeastern Forest Experiment Station: Ashville, NC, USA, 1982; 23p. [Google Scholar]
- Oliver, A.K.; Callaham, M.A.; Jumpponen, A. Soil fungal communities respond compositionally to recurring frequent prescribed burning in a managed southeastern US forest ecosystem. For. Ecol. Manag. 2015, 345, 1–9. [Google Scholar] [CrossRef]
- Coates, T.A.; Hagan, D.L.; Aust, W.M.; Johnson, A.; Keen, J.C.; Chow, A.T.; Dozier, J.H. Mineral soil chemical properties as influenced by long-term use of prescribed fire with differing frequencies in a southeastern Coastal Plain pine forest. Forests 2018, 9, 739. [Google Scholar] [CrossRef] [Green Version]
- Matosziuk, L.M.; Alleau, Y.; Kerns, B.K.; Bailey, J.; Johnson, M.G.; Hatten, J.A. Effects of season and interval of prescribed burns on pyrogenic carbon in ponderosa pine stands in Malheur National Forest. Geoderma 2019, 348, 1–11. [Google Scholar] [CrossRef]
- Hunt, S.M.; Simpson, J.A. Effects of low intensity prescribed fire on the growth and nutrition of slash pine plantation. Aust. For. Res. 1985, 15, 67–77. [Google Scholar]
- Johnson, D.W.; Curtis, P.S. Effects of forest management on soil C and N storage: Meta-analysis. For. Ecol. Manag. 2001, 140, 227–238. [Google Scholar] [CrossRef]
- Busse, M.D.; Hubbert, K.R.; Moghaddas, E.E.Y. Fuel Reduction Practices and Their Effects on Soil Quality; Gen. Tech. Rep. PSW-GTR-241; US Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2014; 156p. [Google Scholar]
- Santín, C.; Doerr, S.H. Carbon. In Fire Effects on Soil Properties; Pereira, P., Mataix-Solera, J., Úbeda, X., Rein, G., Cerdà, A., Eds.; CSIRO Publishing: Melbourne, VIC, Australia, 2019; pp. 115–128. [Google Scholar]
- Boerner, R.E.C.; Hart, S.; Huang, J. Impacts of Fire and Fire Surrogate treatments. Ecol. Appl. 2009, 19, 338–358. [Google Scholar] [CrossRef]
- Bird, M.I.; Wynn, J.G.; Saiz, G.; Wurster, C.M.; McBeath, A. The pyrogenic carbon cycle. Annu. Rev. Earth Planet. Sci. 2015, 43, 273–298. [Google Scholar] [CrossRef]
- Santín, C.; Doerr, S.H.; Kane, E.S.; Masiello, C.A.; Ohlson, M.; de la Rosa, J.M.; Preston, C.M.; Dittmar, T. Towards a global assessment of pyrogenic carbon from vegetation fires. Glob. Chang. Biol. 2016, 22, 76–91. [Google Scholar] [CrossRef]
- Licht, J.; Smith, N.; Mitchell, P.; Shields, F. Impact of lignocellulose and hemicellulose biochars on soil moisture in low clay soils. J. Plant Nutr. Soil Sci. 2017, 180, 576–584. [Google Scholar] [CrossRef]
- Alexis, M.A.; Rasse, D.P.; Knicker, H.; Anquetil, C.; Rumpel, C. Evolution of soil organic matter after prescribed fire: A 20-year chronosequence. Geoderma 2012, 189–190, 98–107. [Google Scholar] [CrossRef]
- DeBano, L.F.; Eberlein, G.E.; Dunn, P.H. Effects of burning on chaparral soils. I. Soil Nitrogen. Soil. Sci. Soc. Am. J. 1979, 43, 504–509. [Google Scholar] [CrossRef]
- Raison, R.J.; Khanna, P.K.; Woods, P.V. Mechanisms of element transfer to the atmosphere during vegetation fires. Can. J. For. Res. 1985, 15, 132–140. [Google Scholar] [CrossRef]
- Wan, S.; Hui, D.; Luo, Y. Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: A meta-analysis. Ecol. Appl. 2001, 11, 1349–1365. [Google Scholar] [CrossRef]
- Gillon, D.; Rapp, M. Nutrient losses during a winter low-intensity prescribed fire in a Mediterranean forest. Plant Soil 1989, 120, 69–77. [Google Scholar] [CrossRef]
- Liechty, H.O.; Hooper, J.J. Long-term effect of periodic fire on nutrient pools and soil chemistry in loblolly-shortleaf pine stands managed with single-tree selection. For. Ecol. Manag. 2016, 380, 252–260. [Google Scholar] [CrossRef]
- Binkley, D.; Richter, D.; David, M.; Caldwell, B. Soil chemistry in a loblolly/longleaf pine forest with interval burning. Ecol. Appl. 1992, 2, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.L.; Binkley, D. Soil nitrogen mineralization and immobilisation in response to periodic prescribed fire in a loblolly pine. Can. J. For. Res. 1989, 19, 816–820. [Google Scholar] [CrossRef] [Green Version]
- Guinto, D.F.; Saffigna, P.G.; Xu, Z.H.; House, A.P.N.; Revera, M.C.S. Soil Nitrogen mineralization and organic matter composition revealed by 13CNMR spectroscopy under repeated prescribed burning in eucalypt forests of South-east Queensland. Aust. J. Soil Res. 1999, 37, 123–135. [Google Scholar] [CrossRef]
- Vance, E.D.; Henderson, G.S. Soil nitrogen availability following long-term burning in an oak-hickory forest. Soil Sci. Soc. Am. J. 1984, 48, 184–190. [Google Scholar] [CrossRef]
- Covington, W.W.; Sackett, S.S. Effect of periodic burning on soil nitrogen concentrations in ponderosa pine. Soil Sci. Soc. Am. J. 1986, 50, 452–457. [Google Scholar] [CrossRef] [Green Version]
- Reich, P.B.; Peterson, D.A.; Wrage, K.; Wedin, D. Fire and vegetation effects on productivity and nitrogen cycling across a forest-grassland continuum. Ecology 2001, 82, 1703–1719. [Google Scholar] [CrossRef]
- Hernández, D.L.; Hobbie, S.E. Effects of fire frequency on oak litter decomposition and nitrogen dynamics. Oecologia 2008, 158, 535–543. [Google Scholar] [CrossRef]
- Wright, R.J.; Hart, S.C. Nitrogen and phosphorus status in a southwestern ponderosa pine forest after 20 yr of interval burning. Ecoscience 1997, 4, 526–533. [Google Scholar] [CrossRef]
- Christensen, N.L. Fire and soil-plant nutrient relations in a pine-wiregrass savanna on the coastal plain of North Carolina. Oecologia 1977, 31, 27–44. [Google Scholar] [CrossRef]
- Hossain, A.; Raison, R.J.; Khanna, P.K. Effects of fertilizer application and fire regime on soil microbial biomass carbon and nitrogen, and nitrogen mineralization in an Australian subalpine eucalypt forest. Biol. Fertil. Soils 1995, 19, 246–252. [Google Scholar] [CrossRef]
- Bastias, B.A.; Huang, Z.Q.; Blumfield, T.; Xu, Z.; Cairney, J.W.G. Influence of repeated prescribed burning on the soil fungal community in an eastern Australian wet sclerophyll forest. Soil Biol. Biochem. 2006, 38, 3492–3501. [Google Scholar] [CrossRef]
- Choromanska, U.; DeLuca, T.H. Microbial activity and nitrogen mineralization in forest mineral soils following heating: Evaluation of post-fire effects. Soil Biol. Biochem. 2002, 34, 263–271. [Google Scholar] [CrossRef]
- Jones, R.; Chambers, J.C.; Johnson, D.W.; Blank, R.R.; Board, D.I. Effect of repeated burning on plant and soil carbon and nitrogen in cheatgrass (Bromus tectorum) dominated ecosystems. Plant Soil 2015, 386, 47–64. [Google Scholar] [CrossRef]
- DeLuca, T.H.; Zouhar, K.L. Effects of selection harvest and prescribed fire on the soil nitrogen status of ponderosa pine forests. For. Ecol. Manag. 2000, 1, 263–271. [Google Scholar] [CrossRef]
- Gómez-Rey, M.X.; González-Prieto, S.J. Short-term impact of a wildfire on net and gross N transformation rates. Biol. Fertil. Soils 2013, 49, 1065–1075. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xu, Z.; Zhou, Q. Impact of fire on soil gross nitrogen transformations in forest ecosystems. J. Soils Sediments 2014, 14, 1030–1040. [Google Scholar] [CrossRef]
- Wright, I.J.; Westoby, M. Nutrient concentration, resorption and lifespan: Leaf traits of Australian sclerophyll species. Funct. Ecol. 2003, 17, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Ponder, F., Jr.; Tadros, M.; Loewenstein, E.F. Microbial properties and litter and soil nutrients after two prescribed fires in developing savannas in an upland Missouri Ozark Forest. For. Ecol. Manag. 2009, 257, 755–763. [Google Scholar] [CrossRef]
- Certini, G.; Moya, D.; Lucas-Borja, M.E.; Mastrolonardo, G. The impact of fire on soil-dwelling biota: A review. For. Ecol. Manag. 2021, 488, 118989. [Google Scholar] [CrossRef]
- Graham, E.B.; Knelman, J.E.; Schindlbacher, A.; Siciliano, S.; Breulmann, M.; Yannarell, A.; Beman, J.M.; Abell, G.; Philippot, L.; Prosser, J.; et al. Microbes as engines of ecosystem function: When does community structure enhance predictions of ecosystem processes? Front. Microbiol. 2016, 7, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nannipieri, P.; Ascher, J.; Ceccherini, M.T.; Landi, L.; Pietramellara, G.; Renella, G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2017, 68, 12–26. [Google Scholar] [CrossRef]
- Schloter, M.; Nannipieri, P.; Sørensen, S.J.; van Elsas, J.D. Microbial indicators of soil quality. Biol. Fertil. Soils 2018, 54, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Boerner, R.E.J.; Brinkman, J. Fire frequency and soil enzyme activity in southern Ohio oak–hickory forests. Appl. Soil. Ecol. 2003, 23, 137–146. [Google Scholar] [CrossRef]
- Campbell, C.; Cameron, C.; Bastias, B.; Chen, C.; Cairney, J. Long term repeated burning in a wet sclerophyll forest reduces fungal and bacterial biomass and responses to carbon substrates. Soil Biol. Biochem. 2008, 40, 2246–2252. [Google Scholar] [CrossRef]
- Catalanotti, A.E.; Giuditta, E.; Marzaioli, R.; Ascoli, D.; Esposito, A.; Strumia, S.; Mazzoleni, S.; Rutigliano, F.A. Effects of single and repeated prescribed burns on soil organic C and microbial activity in a Pinus halepensis plantation of Southern Italy. Appl. Soil. Ecol. 2018, 125, 108–116. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Guerrero, C.; García-Orenes, F.; Bárcenas, G.M.; Torres, M.P. Forest fire effects on soil microbiology. In Fire Effects on Soils and Restoration Strategies; Cerdà, A., Robichaud, P.R., Eds.; Science Publishers: Enfield, NH, USA, 2009; pp. 133–175. [Google Scholar]
- Wang, Q.K.; Zhong, M.C.; Wang, S.L. A meta-analysis on the response of microbial biomass, dissolved organic matter, respiration, and N mineralization in mineral soil to fire in forest ecosystems. For. Ecol. Manag. 2012, 271, 91–97. [Google Scholar] [CrossRef]
- Holden, S.R.; Treseder, K.K. A meta-analysis of soil microbial biomass responses to forest disturbances. Front. Microbiol. 2013, 4, 163. [Google Scholar] [CrossRef] [Green Version]
- Pressler, Y.; Moore, J.C.; Cotrufo, M.F. Belowground community responses to fire: Meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos 2019, 128, 309–327. [Google Scholar] [CrossRef]
- Anderson, I.C.; Bastias, B.A.; Genney, D.T.; Parkin, P.I.; Cairney, J.W.G. Basidiomycete fungal communities in Australian sclerophyll forest soil are altered by repeated prescribed burning. Mycol. Res. 2007, 111, 482–486. [Google Scholar] [CrossRef]
- Bastias, B.A.; Anderson, I.C.; Rangel-Castro, J.I.; Parkin, P.I.; Prosser, J.I.; Cairney, J.W.G. Influence of repeated prescribed burning on incorporation of 13C from cellulose by forest soil fungi as determined by RNA stable isotope probing. Soil Biol. Biochem. 2009, 41, 467–472. [Google Scholar] [CrossRef]
- Shen, J.P.; Chen, C.R.; Lewis, T. Long term repeated fire disturbance alters soil bacterial diversity but not the abundance in an Australian wet sclerophyll forest. Sci. Rep. 2016, 6, 19639. [Google Scholar] [CrossRef] [Green Version]
- Rousk, J.; Brookes, P.C.; Bååth, E. Investigating the mechanisms for the opposing pH-relationships of fungal and bacterial growth in soil. Soil Biol. Biochem. 2010, 42, 926–934. [Google Scholar] [CrossRef]
- Hart, S.C.; DeLuca, T.H.; Newman, G.S.; MacKenzie, M.D.; Boyle, S.I. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For. Ecol. Manag. 2005, 220, 166–184. [Google Scholar] [CrossRef]
- Bradford, M.A.; Jones, T.H.; Bardgett, R.D.; Black, H.I.J.; Boag, B.; Bonkowski, M.; Cook, R.; Eggers, T.; Gange, A.C.; Grayston, S.J.; et al. Impacts of soil faunal community composition on model grassland ecosystems. Science 2002, 298, 615–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Deyn, G.B.; Raaijmakers, C.E.; Zoomer, H.R.; Berg, M.P.; De Ruiter, P.C.; Verhoef, H.A.; Bezemer, T.M.; Van der Putten, W.H. Soil invertebrate fauna enhances grassland succession and diversity. Nature 2003, 422, 711–713. [Google Scholar] [CrossRef] [PubMed]
- García-Palacios, P.; Maestre, F.T.; Kattge, J.; Wall, D.H. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol. Lett. 2013, 16, 1045–1053. [Google Scholar] [CrossRef] [Green Version]
- Mantoni, C.; Di Musciano, M.; Fattorini, S. Use of microarthropods to evaluate the impact of fire on soil biological quality. J. Environ. Manag. 2020, 266, 110624. [Google Scholar] [CrossRef]
- Haimi, J.; Fritze, H.; Moilanen, P. Responses of soil decomposer animals to wood-ash fertilisation and burning in a coniferous forest stand. For. Ecol. Manag. 2000, 129, 53–61. [Google Scholar] [CrossRef]
- Déchêne, A.D.; Buddle, C.M. Effects of experimental forest harvesting on oribatid mite biodiversity. For. Ecol. Manag. 2009, 258, 1331–1341. [Google Scholar] [CrossRef]
- Malmström, A. Life-history traits predict recovery patterns in Collembola species after fire: A 10 year study. Appl. Soil Ecol. 2012, 56, 35–42. [Google Scholar] [CrossRef]
- Wikars, L.O.; Schimmel, J. Immediate effects of fire-severity on soil invertebrates in cut and uncut pine forests. For. Ecol. Manag. 2001, 141, 189–200. [Google Scholar] [CrossRef]
- Berch, S.M.; Battigelli, J.P.; Hope, G.D. Responses of soil mesofauna communities and oribatid mite species to site preparation treatments in high-elevation cutblocks in southern British Columbia. Pedobiologia 2007, 51, 23–32. [Google Scholar] [CrossRef]
- Zaitsev, A.S.; Gongalsky, K.B.; Malmström, A.; Persson, T.; Bengtsson, J. Why are forest fires generally neglected in soil fauna research? A mini-review. Appl. Soil Ecol. 2016, 98, 261–271. [Google Scholar] [CrossRef]
- Moretti, M.; Duelli, P.; Obrist, M.K. Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests. Oecologia 2006, 149, 312–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malmström, A. The importance of measuring fire severity-Evidence from microarthropod studies. For. Ecol. Manag. 2010, 260, 62–70. [Google Scholar] [CrossRef]
- Camann, M.A.; Gillette, N.E.; Lamoncha, K.L.; Mori, S.R. Response of forest soil Acari to prescribed fire following stand structure manipulation in the southern Cascade Range. Can. J. For. Res. 2008, 38, 956–968. [Google Scholar] [CrossRef]
- Saifutdinov, R.A.; Gongalsky, K.B.; Zaitsev, A.S. Evidence of a trait-specific response to burning in springtails (Hexapoda: Collembola) in the boreal forests of European Russia. Geoderma 2018, 332, 173–179. [Google Scholar] [CrossRef]
- Gongalsky, K.B.; Zaitsev, A.S.; Korobushkin, D.I.; Saifutdinov, R.A.; Butenko, K.O.; De Vries, F.T.; Ekschmitt, K.; Degtyarev, M.I.; Gorbunova, Y.; Kostina, N.V.; et al. Forest fire induces short-term shifts in soil food webs with consequences for carbon cycling. Ecol. Lett. 2020, 1–13. [Google Scholar] [CrossRef]
- Brand, R.H. The effect of prescribed burning on epigeic springtails (Insecta: Collembola) of woodland litter. Am. Midl. Nat. 2002, 148, 383. [Google Scholar] [CrossRef]
- Andersen, A.N.; Müller, W.J. Arthropod responses to experimental fire regimes in an Australian tropical savannah: Ordinal-level analysis. Austral Ecol. 2000, 25, 199–209. [Google Scholar] [CrossRef]
- Beyer, S.; Kinnear, A.; Hutley, L.B.; McGuinness, K.; Gibb, K. Assessing the relationship between fire and grazing on soil characteristics and mite communities in a semi-arid savanna of northern Australia. Pedobiologia 2011, 54, 195–200. [Google Scholar] [CrossRef]
- N’Dri, J.K.; N’Da, R.A.G.; Seka, F.A.; Pokou, P.K.; Tondoh, J.E.; Lagerlöf, J.; Kone, M.; Dosso, K.; N’Dri, B.A.; Kone, N.A. Patterns of soil mite diversity in lamto savannah (Côte d’Ivoire) submitted to different fire regimes. Acarologia 2017, 57, 823–833. [Google Scholar] [CrossRef]
- N’Dri, J.K.; Dosso, K.; N’Dri, B.A.; N’Da, R.A.G.; Kone, M.; Kone, N.A.; Seka, F.A.; Pokou, P.K. Biomonitoring and inter-annual variation of soil mite (Acari) diversity and community structure in Lamto Guinean Savannah (Côte d’Ivoire) submitted to different fire regimes. J. Adv. Nat. Sci. 2018, 5, 322–338. [Google Scholar]
- Butler, O.M.; Lewis, T.; Rashti, M.R.; Maunsell, S.C.; Elser, J.J.; Chen, C.; Rezaei Rashti, M.; Maunsell, S.C.; Elser, J.J.; Chen, C. The stoichiometric legacy of fire regime regulates the roles of micro-organisms and invertebrates in decomposition. Ecology 2019, 100, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Collett, N.G.; Neumann, F.G.; Tolhurst, K.G. Effects of two short rotation prescribed fires in spring on surface-active arthropods and earthworms in dry sclerophyll eucalypt forest of west-central Victoria. Aust. For. 1993, 56, 49–60. [Google Scholar] [CrossRef]
- Collett, N. Effects of two short rotation prescribed fires in autumn on surface-active arthropods in dry sclerophyll eucalypt forest of west-central Victoria. For. Ecol. Manag. 1998, 107, 253–273. [Google Scholar] [CrossRef]
- Collett, N.G. Effects of three short rotation prescribed fires in spring on surface-active arthropods in dry sclerophyll eucalypt forest of west-central Victoria. Aust. For. 1999, 62, 295–306. [Google Scholar] [CrossRef]
- Collett, N. Short and long-term effects of prescribed fires in autumn and spring on surface-active arthropods in dry sclerophyll eucalypt forests of Victoria. For. Ecol. Manag. 2003, 182, 117–138. [Google Scholar] [CrossRef]
- Lussenhop, J. Soil arthropod response to prairie burning. Ecology 1976, 57, 88–98. [Google Scholar] [CrossRef]
- Uehara-Prado, M.; Bello AD, M.; Fernandes JD, O.; Santos, A.J.; Silva, I.A.; Cianciaruso, M.V. Abundance of epigaeic arthropods in a Brazilian savanna under different fire frequencies. Zoologia 2010, 27, 718–724. [Google Scholar] [CrossRef] [Green Version]
- Johnson, L.C.; Matchett, J.R. Fire and grazing regulate belowground processes in tallgrass prairie. Ecology 2001, 82, 3377–3389. [Google Scholar] [CrossRef]
- García, F.O.; Rice, C.W. Microbial biomass dynamics in tallgrass prairie. Soil Sci. Soc. Am. J. 1994, 58, 816–823. [Google Scholar] [CrossRef]
- Ojima, D.S.; Schimel, D.S.; Parton, W.J.; Owensby, C.E. Long- and short-term effects of fire on nitrogen cycling in tallgrass prairie. Biogeochemistry 1994, 24, 67–84. [Google Scholar] [CrossRef]
- Wagle, P.; Gowda, P.H. Tallgrass prairie responses to management practices and disturbances: A review. Agronomy 2018, 8, 300. [Google Scholar] [CrossRef]
- Jacobs, K.A.; Nix, B.; Scharenbroch, B.C. The effects of prescribed burning on soil and litter invertebrate diversity and abundance in an Illinois oak woodland. Nat. Areas J. 2015, 35, 318–327. [Google Scholar] [CrossRef] [Green Version]
- York, A. Long-term effects of frequent low-intensity burning on the abundance of litter-dwelling invertebrates in coastal blackbutt forests of southeastern Australia. J. Insect Conserv. 1999, 3, 191–199. [Google Scholar] [CrossRef]
- Coleman, T.W.; Rieske, L.K. Arthropod response to prescription burning at the soil-litter interface in oak-pine forests. For. Ecol. Manag. 2006, 233, 52–60. [Google Scholar] [CrossRef]
- Dress, W.J.; Boerner, R.E.J. Patterns of microarthropod abundance in oak-hickory forest ecosystems in relation to prescribed fire and landscape position. Pedobiologia 2004, 48, 1–8. [Google Scholar] [CrossRef]
- Metz, L.J.; Farrier, M.H. Prescribed burning and populations of soil mesofauna. Environ. Entomol. 1973, 2, 433–440. [Google Scholar] [CrossRef]
- Metz, L.J.; Dindal, D.L. Collembola populations and prescribed burning. Environ. Entomol. 1975, 4, 583–587. [Google Scholar] [CrossRef]
- Majer, J.D. Short-term responses of soil and litter invertebrates to a cool autumn burn in jarrah (Eucalyptus marginata) forest in Western Australia. Pedobiologia 1984, 26, 229–247. [Google Scholar]
- Andersen, A.N. Faunal responses to fire in Australian tropical savannas: Insights from field experiments and their lessons for conservation management. Divers. Distrib. 2020, 1–16. [Google Scholar] [CrossRef]
- Carrera, N.; Barreal, M.E.; Gallego, P.P.; Briones, M.J.I. Soil invertebrates control peatland C fluxes in response to warming. Funct. Ecol. 2009, 23, 637–648. [Google Scholar] [CrossRef]
- Malmström, A.; Persson, T.; Ahlström, K.; Gongalsky, K.B.; Bengtsson, J. Dynamics of soil meso- and macrofauna during a 5-year period after clear-cut burning in a boreal forest. Appl. Soil Ecol. 2009, 43, 61–74. [Google Scholar] [CrossRef]
- Kuiper, I.; de Deyn, G.B.; Thakur, M.P.; Van Groenigen, J.W. Soil invertebrate fauna affect N2O emissions from soil. Glob. Chang. Biol. 2013, 19, 2814–2825. [Google Scholar] [CrossRef]
- Mouillot, D.; Graham, N.A.J.; Villéger, S.; Mason, N.W.H.; Bellwood, D.R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 2013, 28, 167–177. [Google Scholar] [CrossRef]
- Wong, M.K.L.; Guénard, B.; Lewis, O.T. Trait-based ecology of terrestrial arthropods. Biol. Rev. 2019, 94, 999–1022. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P.M. Scientific support to prescribed underburning in southern Europe: What do we know? Sci. Total Environ. 2018, 630, 340–348. [Google Scholar] [CrossRef]
- Dijkstra, F.A.; Adams, M.A. Fire eases imbalances of nitrogen and phosphorus in woody plants. Ecosystems 2015, 18, 769–779. [Google Scholar] [CrossRef]
- Hobley, E.U.; Zoor, L.C.; Shrestha, H.R.; Bennett, L.T.; Weston, C.J.; Baker, T.G. Prescribed fire affects the concentration and aromaticity of soluble soil organic matter in forest soils. Geoderma 2019, 341, 138–147. [Google Scholar] [CrossRef]
- Pellegrini, A.F.A.; Ahlström, A.; Hobbie, S.E.; Reich, P.B.; Nieradzik, L.P.; Staver, A.C.; Scharenbroch, B.C.; Jumpponen, A.; Anderegg, W.R.L.; Randerson, J.T.; et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 2018, 53, 194–198. [Google Scholar] [CrossRef]
- Covington, W.W.; Moore, M.M. Southwestern ponderosa forest structure: Changes since Euro–American settlement. J. For. 1994, 92, 39–47. [Google Scholar] [CrossRef]
- Stambaugh, M.C.; Guyette, R.P.; Marschall, J.M. Longleaf pine (Pinus palustris Mill) fire scars reveal new details of a frequent fire regime. J. Veg. Sci. 2011, 22, 1094–1104. [Google Scholar] [CrossRef]
- Richardson, D.M.; Rundel, P.W.; Jackson, S.T.; Teskey, R.O.; Aronson, J.; Bytnerowicz, A.; Wingfield, M.J.; Proches, S. Human impacts in pine forests: Past, present, and future. Annu. Rev. Ecol. Evol. Syst. 2007, 38, 275–297. [Google Scholar] [CrossRef] [Green Version]
- Keeley, J.E.; Zedler, P.H. Evolution of life histories in Pinus. In Ecology and Biogeography of Pinus; Richardson, D.M., Ed.; Cambridge University Press: Cambridge, UK, 1998; pp. 219–250. [Google Scholar]
- Fernandes, P.M.; Vega, J.A.; Jiménez, E.; Rigolot, E. Fire resistance of European pines. For. Ecol. Manag. 2008, 256, 244–255. [Google Scholar] [CrossRef]
- Bradstock, R.A.; Bedward, M.; Gill, A.M.; Cohn, J.S. Which mosaic? A landscape ecological approach for evaluating interactions between fire regimes, habitat and animals. Wildl. Res. 2005, 32, 409–423. [Google Scholar] [CrossRef] [Green Version]
- Parr, C.L.; Andersen, A.N. Patch mosaic burning for biodiversity conservation: A critique of the pyrodiversity paradigm. Conserv. Biol. 2006, 20, 1610–1619. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.J.S.; Legge, S. Pyrodiversity—why managing fire in food webs is relevant to restoration ecology. Restor. Ecol. 2016, 24, 848–885. [Google Scholar] [CrossRef]
- Pastro, L.A.; Dickman, C.R.; Letnic, M. Burning for biodiversity or burning biodiversity? Prescribed burn vs. wildfire impacts on plants, lizards, and mammals. Ecol. Appl. 2011, 21, 3238–3253. [Google Scholar] [CrossRef]
- Stanturf, J.A.; Palik, B.J.; Dumroese, R.K. Contemporary forest restoration: A review emphasizing function. For. Ecol. Manag. 2014, 331, 292–323. [Google Scholar] [CrossRef]
- Westgate, M.J.; Likens, G.E.; Lindenmayer, D.B. Adaptive management of biological systems: A review. Biol. Conserv. 2013, 158, 128–139. [Google Scholar] [CrossRef]
- Tapp, P.M. Arthropods and Fire: Studies in a Southeast Australian Heathland. Ph.D. Thesis, University of Wollongong, Wollongong, NSW, Australia, 1996. [Google Scholar]
- Parr, C.L.; Chown, S. Burning issues for conservation: A critique of faunal fire research in Southern Africa. Austral Ecol. 2003, 28, 384–395. [Google Scholar] [CrossRef]
- Clarke, M.F. Catering for the needs of fauna in fire management: Science or just wishful thinking? Wild. Res. 2008, 35, 385–394. [Google Scholar] [CrossRef]
- Stephens, S.L.; McIver, J.D.; Boerner, R.E.J.; Fettig, C.J.; Fontaine, J.B.; Hartsough, B.R.; Kennedy, P.L.; Schwilk, D.W. The effects of forest fuel-reduction treatments in the United States. Bioscience 2012, 62, 549–560. [Google Scholar] [CrossRef] [Green Version]
- DeLuca, T.H.; Gundale, M.J.; Brimmer, R.J.; Gao, S. Pyrogenic carbon generation from fire and forest restoration treatments. Front. For. Glob. Chang. 2020, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Santín, C.; Doerr, S.H.; Merino, A.; Bryant, R.; Loader, N.J. Forest floor chemical transformations in a boreal forest fire and their correlations with temperature and heating duration. Geoderma 2016, 264, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Malmström, A.; Persson, T.; Ahlström, K. Effects of fire intensity on survival and recovery of soil microarthropods after a clearcut burning. Can. J. For. Res. 2008, 38, 2465–2475. [Google Scholar] [CrossRef]
- Verble-Pearson, R.; Yanoviak, S. Effects of fire intensity on litter arthropod communities in Ozark Oak Forests, Arkansas, U.S.A. Am. Midl. Nat. 2014, 172, 14–24. [Google Scholar] [CrossRef]
- Buckingham, S.; Murphy, N.; Gibb, H. The effects of fire severity on macroinvertebrate detritivores and leaf litter decomposition. PLoS ONE 2015, 10, e0124556. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P.M.; Botelho, H.S.; Rego, F.C.; Loureiro, C. Empirical modeling of surface fire behavior in maritime pine stands. Int. J. Wildland Fire 2009, 18, 698–710. [Google Scholar] [CrossRef]
- Wade, D.D.; Lunsford, J.D. A Guide for Prescribed Fire in Southern Forests; Gen. Tech. Rep. R8-TP 11; US Department of Agriculture, Forest Service, Southeastern Forest Experiment Station: Asheville, NC, USA, 1989; 63p. [Google Scholar]
- Dupuy, J.L.; Linn, R.R.; Konovalov, V.; Pimont, F.; Vega, J.A.; Jiménez, E. Exploring 3D coupled fire-atmosphere interactions downwind of wind-driven surface fires and their influence on backfiring using the HIGRAD-FIRETEC model. Int. J. Wildland Fire 2011, 20, 734–750. [Google Scholar] [CrossRef]
- Vega, J.A.; Jiménez, E.; Dupuy, J.; Linn, R. Effects of flame interaction on the rate of spread of heading and suppression fires in shrubland experimental fire. Int. J. Wildland Fire 2012, 21, 950–960. [Google Scholar] [CrossRef]
- Carvalho, E.O.; Kobziar, L.N.; Putz, F.E. Fire ignition patterns affect production of charcoal in southern forests. Int. J. Wildland Fire 2011, 20, 474–477. [Google Scholar] [CrossRef]
- Driscoll, D.A.; Lindenmayer, D.B.; Bennett, A.F.; Bode, M.; Bradstock, R.A.; Cary, G.J.; Clarke, M.F.; Dexter, N.; Fensham, R.; Friend, G.; et al. Fire management for biodiversity conservation: Key research questions and our capacity to answer them. Biol. Conserv. 2010, 143, 1928–1939. [Google Scholar] [CrossRef]
- Burrows, N.D. Linking fire ecology and fire management in south-west Australian forest landscapes. For. Ecol. Manag. 2008, 255, 2394–2406. [Google Scholar] [CrossRef]
- Lewis, T.; Reif, M.; Prendergast, E.; Tran, C. The effect of long-term repeated burning and fire exclusion on above- and below-ground Blackbutt (Eucalyptus pilularis) forest vegetation assemblages. Austral Ecol. 2012, 37, 767–778. [Google Scholar] [CrossRef]
- Wells, C.G.; Campbell, R.E.; DeBano, L.F.; Lewis, C.E.; Fredriksen, R.L.; Franklin, E.C.; Froelich, R.C.; Dunn, P.H. Effects of Fire on Soil: A State-of-Knowledge Review; Gen. Tech. Rep. WO-GTR-7; US Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 1979; 34p. [Google Scholar]
- Gharun, M.; Possell, M.; Bell, T.L.; Adams, M.A. Optimisation of fuel reduction burning regimes for carbon, water and vegetation outcomes. J. Environ. Manag. 2017, 203, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.A.; Shoo, L.P.; Wilson, K.A.; Beyer, H.L. Optimising the spatial planning of prescribed burns to achieve multiple objectives in a fire-dependent ecosystem. J. App. Ecol. 2017, 54, 1699–1709. [Google Scholar] [CrossRef] [Green Version]
- Clark, K.L.; Skowronski, N.; Renninger, H.; Scheller, R. Climate change and fire management in the mid-Atlantic region. For. Ecol. Manag. 2014, 327, 306–315. [Google Scholar] [CrossRef] [Green Version]
Soil Property | Vegetation Type (Country) | Frequency | Sampling Time after the Last Fire | Soil Depth (cm) | Change (Relative to UB) | Reference |
---|---|---|---|---|---|---|
Texture, AS, WR | Oak forest (USA) | Every 1, 2 yr for 23 yr | 12, 19, 24 months | 0–10 | No change | [19] |
Texture (sand, silt, clay) | Humid subtropical prairie (USA) | Annual for 12 yr | ≈3 months | 0–10 | No change | [20] |
Clay content | Eucalypt forest (Australia) | Every 2 yr for 20 yr Every 4 yr for 18 yr | 3 yr 5 yr | 0–10 1 | Decrease No change | [22] 2 |
MHC | Pine forest (USA) | Every 2 yr for 16 yr | 6 months | 0–5, 15–20 | Decrease | [23] |
BD | Pine forest (USA) | Every 2 yr for 16 yr | 6 months | 0–5 15–20 | Increase No change | |
Pine forest (Spain) | Two fires in 4 yr | IAF, 1 yr IAF | 0–2 0–5 | No change | [24] | |
Oak-pine forest (USA) | Every 1, 2, 3,4 yr for 12 yr | ≈8 months, 1 yr | 0–10 | [25] | ||
Oak forest (USA) | Every 2 yr for 20 yrEvery 4 yr for 20 yr | 2.5 yr | Increase No change | [26] | ||
Pine-grassland forest (USA) | Every 1, 2 yr for 40 yr | 2 yr | Increase | [27] | ||
Tropical savanna (Zimbabwe) | Every 1, 3, 5 yr for 50 yr | 4, 16, 28 or 52 months | 0–5 | [28] | ||
Humid subtropical prairie (USA) | Annual for 12 yr | ≈3 months | 0–10 | Decrease 3 | [20] |
Vegetation Type (Country) | Frequency | Sampling Time after the Last Fire | Soil Depth (cm) | Change in TC or OC (Relative to UB) | Reference |
---|---|---|---|---|---|
Oak forest (USA) | Every 1, 2 yr for 23 yr | 12, 19, 24 months | 0–10 | Increase | [19] |
Annual for 30 yr | 14 months | 0–5, 5–15 | [32] | ||
Every 2 yr for 20 yr Every 4 yr for 20 yr | 2.5 yr | 0–10 | Decrease No change | [26] | |
Every 1, 4 yr for 45 yr | 1, 5 months | 0–15 | No change | [41] | |
Oak-hickory forest (USA) | Every 1, 2 yr for 4 yr | 1 month or 1 yr | 0–15 cm of A + Oa horizon | No change | [42] |
Oak-pine forest (USA) | Every 1, 2, 3, 4 yr for 12 yr | ≈ 8 months, 1 yr | 0–10 | No change | [25] |
Four fires in 18 yr | 3 yr | 0–10 | [43] | ||
Pine forest (Spain) | Two fires in 4 yr | IAF, 1 yr IAF | 0–2 0–5 | No change | [24] |
Pine forest (USA) | Annual for 20 yr Four fires in 20 yr | IAF | 0–5, 5–10 | Increase after annual fires at 0–5 cm | [33] |
Every 2 yr for 5 yr Spring and autumn fires | 12 or 20 months | 0–30 | Decrease after autumn fires | [34] | |
Pine forest (USA) | Every 1, 2, 4, 7 yr for 10–65 yr | Not indicated | 0–5 or 0–8 1 | In general, no change | [44] |
Every 2, 3, 6 yr for 19 yr | 3, 7 or 10 yr | 0–10 | No change | [45] | |
Every 1.5, 2, 3 yr for 12 yr Every 2 yr for 37 yr | IAF | 0–10 | [46] | ||
Every 5, 15 yr for 18 yr | 2 or 3 yr | 0–15 | [47] | ||
Every 2 yr for 16 yr | 6 months | 0–5, 15–20 | [23] | ||
Pine forest (Australia) | Four fires in 10 yr | IAF | 0–2.5 2.5–7.6 | Decrease after 3rd fire No change | [48] |
Eucalypt forest (Australia) | Every 2 yr for 20 yr Every 4 yr for 18 yr | 3 yr 5 yr | 0–10 2 | Decrease No change | [22] 3 |
Every 3 yr for 13 yr Every 10 yr for 13 yr | 1 or 4 yr | 0–2, 2–5 4 | Decrease No change | [37] | |
Every 3 yr for 27 yr Every 10 yr for 27 yr | 4–8 yr 3–6 yr | 0–30 | Decrease No change | [38] | |
Every 2 yr for 35 yr Every 4 yr for 35 yr | 3.5 yr 5.5 yr | 0–10 | Decrease No change | [39] | |
Every 2 yr for 39 yr Every 4 yr for 39 yr | 3.5–4 yr 5.5–6 yr | 0–10 | Decrease No change | [40] | |
Shrubland (Spain) | Two fires in 9 yr | 3 yr | 0–5 | Increase | [31] |
Shrubland (France) | Every 1 and 2 yr for 5 yr Spring and autumn fires | IAF | 0–5 | Increase after autumn fires | [35] |
Every 1 and 2 yr for 9 yr Spring and autumn fires | IAF | 0–5 | [36] | ||
Humid subtropical prairie (USA) | Annual for 12 yr | ≈3 months | 0–10 | Increase | [20] |
Tropical savanna (Zimbabwe) | Every 1, 3 and 5 yr for 50 yr | 4, 16, 28 or 52 months | 0–5 | Decrease | [28] |
Vegetation Type (Country) | Frequency | Sampling Time after the Last Fire | Soil Depth (cm) | Change in TN or ON (Relative to UB) | Reference |
---|---|---|---|---|---|
Oak forest (USA) | Every 1, 2 yr for 23 yr | 12, 19, 24 months | 0–10 | Increase | [19] |
Annual for 30 yr | 14 months | 0–5, 5–15 | [32] | ||
Every 2, 4 yr for 20 yr | 2.5 yr | 0–10 | No change | [26] | |
Every 1, 4 yr for 45 yr | 1, 5 months | 0–15 | Decrease | [41] | |
Oak-pine forest (USA) | Every 1, 2, 3, 4 yr for 12 yr | ≈ 8 months, 1 yr | 0–10 | No change | [25] |
Four fires in 18 yr | 3 yr | 0–10 | [43] | ||
Pine forest (Spain) | Two fires in 4 yr | IAF, 1 yr IAF | 0–2 0–5 | No change Decrease | [24] |
Pine forest (USA) | Annual for 20 yr Four fires in 20 yr | IAF | 0–5, 5–10 | Increase No change | [33] |
Every 2 yr for 5 yr | 12 or 20 months | 0–30 | No change | [34] | |
Every 1, 2, 4, 7 yr for 10–65 yr | Not indicated | 0–5 or 0–8 1 | [44] | ||
Every 2, 3, 6 yr for 19 yr | 3, 7 or 10 yr | 0–10 | [45] | ||
Every 1.5, 2, 3 yr for 12yr Every 2 yr for 37 yr | IAF | 0–10 | [46] | ||
Every 5, 15 yr for 18 yr | 2 or 3 yr | 0–15 | [47] | ||
Every 2 yr for 16 yr | 6 months | 0–15, 15–30 | [23] | ||
Every 1 to 4 yr for 20 yr | 16 months | 0–5, 5–15 | [61] | ||
Every 1, 2, 3, 4 yr for 30 yr | 1, 2, 3 and 1 yr, respectively | 0–10, 10–20 | [62] | ||
Every 2 yr for 24 yr Every 4 yr for 24 yr | 1 yr | 0–10 | No change Decrease | [63] | |
Pine forest (Australia) | Three and 4 fires repeated every 3 yr | IAF | 0–2.5 2.5–7.6 | Increase Decrease | [48] |
Eucalypt forest (Australia) | Every 2 yr for 20 yr Every 4 yr for 18 yr | 3 yr 5 yr | 0–10 2 | Decrease No change | [22] 3 |
Every 3 yr for 13 yr Every 10 yr for 13 yr | 1 or 4 yr | 0–2 4 | DecreaseNo change | [37] | |
Every 2 yr for 35 yr Every 4 yr for 35 yr | 3.5 yr 5.5 yr | 0–10 | Decrease No change | [39] | |
Every 2 yr for 39 yr Every 4 yr for 39 yr | 3.5–4 yr 5.5–6 yr | 0–10 | Decrease No change | [40] | |
Shrubland (Spain) | Two fires in 9 yr | 3 yr | 0–5 | No change | [31] |
Humid subtropical prairie (USA) | Annual for 12 yr | ≈ 3 months | 0–10 | Increase | [20] |
Vegetation Type (Country) | Frequency | Sampling Time after the Last Fire | Soil Depth (cm) | Change in Inorganic N (Relative to UB) | Reference |
---|---|---|---|---|---|
Oak forest (USA) | Every 1, 2 yr for 23 yr | 12, 19, 24 months | 0–10 | Increase in NO3− and Nmin after 19 months | [19] |
Every 2, 4 yr for 20 yr | 2.5 yr | No change in NH3+ or NO3− | [32] | ||
Annual for 30 yr | 14 months | 0–5 5–15 | No change in NH4+ and increase in NO3−. Increase in Nmin | [26] | |
Mixed-oak forest (USA) | Every 1, 2 yr for 4 yr | 1 month or 1 yr | 0–15 of the A + Oa horizon | No change in Nmin or nitrification | [42] |
Oak-hickory forest (USA) | Every 1, 4 yr for 30 yr | 6 times between IAF and 1 yr later | 0–5 | Decrease in NH4+ and Nmin and no change in NO3− | [65] |
Oak savanna forest (USA) | From 0.13 to 0.81 fires/yr for 32 yr | 1–6 months | 0–15 | Decrease in N min | [67] |
Every 1.25 yr for 37yr Every 2–3 yr for 37 yr | 1, 2 yr | 0–10 | Decrease in NH4+ and NO3− availability | [68] | |
Pine forest (Spain) | Two fires in 4 yr | IAF, 1 yr | 0–2 | No change or decrease in NH4+ and no change in NO3− and Nmin | [24] |
Pine forest (USA) | Every 4 yr for 20 yr | 16 months | 0–5, 5–15 | No change in potential Nmin | [61] |
Every 2 and 4 yr for 24 yr | 1 yr | 0–10 | Decrease in Nmin and nitrification | [63] | |
Every 1, 2 yr for 10 yr Every 4 yr for 10 yr | 7 months, 1 yr or 2 yr | 0–5, 5–15 | Increase in NH4+ Increase in NH4+ and NO3− | [66] | |
Every 2 yr for 20 yr | 1, 2 yr | 0–15 | No change in NH4+ and NO3− and decrease in Nmin | [69] | |
Pine-wiregrass savanna (USA) | Annual for 2 yr | IAF 1, 6 months | 0–5 | Decrease in NH4+ and no change in NH4+ and NO3− | [70] |
Subalpine eucalypt forest (Australia) | Every 2–3 yr for 15 yr Every 7 yr for 15 yr | 18, 22, 24 months | 0–10 | Decrease in Nmin | [71] |
Eucalypt forest (Australia) | Every 2 yr for 20 yr Every 4 yr for 18 yr | 3 yr 5 yr | 0–10 1 | Decrease in Nmin No change in Nmin | [22] 2 |
Every 2 yr for 32 yr Every 4 yr for 32 yr | 3 months > 2 yr | 0–10 | No change in NH4+ or NO3−- and decrease in Nmin No change | [75] | |
Shrubland (USA) | Two fires in 4 yr | 1 yr | 0–5 | No change in soil mineral N | [74] |
Vegetation Type (Country) | Frequency | Sampling Time after the Last Fire | Soil Depth (cm) | Change in P (Relative to UB) | Reference |
---|---|---|---|---|---|
Oak forest (USA) | Every 1, 2 yr for 23 yr | 12, 19, 24 months | 0–10 | No change | [19] |
Every 1, 4 yr for 45 yr | 1, 5 months | 0–15 | Decrease | [41] | |
Annual for 30 yr | 14 months | 0–5, 5–15 | No change | [32] | |
Oak, hickory and pine forests (USA) | Four fires in 18 yr | 3 yr | 0–10 | No change | [43] |
Pine forest (Spain) | Two fires in 4 yr | IAF, 1 yr IAF | 0–2 0–5 | Increase No change | [24] |
Pine forest (USA) | Every 2 yr for 16 yr | 6 months | 0–10 | No change | [23] |
Annual for 20 yr Four fires in 20 yr | IAF | 0–5, 5–10 | Increase after winter annual fires at 0–10 cm | [33] | |
Every 1, 2, 4, 7 yr for 10–65 yr | Not indicated | 0–5 or 0–8 1 | No change, but increases after some fires | [44] | |
Every 1.5, 2, 3 yr for 12 yr Every 2 yr for 37 yr | IAF | 0–10, 10–20 | No change | [46] | |
Every 1 to 4 yr for 20 yr | 16 months | 0–5, 5–15 | [61] | ||
Every 1, 2, 3 and 4 yr for 30 yr | 1, 2, 3 and 1 yr, respectively | 0–10 | [62] | ||
Eucalypt forest: wet sclerophyll site (Australia) | Every 2 yr for 20 yr Every 4 yr for 18 yr | 3 yr 5 yr | 0–10 2 | No change | [22] |
Eucalypt forest: dry sclerophyll site (Australia) | Annual for 41 yr Every 2 or 3 yr for 20 yr | 2 yr 5 yr | Increase No change | ||
Eucalypt forest (Australia) | Every 3, 10 yr for 13 yr | 1 or 4 yr | 0–2, 2–5 3 | No change | [37] |
Shrubland (France) | Every 1 and 2 yr for 9 yr | IAF | 0–5 | No change | [36] |
Shrubland (Spain) | Two fires in 9 yr | 3 years | [31] | ||
Humid subtropical prairie (USA) | Annual for 12 yr | ≈3 months | 0–10 | Decrease | [20] |
Vegetation Type (Country) | Frequency | Sampling Time after the Last Fire | Soil Depth (cm) | Change in pH (Relative to UB) | Reference |
---|---|---|---|---|---|
Oak forest (USA) | Every 1, 2 yr for 23 yr | 12, 19, 24 months | 0–10 | Increase | [19] |
Every 2, 4 yr for 20 yr | 2.5 yr | No change | [26] | ||
Every 1, 4 yr for 45 yr | 1, 5 months | 0–15 | [41] | ||
Oak-pine forest (USA) | Every 1, 2, 3, 4 yr for 12 yr Spring and summer fires | ≈8 months, 1 yr | 0–10 | Increase after annual summer fires | [25] |
Pine forest (Spain) | Two fires in 4 yr | IAF, 1 yr IAF | 0–2 0–5 | No change Increase | [24] |
Pine forest (USA) | Annual for 20 yr Four fires in 20 yr | IAF | 0–5 5–10 | Increase at 0–5 and no change at 5–10 | [33] |
Every 1, 2, 4, 7 yr for 10–65 yr | Not indicated | 0–5 or 0–8 1 | No change | [44] | |
Every 2, 3, 6 yr for 19 yr Winter and summer fires | 3, 7 or 10 yr | 0–10 | [45] | ||
Every 1, 2, 3, 4 yr for 30 yr | 1, 2, 3 and 1 yr, respectively | [62] | |||
Pine forest (Australia) | Four fires in 10 yr | IAF | 0–2.5, 2.5–7.6 | [48] | |
Eucalypt forest: wet sclerophyll site (Australia) | Every 2 yr for 20 yr Every 4 yr for 18 yr | 3 yr 5 yr | 0–10 2 | Increase No change | [22] |
Eucalypt forest: dry sclerophyll site (Australia) | Annual for 41 yr Every 2 or 3 yr for 20 yr | 2 yr 5 yr | 0–10, 10–20 | Increase No change | |
Eucalypt forest (Australia) | Every 2 yr for 35 yr Every 4 yr for 35 yr | 3.5 yr 5.5 yr | 0–10 | Increase No change | [39] |
Shrubland (Spain) | Two fires in 9 yr | 3 yr | 0–5 | No change | [31] |
Humid subtropical prairie (USA) | Annual for 12 yr | ≈3 months | 0–10 | [20] |
Vegetation Type (Country) | Frequency | Sampling Time after the Last Fire | Soil Depth (cm) | Change in K, Ca and Mg 1 (Relative to UB) | Reference |
---|---|---|---|---|---|
Oak forest (USA) | Every 1, 2 yr for 23 yr | 12, 19, 24 months | 0–10 | Increase | [19] |
Oak-pine forest (USA) | Every 1, 2, 3, 4 yr for 12 yr | ≈ 8 months, 1 yr | 0–10 | No change | [25] |
Four fires in 18 yr | 3 yr | 0–10 | [43] | ||
Oak-hickory, oak-hickory-pine and pine savannas (USA) | Annual for 2 yr | 1 yr | 0–5 | No change in K and increase in Ca | [79] |
Pine forest (Spain) | Two fires in 4 yr | IAF, 1 yr IAF | 0–2 0–5 | Increase | [24] |
Pine forest (USA) | Annual for 20 yr Four fires in 20 yr | IAF | 0–5 5–10 | At 0–5: no change in K and increase in Ca and Mg At 5–10: no change | [33] |
Every 1, 2, 4, 7 yr for 10–65 yr | IAF | 0–5 or 0–8 2 | No change (increase in Ca and Mg after some fires) | [44] | |
Every 1.5, 2, 3 yr for 12 yr Every 2 yr for 37 yr | IAF | 0–10, 10–20 | Increase in Ca and decrease in K with frequency | [46] | |
Every 4 yr for 20 yr | 16 months | 0–5, 5–15 | No change | [61] | |
Every 1, 2, 3, 4 yr for 30 yr | 1, 2, 3 and 1 yr, respectively | 0–10 | No change in K and Ca | [62] | |
Pine forest (Australia) | Four fires in 10 yr | Not indicated | 0–2.5 2.5–7.6 | Increase after 3rd fire No change | [48] |
Eucalypt forest: wet sclerophyll site (Australia) | Every 2 yr for 20 yr Every 4 yr for 18 yr | 3 yr 5 yr | 0–10 3 | No change | [22] |
Eucalypt forest: dry sclerophyll site (Australia) | Annual for 41 yr Every 2 or 3 yr for 20 yr | 2 yr 5 yr | 0–10 3 | No change in K and Mg and increase in Ca No change | |
Shrubland (Spain) | Two fires in 9 yr | 3 yr | 0–5 | Decrease | [31] |
Humid subtropical prairie (USA) | Annual for 12 yr | ≈ 3 months | 0–10 | No change | [20] |
Soil Property | Vegetation Type (Country) | Frequency | Sampling Time after the Last Fire | Soil Depth (cm) | Change (Relative to UB) | Reference |
---|---|---|---|---|---|---|
Cmic | Oak forest (USA) | Every 1 and 4 yr for 45 yr | 1, 5 months | 0–15 | Decrease | [41] |
Annual for 30 yr | 14 months | 0–5, 5–15 | No change | [32] | ||
Pine forest (Italy) | Two fires in 5 yr | IAF, 1, 3, 6, 12 months | 0–5 | No change | [86] | |
Eucalypt forest (Australia) | Every 2–3 yr for 15 yr: frequent burns (FB) Every 7 yr for 15 yr: recurrent burns (RB) | 18, 22, 24 months | 0–2.5 2.5–5 5–10 | At all depts.: RB > UB > FB | [71] | |
Nmic | Oak forest (USA) | Every 1 or 2 yr for 23 yr | 12, 19, 24 months | 0–10 | No change | [19] |
Annual for 30 yr | 14 months | 0–5, 5–15 | Increase | [32] | ||
Eucalypt forest (Australia) | Every 2–3 yr for 15 yr Every 7 yr for 15 yr | 18, 22, 24 months | 0–2.5 2.5–5 5–10 | Decreases largest near surface | [71] | |
Pmic | Oak forest (USA) | Annual for 30 yr | 14 months | 0–5, 5–15 | No change | [32] |
Enzyme activities | Oak forest (USA) | Every 1 and 4 yr for 45 yr | 1, 5 months | 0–15 | Decrease in acid phosphatase, α-glucosidase, β-glucosidase and sulphatase and urease | [41] |
Annual for 30 yr | 14 months | 0–5, 5–15 | No change in acid phosphatase, β-glucosidase and N-acetyl-β-d-glucosaminidase | [32] | ||
Oak-hickory forest (USA) | Every 1 and 2 yr for 4 yr | 5 months | 0–15 | Decrease in acid phosphatase and β-glucosidase, increase in phenol oxidase and no change in chitinase | [84] | |
Pine forest (USA) | Every 1, 2, 3 and 4 yr for 30 yr | 1, 2, 3 and 1 yr, respectively | 0–10 | Decrease in acid phosphatase more pronounced after biennial fires | [62] | |
Soil respiration | Oak forest (USA) | Every 1 or 2 yr for 23 yr | 12, 19, 24 months | 0–10 | No change | [19] |
Pine forest (Italy) | Two fires in 5 yr | IAF, 1, 3, 6, 12 months | 0–5 | No change | [86] | |
Soil respiration | Pine-grassland forest (USA) | Every 1 or 2 yr for 40 yr | 1, 2 months | 0–8 | Decrease | [27] |
CLPP | Wet sclerophyll eucalypt forest (Australia) | Every 2 yr for 34 yr Every 4 yr for 34 yr | 21 months 45 months | 0–10 | Decrease in the use of C-substrates No change | [85] |
PLFA | Oak forest (USA) | Every 2 yr for 20 yr Every 4 yr for 20 yr | 2.5 yr | 0–10 | Decrease in Gram-negative bacteria after biennial fires. No change in total PLFA, fungal and bacterial PLFA biomass | [26] |
Oak-hickory, oak-hickory-pine and pine savannas (USA) | Annual for 2 yr | 1 yr | 0–5 | No change in total PLFA. Increase in Gram-positive and Gram-negative bacteria and decrease in fungal PLFA | [79] | |
Wet sclerophyll eucalypt forest (Australia) | Every 2 yr for 34 yr Every 4 yr for 34 yr | 21 months 45 months | 0–10 | Decrease in total PLFA and reduction of bacterial PLFA similar to fungal PLFA after biennial fires | [85] | |
Soil fungal community composition 1 | Pine forest (USA) | Every 2, 3, 6 yr for 19 yr Winter and summer fires | 3, 7 or 10 yr | 0–10 | No changes in richness and diversity. More frequent fires maintain fire-adapted fungal communities | [45] |
Soil fungal community structure 2 | Eucalypt forest: wet sclerophyll site (Australia) | Every 2 yr for 30 yr Every 4 yr for 30 yr | 3 months >2 yr | 0–10, 0–20 | Differences in structure No change | [72] |
Below-ground basidiomycete fungal communities 2 | Every 2 yr for 30 yr Every 4 yr for 30 yr | 3 months 2 yr | 0–10, 0–20 | Differences in structure Minor change | [91] | |
Cellulolytic fungi 3 | Every 2 yr for 34 yr | 3 months | 0–10, 0–20 | Reduction in diversity | [92] | |
Bacterial community diversity 4 | Every 2 yr for 38 yr Every 4 yr for 38 yr | 2 yr 4 yr | 0–10, 0–20 | Increase in in the topsoil and changes in community structure after biennial fires | [93] |
Faunal Group; Method 1 | Vegetation Type (Country) | Frequency | Sampling Time after the Last Fire | Change (Relative to UB) | Reference |
---|---|---|---|---|---|
Microarthropods 2; B-T | Grassland (USA) | Every 2 yr for 20 yr | 7 months | Increase in abundance and richness | [121] |
Collembola; P | Savanna (Australia) | Annually for 5 yr | 2 months | No change in abundance | [112] |
Mites; B-T | Savanna (Australia) | Every 4 yr for 32 yr | Not indicated | No change in abundance or diversity | [113] |
Savanna (Ivory Coast) | Two consecutive yr | 1 month | [114,115] 3 | ||
Collembola; P | Savanna (Brazil) | Annual for 12 yr Every 1–3 yr for 12 yr | 1 yr 3 yr | Increase in abundance | [122] |
Collembola; P | Eucalypt forest (Australia) | Every 2 or 4 yr for 40 yr | 3 yr | No change in abundance | [116] |
Microarthropods; P | Twice in 3 yr | 2 yr | [117] | ||
Twice in 5 yr | [118] | ||||
Every 3 yr for 6 yr | [119] | ||||
Twice in 10 yr | [120] | ||||
Microarthropods; B-T | Every 3 yr for 20 yr | 2 yr | Decrease in abundance | [128] | |
Microarthropods; B-T | Oak forest (USA) | Every 1, 2 or 3 yr for 23 yr | 2 yr | No change in abundance | [19] |
Annual for 30 yr Every 3–4 yr for 30 yr | 1 yr 2 yr | No change in abundance; decrease in mite diversity | [127] | ||
Collembola; B-T | Annual for 16 yr | 6 months | No change in total abundance; change in composition | [111] | |
Microarthropods; B-T | Oak-pine forest (USA) | Twice in 3 yr | 1.5 yr | Decrease in mite abundance | [129] |
Oak-hickory forest (USA) | Annual for 4 yr Twice in 4 yr | 2.5 months | Decrease in abundance No change | [130] | |
Pine forest (USA) | Annual for 20 yr Every 5–8 yr for 20 yr | 1 yr 4 yr | Decrease in abundance after annual fires; change in composition | [131,132] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontúrbel, T.; Carrera, N.; Vega, J.A.; Fernández, C. The Effect of Repeated Prescribed Burning on Soil Properties: A Review. Forests 2021, 12, 767. https://doi.org/10.3390/f12060767
Fontúrbel T, Carrera N, Vega JA, Fernández C. The Effect of Repeated Prescribed Burning on Soil Properties: A Review. Forests. 2021; 12(6):767. https://doi.org/10.3390/f12060767
Chicago/Turabian StyleFontúrbel, Teresa, Noela Carrera, José Antonio Vega, and Cristina Fernández. 2021. "The Effect of Repeated Prescribed Burning on Soil Properties: A Review" Forests 12, no. 6: 767. https://doi.org/10.3390/f12060767
APA StyleFontúrbel, T., Carrera, N., Vega, J. A., & Fernández, C. (2021). The Effect of Repeated Prescribed Burning on Soil Properties: A Review. Forests, 12(6), 767. https://doi.org/10.3390/f12060767