Introducing the Green Infrastructure for Roadside Air Quality (GI4RAQ) Platform: Estimating Site-Specific Changes in the Dispersion of Vehicular Pollution Close to Source
Abstract
:1. Introduction
1.1. Exposure to Air Pollution at the Roadside
1.2. Deposition of Pollution to Street-Scale Vegetation
1.3. Changing Pollution Dispersion Close to Source
1.4. Informing Urban Air Quality Interventions at Planning
2. Materials and Methods
2.1. Open Source Air Quality Code
2.1.1. User-Specified Street Section
2.1.2. Two-Dimensional Street Model
2.1.3. Emissions
2.1.4. Barriers
2.1.5. Mathematical Framework of the Model
2.2. First Tests of Model Performance
2.2.1. Absolute Concentrations in a Real Street Canyon
2.2.2. Impacts of Roadside Barriers in a Simulated Street Canyon
2.2.3. Impact of a Barrier beside a Real Open Road
3. Results
3.1. Absolute Concentrations in a Real Street Canyon
3.2. Impact of Roadside Barriers in a Simulated Street Canyon
3.3. Impact of a Barrier beside a Real Open Road
4. Discussion and Conclusions
4.1. Modelling Absolute NO2 Concentrations
4.2. Modelling Absolute PM2.5 Concentrations
4.3. Roadside Barriers in Street Canyons under Perpendicular Wind Conditions
4.4. Future Developments to Increase the Model’s Predictive Skill and Scope
4.5. Planning Suitable Interventions to Reduce Roadside Exposure to Vehicular Pollution
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forestry Commission. Guidance: Urban Forestry. 2018. Available online: https://www.gov.uk/guidance/urban-forestry (accessed on 5 February 2021).
- Foster, J.; Lowe, A.; Winkelman, S. The Value of Green Infrastructure for Urban Climate Adaptation. 2011. Available online: http://ccap.org/assets/The-Value-of-Green-Infrastructure-for-Urban-Climate-Adaptation_CCAP-Feb-2011.pdf (accessed on 7 June 2021).
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kazmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban. Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Tong, Z.; Baldauf, R.W.; Isakov, V.; Deshmukh, P.; Zhang, K.M. Roadside vegetation barrier designs to mitigate near-road air pollution impacts. Sci. Total Environ. 2016, 541, 920–927. [Google Scholar] [CrossRef] [PubMed]
- CIRIA. B£ST (Benefits Estimation Tool). 2019. Available online: https://www.susdrain.org/resources/best.html (accessed on 25 February 2021).
- Moss, J.L.; Doick, K.J.; Smith, S.; Shahrestani, M. Influence of evaporative cooling by urban forests on cooling demand in cities. Urban. For. Urban. Green. 2019, 37, 65–73. [Google Scholar] [CrossRef] [Green Version]
- ONS. UK Air Pollution Removal: How Much Pollution Does Vegetation Remove in Your Area? 2019. Available online: https://www.ons.gov.uk/economy/environmentalaccounts/articles/ukairpollutionremovalhowmuchpollutiondoesvegetationremoveinyourarea/2018-07-30 (accessed on 5 February 2021).
- Jones, L.; Vieno, M.; Morton, D.; Cryle, P.; Holland, M.; Carnell, E.; Nemitz, E.; Hall, J.; Beck, R.; Reis, S.; et al. Developing Estimates for the Valuation of Air Pollution Removal in Ecosystem Accounts. Final Report for Office for National Statistics. 2017. Available online: http://nora.nerc.ac.uk/id/eprint/524081/7/N524081RE.pdf (accessed on 7 June 2021).
- Rogers, K.; Sacre, K.; Goodenough, J.; Doick, K. Valuing London’s Green Spaces: Results from the London i-Tree Eco Project; Treeconomics: London, UK, 2015. [Google Scholar]
- Urban Forestry. Every Tree Counts: A Portrait of Toronto’s Urban Forest. 2010. Available online: https://www.itreetools.org/documents/349/Toronto_Every_Tree_Counts.pdf (accessed on 7 June 2021).
- IUCN. Guidance for Using the IUCN Global Standard for Nature-Based Solutions. A User-Friendly Framework for the Verification, Design and Scaling Up of Nature-Based Solutions, 1st ed.; IUCN: Gland, Switzerland, 2020. [Google Scholar]
- Transport for London, “Cycleways”. Available online: www.tfl.gov.uk/modes/cycling/routes-and-maps/cycleways (accessed on 25 February 2021).
- Transport for Greater Manchester. Greater Manchester Announces Plans for ‘Beelines’–the UK’s Largest Cycling and Walking Network. 2018. Available online: https://tfgm.com/press-release/beelines (accessed on 25 February 2021).
- Transport for London. Streetspace for London. Available online: www.tfl.gov.uk/travel-information/improvements-and-projects/streetspace-for-london (accessed on 25 February 2021).
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 2008, 120, 475–483. [Google Scholar] [CrossRef]
- Thorpe, A.; Harrison, R.M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 2008, 400, 270–282. [Google Scholar] [CrossRef]
- Air Quality Expert Group. Non-Exhaust Emissions from Road Traffic. 2019. Available online: https://uk-air.defra.gov.uk/assets/documents/reports/cat09/1907101151_20190709_Non_Exhaust_Emissions_typeset_Final.pdf (accessed on 10 November 2019).
- Timmers, V.R.J.H.; Achten, P.A.J. Non-exhaust PM emissions from electric vehicles. Atmos. Environ. 2016, 134, 10–17. [Google Scholar] [CrossRef]
- Abhijith, K.V.; Kumar, P.; Gallagher, J.; McNabola, A.; Baldauf, R.; Pilla, F.; Broderick, B.; Di Sabatino, S.; Pulvirenti, B. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments—A review. Atmos. Environ. 2017, 162, 71–86. [Google Scholar] [CrossRef]
- Air Quality Expert Group. Impacts of Vegetation on Urban Air Pollution. 2018. Available online: https://uk-air.defra.gov.uk/assets/documents/reports/cat09/1807251306_180509_Effects_of_vegetation_on_urban_air_pollution_v12_final.pdf (accessed on 7 June 2021).
- Badach, J.; Dymnicka, M.; Baranowski, A. Urban vegetation in air quality management: A review and policy framework. Sustainability 2020, 12, 1258. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, C.N.; Ashworth, K.; MacKenzie, A.R. Using green infrastructure to improve urban air quality (GI4AQ). Ambio 2020, 49, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Donovan, R.G.; Stewart, H.E.; Owen, S.M.; Mackenzie, A.R.; Hewitt, C.N. Development and application of an urban tree air quality score for photochemical pollution episodes using the Birmingham, United Kingdom, area as a case study. Environ. Sci. Technol. 2005, 39, 6730–6738. [Google Scholar] [CrossRef]
- Jeanjean, A.P.R.; Monks, P.S.; Leigh, R.J. Modelling the effectiveness of urban trees and grass on PM2.5 reduction via dispersion and deposition at a city scale. Atmos. Environ. 2016, 147, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Abhijith, K.V.; Gokhale, S. Passive control potentials of trees and on-street parked cars in reduction of air pollution exposure in urban street canyons. Environ. Pollut. 2015, 204, 99–108. [Google Scholar] [CrossRef]
- Yuan, C.; Ng, E.; Norford, L.K. Improving air quality in high-density cities by understanding the relationship between air pollutant dispersion and urban morphologies. Build. Environ. 2014, 71, 245–258. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, Z. Air quality by urban design. Nat. Geosci. 2013, 6, 506. [Google Scholar] [CrossRef]
- Berardi, U.; GhaffarianHoseini, A.H.; GhaffarianHoseini, A. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Janhäll, S. Review on urban vegetation and particle air pollution-Deposition and dispersion. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- Gallagher, J.; Baldauf, R.; Fuller, C.H.; Kumar, P.; Gill, L.W.; McNabola, A. Passive methods for improving air quality in the built environment: A review of porous and solid barriers. Atmos. Environ. 2015, 120, 61–70. [Google Scholar] [CrossRef]
- Salmond, J.A.; Williams, D.E.; Laing, G.; Kingham, S.; Dirks, K.; Longley, I.; Henshaw, G.S. The influence of vegetation on the horizontal and vertical distribution of pollutants in a street canyon. Sci. Total Environ. 2013, 443, 287–298. [Google Scholar] [CrossRef]
- Pugh, T.A.M.; MacKenzie, A.R.; Whyatt, J.D.; Hewitt, C.N. Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environ. Sci. Technol. 2012, 46, 7692–7699. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.; Vieno, M.; Fitch, A.; Carnell, E.; Steadman, C.; Cryle, P.; Holland, M.; Nemitz, E.; Morton, D.; Hall, J.; et al. Urban natural capital accounts: Developing a novel approach to quantify air pollution removal by vegetation. J. Environ. Econ. Policy 2019, 8, 413–428. [Google Scholar] [CrossRef] [Green Version]
- Buccolieri, R.; Jeanjean, A.P.R.; Gatto, E.; Leigh, R.J. The impact of trees on street ventilation, NOx and PM2.5 concentrations across heights in Marylebone Rd street canyon, central London. Sustain. Cities Soc. 2018, 41, 227–241. [Google Scholar] [CrossRef]
- McDonald, A.G.; Bealey, W.J.; Fowler, D.; Dragosits, U.; Skiba, U.; Smith, R.I.; Donovan, R.G.; Brett, H.E.; Hewitt, C.N.; Nemitz, E. Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. Atmos. Environ. 2007, 41, 8455–8467. [Google Scholar] [CrossRef]
- Maher, B.A.; Ahmed, I.A.M.; Davison, B.; Karloukovski, V.; Clarke, R. Impact of roadside tree lines on indoor concentrations of traffic-derived particulate matter. Environ. Sci. Technol. 2013, 47, 13737–13744. [Google Scholar] [CrossRef] [PubMed]
- Abhijith, K.V.; Kumar, P. Field investigations for evaluating green infrastructure effects on air quality in open-road conditions. Atmos. Environ. 2019, 201, 132–147. [Google Scholar] [CrossRef]
- Ottosen, T.B.; Kumar, P. The influence of the vegetation cycle on the mitigation of air pollution by a deciduous roadside hedge. Sustain. Cities Soc. 2019, 53, 101919. [Google Scholar] [CrossRef]
- Wang, H.; Maher, B.A.; Ahmed, I.A.M.; Davison, B. Efficient removal of ultrafine particles from diesel exhaust by selected tree species: Implications for roadside planting for improving the quality of urban air. Environ. Sci. Technol. 2019, 53, 6906–6916. [Google Scholar] [CrossRef]
- Forestry Commission. Urban Tree Manual. 2018. Available online: https://www.forestresearch.gov.uk/tools-and-resources/urban-tree-manual/ (accessed on 21 January 2021).
- Harman, I.N.; Barlow, J.F.; Belcher, S.E. Scalar fluxes from urban street canyons. Part II: Model. Bound. Layer Meteorol. 2004, 113, 397–409. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Routledge: New York, NY, USA, 1987. [Google Scholar]
- Barlow, J.F.; Harman, I.N.; Belcher, S.E. Scalar fluxes from urban street canyons. Part I: Laboratory simulation. Bound. Layer Meteorol. 2004, 113, 369–385. [Google Scholar] [CrossRef]
- Karra, S.; Malki-Epshtein, L.; Neophytou, M.K.A. Air flow and pollution in a real, heterogeneous urban street canyon: A field and laboratory study. Atmos. Environ. 2017, 165, 370–384. [Google Scholar] [CrossRef]
- UK Met Office MIDAS Open: UK Land Surface Stations Data 1853-Current. Centre for Environmental Data Analysis. 2019. Available online: http://data.ceda.ac.uk/badc/ukmo-midas-open (accessed on 8 March 2021).
- NAEI. Emission Factors for Transport. 2020. Available online: https://naei.beis.gov.uk/data/ef-transport (accessed on 8 March 2021).
- Ranasinghe, D.; Lee, E.S.; Zhu, Y.; Frausto-Vicencio, I.; Choi, W.; Sun, W.; Mara, S.; Seibt, U.; Paulson, S.E. Effectiveness of vegetation and sound wall-vegetation combination barriers on pollution dispersion from freeways under early morning conditions. Sci. Total Environ. 2019, 658, 1549–1558. [Google Scholar] [CrossRef]
- Vallero, D.A. Physical transport of air pollutants. In Air Pollution Calculations: Quantifying Pollutant Formation, Transport, Transformation, Fate and Risks; Elsevier: Amsterdam, The Netherlands, 2019; pp. 123–143. [Google Scholar]
- Gromke, C.; Jamarkattel, N.; Ruck, B. Influence of roadside hedgerows on air quality in urban street canyons. Atmos. Environ. 2016, 139, 75–86. [Google Scholar] [CrossRef]
- Deshmukh, P.; Isakov, V.; Venkatram, A.; Yang, B.; Zhang, K.M.; Logan, R.; Baldauf, R. The effects of roadside vegetation characteristics on local, near-road air quality. Air Qual. Atmos. Heal. 2019, 12, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Hood, C.; Stocker, J.; Seaton, M.; Johnson, K.; O’Neill, J.; Thorne, L.; Carruthers, D. Comprehensive evaluation of an advanced street canyon air pollution model. J. Air Waste Manag. Assoc. 2021, 71, 247–267. [Google Scholar] [CrossRef]
- Galatioto, F.; Bell, M.C. Exploring the processes governing roadside pollutant concentrations in urban street canyon. Environ. Sci. Pollut. Res. 2013, 20, 4750–4765. [Google Scholar] [CrossRef]
- Department for Transport. Road Traffic Statistics: Site Number: 57537. 2016. Available online: https://roadtraffic.dft.gov.uk/manualcountpoints/57537 (accessed on 25 February 2021).
- GLA and TFL Air Quality. London Atmospheric Emissions (LAEI) 2016. 2019. Available online: https://data.london.gov.uk/dataset/london-atmospheric-emissions-inventory--laei--2016 (accessed on 10 March 2021).
- Carslaw, D.C.; Beevers, S.D. Investigating the potential importance of primary NO2 emissions in a street canyon. Atmos. Environ. 2004, 38, 3585–3594. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Beevers, S.D. Development of an urban inventory for road transport emissions of NO2 and comparison with estimates derived from ambient measurements. Atmos. Environ. 2005, 39, 2049–2059. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Beevers, S.D. Estimations of road vehicle primary NO2 exhaust emission fractions using monitoring data in London. Atmos. Environ. 2005, 39, 167–177. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Murrells, T.P.; Andersson, J.; Keenan, M. Have vehicle emissions of primary NO2 peaked? Faraday Discuss. 2016, 189, 439–454. [Google Scholar] [CrossRef]
- Derwent, R.G.; Middleton, D.R. An empirical function for the ratio NO2:NOx. UK Clean Air 1996, 26, 57–602. [Google Scholar]
- Dixon, J.; Middleton, D.R.; Derwent, R.G. Sensitivity of nitrogen dioxide concentrations to oxides of nitrogen controls in the United Kingdom. Atmos. Environ. 2001, 35, 3715–3728. [Google Scholar] [CrossRef]
- Stedman, J.R.; Bush, T.J.; Vincent, K.J.; Baggott, S. UK Air Quality Modelling for Annual Reporting 2002 on Ambient Air Quality Assessment under Council Directives 96/62/EC and 1999/30/EC. Report AEAT/ENV/R/1564. 2003. Available online: https://uk-air.defra.gov.uk/assets/documents/reports/cat05/0402061100_dd12002mapsrep1-2.pdf (accessed on 7 June 2021).
- Jenkin, M.E. Analysis of sources and partitioning of oxidant in the UK-Part 1: The NO X-dependence of annual mean concentrations of nitrogen dioxide and ozone. Atmos. Environ. 2004, 38, 5117–5129. [Google Scholar] [CrossRef]
- DEFRA. UK AIR Air Information Resource. UK Ambient AQ Map. Available online: https://uk-air.defra.gov.uk/data/gis-mapping/ (accessed on 31 March 2021).
- EPA. AirData Air Quality Monitors. Available online: https://epa.maps.arcgis.com/apps/webappviewer/index.html?id=5f239fd3e72f424f98ef3d5def547eb5&extent=-146.2334,13.1913,-46.3896,56.5319 (accessed on 19 February 2021).
- Air Quality Expert Group. Fine Particulate Matter (PM 2.5) in the United Kingdom. 2012. Available online: https://uk-air.defra.gov.uk/assets/documents/reports/cat11/1212141150_AQEG_Fine_Particulate_Matter_in_the_UK.pdf (accessed on 5 April 2021).
- DEFRA. UK Plan for Tackling Roadside Nitrogen Dioxide Concentrations. 2017. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/633270/air-quality-plan-detail.pdf (accessed on 5 April 2021).
- Xia, J.Y.; Leung, D.Y.C.; Hussaini, M.Y. Numerical simulations of flow-field interactions between moving and stationary objects in idealized street canyon settings. J. Fluids Struct. 2006, 22, 315–326. [Google Scholar] [CrossRef]
- Tiwary, A.; Robins, A.; Namdeo, A.; Bell, M. Air flow and concentration fields at urban road intersections for improved understanding of personal exposure. Environ. Int. 2011, 37, 1005–1018. [Google Scholar] [CrossRef]
- Cai, C.; Ming, T.; Fang, W.; de Richter, R.; Peng, C. The effect of turbulence induced by different kinds of moving vehicles in street canyons. Sustain. Cities Soc. 2020, 54, 1–8. [Google Scholar] [CrossRef]
- Cambustion. Ultra-Fast Ambient NOx Measurements. 2021. Available online: https://www.youtube.com/watch?v=ipcxc4kVoaM (accessed on 14 April 2021).
- UK Met Office. UK Regional Climates. Available online: www.metoffice.gov.uk/research/climate/maps-and-data/regional-climates/index (accessed on 8 March 2021).
- Holmes, J.D. Wind Loading of Structures, 1st ed.; Spoon Press: London, UK, 2001. [Google Scholar]
- Cheng, W.C.; Liu, C.H. Large-eddy simulation of turbulent transports in urban street canyons in different thermal stabilities. J. Wind Eng. Ind. Aerodyn. 2011, 99, 434–442. [Google Scholar] [CrossRef] [Green Version]
- Soulhac, L.; Perkins, R.J.; Salizzoni, P. Flowin a street canyon for any external wind direction. Bound. Layer Meteorol. 2008, 126, 365–388. [Google Scholar] [CrossRef]
- Chatzimichailidis, A.E.; Argyropoulos, C.D.; Assael, M.J.; Kakosimos, K.E. Implicit definition of flow patterns in street canyons-recirculation zone-using exploratory quantitative and qualitative methods. Atmosphere 2019, 10, 794. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Lam, K.M. Geometry effects on mean wake topology and large-scale coherent structures of wall-mounted prisms. Phys. Fluids 2019, 31, 1–17. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Nguyen, T.C.; Nguyen, J. Numerical simulation of turbulent flow and pollutant dispersion in urban street canyons. Atmosphere 2019, 10, 683. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pearce, H.; Levine, J.G.; Cai, X.; MacKenzie, A.R. Introducing the Green Infrastructure for Roadside Air Quality (GI4RAQ) Platform: Estimating Site-Specific Changes in the Dispersion of Vehicular Pollution Close to Source. Forests 2021, 12, 769. https://doi.org/10.3390/f12060769
Pearce H, Levine JG, Cai X, MacKenzie AR. Introducing the Green Infrastructure for Roadside Air Quality (GI4RAQ) Platform: Estimating Site-Specific Changes in the Dispersion of Vehicular Pollution Close to Source. Forests. 2021; 12(6):769. https://doi.org/10.3390/f12060769
Chicago/Turabian StylePearce, Helen, James G. Levine, Xiaoming Cai, and A. Rob MacKenzie. 2021. "Introducing the Green Infrastructure for Roadside Air Quality (GI4RAQ) Platform: Estimating Site-Specific Changes in the Dispersion of Vehicular Pollution Close to Source" Forests 12, no. 6: 769. https://doi.org/10.3390/f12060769
APA StylePearce, H., Levine, J. G., Cai, X., & MacKenzie, A. R. (2021). Introducing the Green Infrastructure for Roadside Air Quality (GI4RAQ) Platform: Estimating Site-Specific Changes in the Dispersion of Vehicular Pollution Close to Source. Forests, 12(6), 769. https://doi.org/10.3390/f12060769