The Difficulty of Predicting Eastern Spruce Dwarf Mistletoe in Lowland Black Spruce: Model Benchmarking in Northern Minnesota, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. ESDM Model
2.3. Model Benchmarking
2.4. Analysis
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woods, A.J.; Watts, M. The extent to which an unforeseen biotic disturbance can challenge timber expectations. For. Ecol. Manag. 2019, 453, 117558. [Google Scholar] [CrossRef]
- Woods, A.; Coates, K.D. Are biotic disturbance agents challenging basic tenets of growth and yield and sustainable forest management? Forestry 2013, 86, 543–554. [Google Scholar] [CrossRef] [Green Version]
- Forest Health US Forest Service. Available online: https://www.fs.usda.gov/science-technology/forest-health (accessed on 4 May 2021).
- Hantula, J.; Muller, M.M.; Uusivuori, J. International plant trade associated risks: Laissez- faire or novel solutions. Environ. Sci. Policy 2014, 37, 158–160. [Google Scholar] [CrossRef]
- Kappel, A.P.; Trotter, R.T.; Keena, M.A.; Rogan, J.; Williams, C.A. Mapping of the Asian longhorned beetle’s time to maturity and risk to invasion at contiguous United States extent. Biol. Invasions 2017, 19, 1999–2013. [Google Scholar] [CrossRef]
- Kolka, R.K.; D’Amato, A.W.; Wagenbrenner, J.W.; Slesak, R.A.; Pypker, T.G.; Youngquist, M.B.; Grinde, A.R.; Palik, B.J. Review of ecosystem level impacts of emerald ash borer on black ashwetlands: What does the future hold? Forests 2018, 9, 179. [Google Scholar] [CrossRef] [Green Version]
- Baker, F.A.; Slivitsky, M.; Knowles, K. Impact of dwarf mistletoe on jack pine forests in Manitoba. Plant Dis. 1992, 76. [Google Scholar] [CrossRef]
- Windmuller-Campione, M.A. Assessing the future susceptibility of mountain pine beetle (Dendroctonus ponderosae) in the Great Lakes Region using forest composition and structural attributes. Can. J. For. Res. 2018, 48, 451–459. [Google Scholar] [CrossRef]
- Mckee, F.R.; Aukema, B.H. Influence of temperature on the reproductive success, brood development and brood fitness of the eastern larch beetle Dendroctonus simplex LeConte. Agric. For. Entomol. 2015, 17, 102–112. [Google Scholar] [CrossRef]
- Ward, S.F.; Aukema, B.H. Anomalous outbreaks of an invasive defoliator and native bark beetle facilitated by warm temperatures, changes in precipitation and interspecific interactions. Ecography 2019, 42, 1068–1078. [Google Scholar] [CrossRef] [Green Version]
- Nagel, L.M.; Palik, B.J.; Battaglia, M.A.; D’Amato, A.W.; Guldin, J.M.; Swanston, C.W.; Janowiak, M.K.; Powers, M.P.; Joyce, L.A.; Millar, C.I.; et al. Adaptive silviculture for climate change: A national experiment in manager-scientist partnerships to apply an adaptation framework. J. For. 2017, 115, 167–178. [Google Scholar] [CrossRef]
- Waring, K.M.; O’Hara, K.L. Silvicultural strategies in forest ecosystems affected by introduced pests. For. Ecol. Manag. 2005, 209, 27–41. [Google Scholar] [CrossRef]
- Host, T.K.; Russell, M.B.; Windmuller-Campione, M.A.; Slesak, R.A.; Knight, J.F. Ash presence and abundance derived from composite landsat and sentinel-2 time series and lidar surface models in Minnesota, USA. Remote Sens. 2020, 12, 1341. [Google Scholar] [CrossRef] [Green Version]
- Campbell, E.M.; Antos, J.A. Distribution and severity of white pine blister rust and mountain pine beetle on whitebark pine in British Columbia. Can. J. For. Res. 2000, 30, 1051–1059. [Google Scholar] [CrossRef]
- Hanks, E.M.; Hooten, M.B.; Baker, F.A. Reconciling multiple data sources to improve accuracy of large-scale prediction of forest disease incidence. Ecol. Appl. 2011, 21, 1173–1188. [Google Scholar] [CrossRef] [PubMed]
- Crocker, S.J.; Liknes, G.C.; McKee, F.R.; Albers, J.S.; Aukema, B.H. Stand-level factors associated with resurging mortality from eastern larch beetle (Dendroctonus simplex LeConte). For. Ecol. Manag. 2016, 375, 27–34. [Google Scholar] [CrossRef]
- Baker, F.A.; French, D.W.; Rose, D.W. DMLOSS: A simulator of losses in dwarf mistletoe infested black spruce stands. For. Sci. 1982, 28, 590–598. [Google Scholar]
- Patton, S.R.; Russell, M.B.; Windmuller-Campione, M.A.; Edgar, C.B. Modeled diameter growth response to intermediate treatments of planted white spruce (Picea 2 glauca) affected by eastern spruce budworm (Choristoneura fumiferana) in Minnesota, USA. Can. J. For. Res. 2019, 55, 259–267. [Google Scholar] [CrossRef]
- Box, G.E.P.; Draper, N.R. Empirical Model-Building and Response Surfaces; John Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
- Weiskittel, A.R.; Hann, D.W.; Kershaw, J.A.; Vanclay, J.K. Model evaluation and calibration. In Forest Growth and Yield Modeling; Wiley-Blackwell: Chichester, UK; Hoboken, NJ, USA, 2011; pp. 295–309. [Google Scholar]
- Bell, D.M.; Schlaepfer, D.R. On the dangers of model complexity without ecological justification in species distribution modeling. Ecol. Modell. 2016, 330, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Kimmins, J.P.; Blanco, J.A.; Seely, B.; Welham, C.; Scoullar, K. Complexity in modelling forest ecosystems: How much is enough? For. Ecol. Manag. 2008, 256, 1646–1658. [Google Scholar] [CrossRef]
- Brassard, B.W.; Chen, H.Y.H. Stand structural dynamics of North American boreal forests. Crit. Rev. Plant Sci. 2006, 25, 115–137. [Google Scholar] [CrossRef]
- Seymour, R.S.; Hunter, M.L.J. New forestry in eastern spruce-fir forests: Principles and applications to Maine. Maine Misc. Publ. 1992, 716, 1–36. [Google Scholar]
- Stockstad, A.; Gray, E.; Sebestyen, S.; Lany, N.; Kolka, R.; Windmuller-Campione, M. Analyzing trends in water table elevations at the Marcell Experimental Forest, Minnesota, U.S.A. Am. J. Undergrad. Res. 2021, 17, 19–32. [Google Scholar] [CrossRef]
- Lavoie, M.; Paré, D.; Bergeron, Y. Impact of global change and forest management on carbon sequestration in northern forested peatlands. Environ. Rev. 2005, 13, 199–240. [Google Scholar] [CrossRef]
- Ostry, M.E.; Nicholls, T.H. Eastern dwarf mistletoe on black spruce. Dept. Agric. For. Serv. 1979, 158, 2–7. [Google Scholar]
- Skay, R.; Windmuller-Campione, M.A.; Russell, M.B.; Reuling, L.F. Influence of eastern spruce dwarf mistletoe on stand structure and composition in northern Minnesota. For. Ecol. Manag. 2021, 481, 118712. [Google Scholar] [CrossRef]
- Harper, K.A.; Bergeron, Y.; Gauthier, S.; Drapeau, P. Post-fire development of canopy structure and composition in black spruce forests of Abitibi, Québec: A landscape scale study. Silva Fenn. 2002, 36, 249–263. [Google Scholar] [CrossRef] [Green Version]
- Heinselman, M.L. Forest sites, bog processes, and peatland types in the Glacial Lake Agassiz Region, Minnesota. Ecol. Monogr. 1963, 33, 327–374. [Google Scholar] [CrossRef]
- Minnesota Department of Natural Resources. Black Spruce Timber Sale Design and Control Guidelines for Minimizing the Threat of Eastern Dwarf Mistletoe; Minnesota Department of Natural Resources: St. Paul, MN, USA, 2019. [Google Scholar]
- Hudler, G.; Nicholls, T.; French, D.W.; Warner, G. Dissemination of seeds of the eastern dwarf mistletoe by birds. Can. J. For. Res. 1974, 4, 409–412. [Google Scholar] [CrossRef]
- Baker, F.A.; French, D.W. Spread of Arceuthobium pusillum and rate of infection and mortality in black spruce stands. Plant Dis. 1980, 64, 1074–1076. [Google Scholar] [CrossRef]
- Bailey, R.G. Description of the Ecoregions of the United States; U.S. Department of Agriculture, Miscellaneous publication No. 1391; U.S. Department of Agriculture: Washington, DC, USA, 1980.
- Aaseng, N.E.; Almendinger, J.C.; Rusterholz, K.; Wovcha, D.; Klein, T.R. Field Guide to the Native Plant Communities of Minnesota: The Laurentian Mixed Forest Province; Minnesota Department of Natural Resources: Saint Paul, MN, USA, 2003. [Google Scholar]
- Eyre, F.H. Forest Cover Types of the United States and Canada, 6th ed.; Society of American Foresters: Washington, DC, USA, 1980. [Google Scholar]
- Miles, P.D. Forest Inventory EVALIDator Web-Application, Version 1.6.0.03. Available online: http://apps.fs.fed.us/Evalidator/evalidator.jsp (accessed on 17 April 2017).
- Hawksworth, F.G. The 6-Class Dwarf Mistletoe Rating System; Rocky Mountain Forest and Range Experiment Station, Forest Service, U.S. Deptartment of Agriculture: Fort Collins, CO, USA, 1977.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. Available online: https://www.r-project.org/ (accessed on 25 June 2020).
- Landscape Change Research Group. Climate Change Atlas; Northern Research Station, U.S. Forest Service: Delaware, OH, USA, 2014.
- Dymond, S.F.; D’Amato, A.W.; Kolka, R.K.; Bolstad, P.V.; Sebestyen, S.D.; Gill, K.; Curzon, M.T. Climatic controls on peatland black spruce growth in relation to water table variation and precipitation. Ecohydrology 2019, 12, e2137. [Google Scholar] [CrossRef] [Green Version]
- Baker, F.A.; Knowles, K.R. Case Study: 36 Years of dwarf mistletoe in a regenerating black spruce stand in northern Minnesota. North. J. Appl. For. 2004, 21, 150–153. [Google Scholar] [CrossRef] [Green Version]
- Aukema, B.H.; Carroll, A.L.; Zhu, J.; Raffa, K.F.; Sickley, T.A.; Taylor Aukema, S.W.; Carroll, Á.A.; Taylor, S.; Raffa, Á.K. Landscape level analysis of mountain pine beetle in British Columbia, Canada: Spatiotemporal development and spatial synchrony within the present outbreak. Ecography (Cop.) 2006, 29, 427–441. [Google Scholar] [CrossRef]
- Boulanger, Y.; Arseneault, D. Spruce budworm outbreaks in eastern Quebec over the last 450 years. Can. J. For. Res. 2004, 34, 1035–1043. [Google Scholar] [CrossRef]
- Diskin, M.; Rocca, M.E.; Nelson, K.N.; Aoki, C.F.; Romme, W.H. Forest developmental trajectories in mountain pine beetle disturbed forests of Rocky Mountain National Park, Colorado. Can. J. For. Res. 2011, 41, 782–792. [Google Scholar] [CrossRef] [Green Version]
Regression Coefficients for y | Regression Coefficients for Φ | Regression Coefficients for Ψ |
---|---|---|
Cover type size class | Mortality of dominant species | Cover type size class |
Stand “wetness“code | Presence of tamarack | Understory size class |
Stand density (1000 board-feet/acre) | Lowland black spruce cover type | Mortality of dominant species |
Height of dominant species | Understory density | |
Mortality of dominant species | Presence of northern white cedar | |
Understory density | Spatial autocovariate (ac Ψ) | |
Presence of tamarack | ||
Presence of northern white cedar | ||
Presence of lowland black spruce | ||
Presence of balsam fir | ||
Stagnant spruce cover type | ||
Aspen cover type | ||
Jack pine cover type | ||
Spatial autocovariate (acy) |
Predicted | Observed | ||
---|---|---|---|
ESDM Absent | ESDM Present | Total | |
ESDM absent | 7 | 6 | 13 |
ESDM present | 6 | 6 | 12 |
Total | 13 | 12 | 25 |
Observed ESDM Free/ Predicted ESDM Free (n = 7) | Observed ESDM/ Predicted ESDM free (n = 6) | |||||||||
Mean | SE | Min | Max | Mean | SE | Min | Max | |||
Trees per hectare | 2218 | a | 91.8 | 1089 | 3117 | 2252 | a | 107.0 | 1238 | 3444 |
Basal area (m2/ha) | 26.3 | a | 0.85 | 22.3 | 34.7 | 25.4 | a | 1.26 | 18.6 | 34.9 |
Black spruce BA (m2/ha) | 21.6 | a | 0.81 | 17.8 | 31.3 | 19.8 | a,b | 0.98 | 14.8 | 24.5 |
Dead black spruce BA (m2/ha) | 2.3 | a | 0.24 | 0.7 | 3.6 | 3.4 | a | 0.34 | 1.3 | 5.0 |
Mean DBH (cm) | 12.2 | a | 0.31 | 9.7 | 17.0 | 11.6 | a | 0.40 | 7.8 | 14.5 |
Species richness | 4.4 | a | 0.81 | 3 | 9 | 4.2 | a | 0.87 | 2 | 7 |
DNR reported age | 88.4 | a | 4.85 | 66 | 105 | 87.7 | a | 4.78 | 73 | 107 |
Observed ESDM Free/ Predicted ESDM (n = 6) | Observed ESDM/ Predicted ESDM (n = 6) | |||||||||
Mean | SE | Min | Max | Mean | SE | Min | Max | |||
Trees per hectare | 2483 | a | 139.5 | 1244 | 3861 | 1870 | a | 107.6 | 883 | 3439 |
Basal area (m2/ha) | 22.2 | a | 1.0 | 15.1 | 28.3 | 21.9 | a | 1.16 | 14.0 | 29.0 |
Black spruce BA (m2/ha) | 17.1 | b,c | 0.89 | 13.6 | 25.9 | 15.0 | c | 1.08 | 7.1 | 21.8 |
Dead black spruce BA (m2/ha) | 1.6 | a | 0.18 | 0.6 | 2.4 | 7.4 | b | 0.92 | 2.5 | 18.0 |
Mean DBH (cm) | 10.7 | a | 0.36 | 6.6 | 14.5 | 11.4 | a | 0.40 | 8.0 | 14.0 |
Species richness | 4.0 | a | 0.93 | 2 | 7 | 6.2 | a | 1.01 | 2 | 9 |
DNR reported age | 96.3 | a | 6.70 | 73 | 111 | 90.2 | a | 4.15 | 77 | 103 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gray, E.R.; Russell, M.B.; Windmuller-Campione, M.A. The Difficulty of Predicting Eastern Spruce Dwarf Mistletoe in Lowland Black Spruce: Model Benchmarking in Northern Minnesota, USA. Forests 2021, 12, 843. https://doi.org/10.3390/f12070843
Gray ER, Russell MB, Windmuller-Campione MA. The Difficulty of Predicting Eastern Spruce Dwarf Mistletoe in Lowland Black Spruce: Model Benchmarking in Northern Minnesota, USA. Forests. 2021; 12(7):843. https://doi.org/10.3390/f12070843
Chicago/Turabian StyleGray, Ella R., Matthew B. Russell, and Marcella A. Windmuller-Campione. 2021. "The Difficulty of Predicting Eastern Spruce Dwarf Mistletoe in Lowland Black Spruce: Model Benchmarking in Northern Minnesota, USA" Forests 12, no. 7: 843. https://doi.org/10.3390/f12070843
APA StyleGray, E. R., Russell, M. B., & Windmuller-Campione, M. A. (2021). The Difficulty of Predicting Eastern Spruce Dwarf Mistletoe in Lowland Black Spruce: Model Benchmarking in Northern Minnesota, USA. Forests, 12(7), 843. https://doi.org/10.3390/f12070843