The Pedogenesis of Soil Derived from Carbonate Rocks along a Climosequence in a Subtropical Mountain, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Setting
2.2. Field Site Locations
2.3. Physical and Chemical Analyses
2.4. Data Analysis Results
2.4.1. Weathering Indices and Elemental Concentrations
2.4.2. Soil Classification
3. Results
3.1. General Soil Characterization
3.2. Total Elements’ Content
3.2.1. Fine-Earth Fractions
3.2.2. Clay Fractions
3.2.3. Multivariate Analyses
3.3. X-ray Diffraction
3.4. Soil Classification
4. Discussion
4.1. Changes in the Soil Properties
4.2. Weathering and Leaching Intensity
4.3. Classification and Evolution Determinations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Braithwaite, C.J.R. Carbonate rocks. Nature 1967, 216, 1051. [Google Scholar] [CrossRef]
- Li, D.T.; Luo, Y. Measurement of carbonated rocks distribution area in China. Carsologica Sin. 1983, 02, 61–64. (In Chinese) [Google Scholar]
- Li, D.; Ji, H. Determining CO2 consumption from elemental change in soil profiles developed on carbonate and silicate rocks. Acta Geochim. 2015, 177–193. [Google Scholar] [CrossRef]
- Clow, D.W.; Mast, M.A. Mechanisms for chemostatic behavior in catchments: Implications for CO2 consumption by mineral weathering. Chem. Geol. 2010, 269, 51. [Google Scholar] [CrossRef]
- Ning, J. Study on the Character Diagnostic Characteristic of Calcareous Soil in Kaster Ecological Environment of Guizhou Province. Master’s Thesis, Guizhou University, Guizhong, China, 2009. (In Chinese). [Google Scholar]
- Lv, M.H.; Wang, H.Y.; Cai, Y.L. General Review of Soil Erosion in the Karst Area of Southwest China. Prog. Geogr. 2007, 26, 87–96. [Google Scholar] [CrossRef]
- Xiao, H.; Weng, Q. The impact of land use and land cover changes on land surface temperature in a karst area of China. J. Environ. Manag. 2007, 85, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, W.R.; Romero, R.E.; de Souza Júnior, V.S.; Cooper, M.; Sartor, L.R.; de Moya Partiti, C.S.; Jorge, F.D.O.; Cohen, R.; de Jesus, S.L.; Ferreira, T.O. Effects of slope orientation on pedogenesis of altimontane soils from the Brazilian semi-arid region (Baturité massif, Ceará). Environ. Earth Sci. 2015, 73, 3731–3743. [Google Scholar] [CrossRef]
- Campodonico, V.A.; Pasquini, A.I.; Lecomte, K.L.; García, M.G.; Depetris, P.J. Chemical weathering in subtropical basalt-derived laterites: A mass balance interpretation (Misiones, NE Argentina). Catena 2019, 173, 352–366. [Google Scholar] [CrossRef]
- Chang, S.; Tseng, K.; Hsia, Y.; Wang, C.; Wu, J. Soil respiration in a subtropical montane cloud forest in Taiwan. Agr. For. Meteorol. 2008, 148, 788–798. [Google Scholar] [CrossRef]
- Hseu, Z.; Zehetner, F.; Fujii, K.; Watanabe, T.; Nakao, A. Geochemical fractionation of chromium and nickel in serpentine soil profiles along a temperate to tropical climate gradient. Geoderma 2018, 327, 97–106. [Google Scholar] [CrossRef]
- Kierczak, J.; Neel, C.; Bril, H.; Puziewicz, J. Effect of mineralogy and pedoclimatic variations on Ni and Cr distribution in serpentine soils under temperate climate. Geoderma 2007, 142, 165–177. [Google Scholar] [CrossRef]
- Óskarsson, B.V.; Riishuus, M.S.; Arnalds, Ó. Climate-dependent chemical weathering of volcanic soils in Iceland. Geoderma 2012, 189–190, 635–651. [Google Scholar] [CrossRef]
- Wilson, S.G.; Lambert, J.; Nanzyo, M.; Dahlgren, R.A. Soil genesis and mineralogy across a volcanic lithosequence. Geoderma 2017, 285, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.L. Weathering and Pedogenesis of Karst Catchments, Behavior of Mineral. Elements and Environmental Quality; State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science: Guizhou, China, 2006. [Google Scholar]
- Egli, M.; Merkli, C.; Sartori, G.; Mirabella, A. and Plötze, M. Weathering, mineralogical evolution and soil organic matter along a Holocene soil toposequence developed on carbonate-rich materials. Geomorphology 2008, 97, 675–696. [Google Scholar] [CrossRef]
- Hattar, B.I.; Taimeh, A.Y.; Ziadat, F.M. Variation in soil chemical properties along toposequences in an arid region of the Levant. Catena 2010, 83, 34–45. [Google Scholar] [CrossRef]
- Rasmussen, C.; Dahlgren, R.A.; Southard, R.J. Basalt weathering and pedogenesis across an environmental gradient in the southern Cascade Range, California, USA. Geoderma 2010, 154, 473–485. [Google Scholar] [CrossRef]
- Rasmussen, C.; Matsuyama, N.; Dahlgren, R.A.; Southard, R.J.; Brauer, N. Soil Genesis and Mineral Transformation Across an Environmental Gradient on Andesitic Lahar. Soil. Sci. Soc. Am. J. 2007, 71, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Tsui, C.; Chen, Z.; Hsieh, C. Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan. Geoderma 2004, 123, 131–142. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, J.; Yan, H.; Cheng, Y.; Long, X. Effects of elevation and lithology on clay mineral composition of soils derived from limestone. Acta Pedol. Sin. 2017, 54, 535–542. (In Chinese) [Google Scholar]
- Zhang, M.; Mao, X.; Qiu, Z.; Yang, L. Genetic characteristics and taxonomic classification of vertical soils in the fanjingshan mountain. Chin. J. Soil Sci. 2018, 49, 757–766. (In Chinese) [Google Scholar] [CrossRef]
- Haslinger, E.; Ottner, F.; Lundström, U.S. Pedogenesis in the Alnö carbonatite complex, Sweden. Geoderma 2007, 142, 127–135. [Google Scholar] [CrossRef]
- Owliaie, H.R.; Abtahi, A.; Heck, R.J. Pedogenesis and clay mineralogical investigation of soils formed on gypsiferous and calcareous materials, on a transect, southwestern Iran. Geoderma 2006, 134, 62–81. [Google Scholar] [CrossRef]
- Rate, A.W.; Sheikh-Abdullah, S.M. The geochemistry of calcareous forest soils in Sulaimani Governorate, Kurdistan Region, Iraq. Geoderma 2017, 289, 54–65. [Google Scholar] [CrossRef]
- Zhang, M.K.; Yao, Y.C.; Qiu, Z.T.; Mao, X.L.; Yang, L.Y. Pedogenetic characteristics and taxonomic classification of soils developed from carbonate rocks in the south of China. J. Zhejiang Univ. Agric. Life Sci. 2019, 45, 54–65. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Z.Y.; Lin, Q.; Zhao, Y.J. Pronblem related to weathering and pedogenesis of carbonate rock in karst area. J. Guangxi Teach. Educ. Univ. 2019, 36, 94–99. (In Chinese) [Google Scholar]
- Wang, Z.C.; Zhao, W.Z.; Xu, A.N.; Li, D.H.; Cui, Y. Structure styles and their deformation mechanisms of dabashan foreland thrust belt in the North of Sichuan Basin. Geoscience 2006, 20, 429–435. (In Chinese) [Google Scholar]
- Shi, X.H. Tectonic Geomorphology of the Qinling-Daba Mountains and its Geodynamic Implications. Ph.D. Thesis, Northwest University, Shaanxi, China, 2018. (In Chinese). [Google Scholar]
- National Soil Survey Center, Natural Resources Conservation Service. Field Book for Describing and Sampling Soils, Version 3.0; Government Printing Office: Lincoln, NE, USA, 2013.
- United States Department of Agriculture. Soil Survey Manual; United States Department of Agriculture: Washington, DC, USA, 2018.
- Liu, Y. The Research on the Flood Disaster and the Prevention and Reduction System of the Disaster in Chongqing. Master’s Thesis, Southwest University, Chongqing, China, 2009. (In Chinese). [Google Scholar]
- Baillie, I.C. Soil survey staff 1999, soil taxonomy. Soil Use Manag. 2006, 17, 57–60. [Google Scholar] [CrossRef]
- Ci, E. Soil Series of China, Chongqing; Science Press: Beijing, China, 2020. (In Chinese) [Google Scholar]
- Chen, L. Study on Genetic Characteristics and Taxonomy of Limestone Soils in Chongqing. Master’s Thesis, Southwest University, Chongqing, China, 2019. (In Chinese). [Google Scholar]
- Burt, R. Soil Survey Laboratory Methods Manual; United States Department of Agriculture: Washington, DC, USA, 2004.
- Lu, R.K. Agrochemical Analysis of Soil; China Agricultural Scientech Press: Beijing, China, 2000. [Google Scholar]
- Zhang, G.L.; Gong, Z.T. Soil Survey Laboratory Methods; Science Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Munsell Color. Munsell Soil Color Charts; Gretag MacBeth: New Windsor, NY, USA, 2000. [Google Scholar]
- Whittig, L.D.; Allardice, W.R. X-ray diffraction techniques. In Methods of Soil Analysis—Part I. Physical and Mineralogical Methods; Klute, A., Ed.; Soil Science Society of America: Madison, WI, USA, 1986. [Google Scholar]
- Chapman, H.D. Cation exchange capacity. In Methods of Soil Analysis: Part 2.; Black, C.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 891–900. [Google Scholar]
- Mehra, J.P.; Jackson, M.L. Iron oxide removal from soils and clays by a dithionite–citrate–bicarbonate system buffered with bicarbonate sodium. Clays Clay Miner. 1960, 7, 317–327. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.; Tabatabai, M.A.; Johnston, C.T.; Sumner, M.E. (Eds.) Methods of Soil Analysis Part. 3. Chemical Methods; Soil Science Society of America Book Series; Amer Society of Agronomy: Madison, WI, USA, 1996. [Google Scholar]
- Camobell, G.S.; Horton, R.; Jury, W.A.; Nielsen, D.R.; van Es, H.M.; Wierenga, P.J.; Dane, J.H.; Topp, G.C. (Eds.) Methods of Soil Analysis. Part. 4. Physical Methods; Soil Science Society of America Book Series; Amer Society of Agronomy: Madison, WI, USA, 2002. [Google Scholar]
- Hans, J. Factors of Soil Formation—A System of Quantitative Pedology; Dover Publications, Inc.: New York, NY, USA, 1941. [Google Scholar]
- Lepš, B.J. Multivariate Analysis of Ecological Data using CANOCO 5; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Villas-Boas, P.R.; Franco, M.A.; Martin-Neto, L.; Gollany, H.T.; Milori, D.M.B.P. Applications of laser-induced breakdown spectroscopy for soil characterization, part II: Review of elemental analysis and soil classification. Eur. J. Soil. Sci. 2020. [Google Scholar] [CrossRef]
- Bockheim, J.G.; Hartemink, A.E. Distribution and classification of soils with clay-enriched horizons in the USA. Geoderma 2013, 209–210, 153–160. [Google Scholar] [CrossRef]
- Deressa, A.; Yli-Halla, M.; Mohamed, M.; Wogi, L. Soil classification of humid Western Ethiopia: A transect study along a toposequence in Didessa watershed. Catena 2018, 163, 184–195. [Google Scholar] [CrossRef]
- Moreno-Maroto, J.M.; Alonso-Azcárate, J. What is clay? A new definition of “clay” based on plasticity and its impact on the most widespread soil classification systems. Appl. Clay. Sci. 2018, 161, 57–63. [Google Scholar] [CrossRef]
- Roca, N.; Ríos, M. Soil classification maps: A valuable tool for learning, interpreting and transferring soil knowledge. Catena 2019, 180, 103–109. [Google Scholar] [CrossRef]
- Di Iorio, E.; Circelli, L.; Lorenzetti, R.; Costantini, E.A.C.; Egendorf, S.P.; Colombo, C. Estimation of andic properties from Vis-NIR diffuse reflectance spectroscopy for volcanic soil classification. Catena 2019, 182, 104109. [Google Scholar] [CrossRef]
- Esfandiarpour, I.; Salehi, M.H.; Karimi, A.; Kamali, A. Correlation between Soil Taxonomy and World Reference Base for Soil Resources in classifying calcareous soils: (A case study of arid and semi-arid regions of Iran). Geoderma 2013, 197–198, 126–136. [Google Scholar] [CrossRef]
- Herrero, J. Revisiting the definitions of gypsic and petrogypsic horizons in soil taxonomy and world reference base for soil resources. Geoderma 2004, 120, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Nachtergaele, F.O.; Spaargaren, O.; Deckers, J.A.; Ahrens, B. New developments in soil classification: World reference base for soil resources. Geoderma 2000, 96, 357. [Google Scholar] [CrossRef]
- Ju, B.; Wu, K.N.; Zhang, G.L.; Rossiter, D.G.; Li, L. Characterization of Some calcareous soils from henan and their proposed classification in chinese soil taxonomy. Pedosphere 2017, 27, 758–768. [Google Scholar] [CrossRef]
- Zeng, R.; Rossiter, D.G.; Zhang, G.L. How compatible are numerical classifications based on whole-profile vis–NIR spectra and the Chinese Soil Taxonomy? Eur. J. Soilence 2019, 70, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Chinese Soil Taxonomy Research Group, I.O.S.S. Keys to Chinese Soil Taxonomy, 3rd ed.; University of Science and Technology of China Press: Hefei, China, 2001. [Google Scholar]
- Staff, S.S. Keys to Soil Taxonomy; United States Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2006.
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014: International soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015. [Google Scholar]
- Kowalska, J.B.; Zaleski, T.; Józefowska, A.; Mazurek, R. Soil formation on calcium carbonate-rich parent material in the outer Carpathian Mountains—A case study. Catena 2019, 174, 436–451. [Google Scholar] [CrossRef]
- Srivastava, P.; Bhattacharyya, T.; Pal, D.K. Significance of the formation of calcium carbonate minerals in the pedogenesis and management of cracking Clay soils (Vertisols) of India. Clays Clay Miner. 2002, 50, 111–126. [Google Scholar] [CrossRef]
- Nguyen, M.N.; Dultz, S.; Tran, T.T.T.; Bui, A.T.K. Effect of anions on dispersion of a kaolinitic soil clay: A combined study of dynamic light scattering and test tube experiments. Geoderma 2013, 209–210, 209–213. [Google Scholar] [CrossRef] [Green Version]
- Pal, D.K.; Srivastava, P.; Bhattacharyya, T. Clay illuviation in calcareous soils of the semiarid part of the Indo-Gangetic Plains, India. Geoderma 2003, 115, 177–192. [Google Scholar] [CrossRef]
- Zamanian, K.; Pustovoytov, K.; Kuzyakov, Y. Cation exchange retards shell carbonate recrystallization: Consequences for dating and paleoenvironmental reconstructions. Catena 2016, 142, 134–138. [Google Scholar] [CrossRef]
- Khademi, H.; Mermut, A.R. Submicroscopy and stable isotope geochemistry of carbonates and associated palygorskite in Iranian Aridisols. Eur. J. Soil Sci. 1999, 50, 207–216. [Google Scholar] [CrossRef]
- Yan, N.; Bai, Z.; Xu, W.; Li, Y. Land use effect on soil aggregates in the karst hilly areas—A case study in Qianjiang Chongqing China. Carsologica Sin. 2011, 30, 72–77. (In Chinese) [Google Scholar]
- Qiu, H. Comparative Research of Soil Micromorphological Characters on Typical Crop Land and Artificial Ecological-Forest Eastern Guanzhong Areas, Shaanxi Province. Master’s Thesis, Shaanxi Normal University, Shaanxi, China, 2008. (In Chinese). [Google Scholar]
- Liu, X.; Zhang, G.; Heathman, G.C.; Wang, Y.; Huang, C. Fractal features of soil particle-size distribution as affected by plant communities in the forested region of Mountain Yimeng, China. Geoderma 2009, 154, 123–130. [Google Scholar] [CrossRef]
- Peng, G.; Xiang, N.; Lv, S.; Zhang, G. Fractal characterization of soil particle-size distribution under different land-use patterns in the Yellow River Delta Wetland in China. J. Soil. Sediment. 2014, 14, 1116–1122. [Google Scholar] [CrossRef]
- Andrade, G.R.P.; Azevedo, A.C.D.; Lepchak, J.K.; Assis, T.C. Weathering of Permian sedimentary rocks and soil clay minerals transformations under subtropical climate, southern Brazil (Paraná State). Geoderma 2019, 336, 31–48. [Google Scholar] [CrossRef]
- Wilson, M.J. Weathering of the primary rock-forming minerals: Processes, products and rates. Clay Min. 2004, 39, 233–266. [Google Scholar] [CrossRef] [Green Version]
- Bortoluzzi, E.C.; Pernes, M.; Tessier, D. Interestratificado caulinita-esmectita em um argissolo desenvolvido a partir de rocha sedimentar do Sul do Brasil. Rev. Bras. Cienc. Solo 2007, 31, 1291–1300. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.L.; Churchman, G.J.; Gu, Y.S.; Yin, K.; Wang, C.W. Kaolinite–smectite mixed-layer clays in the Jiujiang red soils and their climate significance. Geoderma 2012, 173–174, 75–83. [Google Scholar] [CrossRef]
- Ryan, P.C.; Huertas, F.J. The temporal evolution of pedogenic Fe–smectite to Fe–kaolin via interstratified kaolin–smectite in a moist tropical soil chronosequence. Geoderma 2009, 151, 15. [Google Scholar] [CrossRef]
- Hubert, F.; Caner, L.; Meunier, A.; Lanson, B. Advances in characterization of soil clay mineralogy using X-ray diffraction: From decomposition to profile fitting. Eur. J. Soil. Sci. 2009, 60, 1093–1105. [Google Scholar] [CrossRef] [Green Version]
- Hubert, F.; Caner, L.; Meunier, A.; Ferrage, E. Unraveling complex <2 μm clay mineralogy from soils using X-ray diffraction profile modeling on particle-size sub-fractions: Implications for soil pedogenesis and reactivity. Am. Mineral. 2012, 97, 384–398. [Google Scholar] [CrossRef]
- Viennet, J.C.; Hubert, F.; Ferrage, E.; Tertre, E.; Legout, A.; Turpault, M.P. Investigation of clay mineralogy in a temperate acidic soil of a forest using X-ray diffraction profile modeling: Beyond the HIS and HIV description. Geoderma 2014, 241–242, 75–86. [Google Scholar] [CrossRef]
- Khormali, F.; Abtahi, A. Origin and distribution of clay minerals in calcareous arid and semi-arid soils of Fars Province, southern Iran. Clay Min. 2003, 38, 511–527. [Google Scholar] [CrossRef]
- Tangari, A.C.; Scarciglia, F.; Piluso, E.; Marinangeli, L.; Pompilio, L. Role of weathering of pillow basalt, pyroclastic input and geomorphic processes on the genesis of the Monte Cerviero upland soils. Catena 2018, 171, 299–315. [Google Scholar] [CrossRef]
- Thompson, A.; Amistadi, M.K.; Chadwick, O.A.; Chorover, J. Fractionation of yttrium and holmium during basaltic soil weathering. Geochim. Cosmochim. Ac. 2013, 119, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Torrent, J.; Cabedo, A. Sources of iron oxides in reddish brown soil profiles from calcarenites in Southern Spain. Geoderma 1986, 37, 66. [Google Scholar] [CrossRef]
- Van der Ent, A.; Cardace, D.; Tibbett, M.; Echevarria, G. Ecological implications of pedogenesis and geochemistry of ultramafic soils in Kinabalu Park. Catena 2018, 160, 154–169. [Google Scholar] [CrossRef]
- Hans, J. The Soil Resource-Origin and Behavior; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1980. [Google Scholar]
- Zanelli, R.; Egli, M.; Mirabella, A.; Giaccai, D.; Abdelmoula, M. Vegetation effects on pedogenetic forms of Fe, Al and Si and on clay minerals in soils in southern Switzerland and northern Italy. Geoderma 2007, 141, 129. [Google Scholar] [CrossRef]
- Weng, H.L.; Ci, E.; Li, S.; Lian, M.S.; Chen, L. Pedogenetic Process and Taxonomy of Yellow Soil in Chongqing, China. Acta Pedol. Sin. 2020, 3, 579–589. (In Chinese) [Google Scholar]
- Tian, K.; Kong, X.; Yuan, L.; Lin, H.; He, Z.; Yao, B.; Ji, Y.; Yang, J.; Sun, S.; Tian, X. Priming effect of litter mineralization: The role of root exudate depends on its interactions with litter quality and soil condition. Plant Soil 2019, 440, 457–471. [Google Scholar] [CrossRef]
- Kong, F.X.; Liu, Y.; Hu, W.; Shen, P.P.; Zhou, C.L.; Wanga, L.S. Biochemical responses of the mycorrhizae in Pinus massoniana to combined e ects of Al, Ca and low pH. Chemosphere 2000, 40, 311–318. [Google Scholar] [CrossRef]
Site | Elevation (m) | MAP 1 | MAT 2 | Slope Classes | Land Use | Parent Material | Vegetation |
---|---|---|---|---|---|---|---|
S1 | 789 | 1189 | 14.9 | Gently sloping | Cultivated land | Slope-diluvial deposit mixture of weathering materials, including Triassic limestone and dolomite | Intercropping of corn and sweet Potato |
S2 | 861 | 1206 | 14.5 | Steep | Cultivated land | Slope deposit and such weathering material as Triassic limestone | Intercropping of corn and sweet Potato |
S3 | 1041 | 1250 | 13.3 | Moderately steep | Forest land | Slope deposit and such weathering material as Triassic limestone | Pinus massoniana Lamb, Cyclobalanopsis glauca (Thunberg) Oersted, Taxodiaceae |
S4 | 1275 | 1306 | 11.9 | Steep | Forest land | Slope deposit and such weathering material as Triassic limestone | Pinus massoniana Lamb, Cyclobalanopsis glauca (Thunberg) Oersted |
S5 | 1556 | 1373 | 10.3 | Steep | Forest land | Slope deposit and such weathering material as Triassic limestone | Pinus armandii Franch, Pinus tabulaeformis Carr. |
S6 | 1836 | 1440 | 8.5 | Steep | Forest land | Slope deposit and such weathering material as Triassic limestone | Pinus armandii Franch, Cryptomeria fortunei Hooibrenk ex Otto et Dietr, Indocalamus tessellatus (munro) Keng f. |
S7 | 2049 | 1764 | 7.3 | Strongly sloping | Pastureland | Slope deposit and such weathering material as Triassic limestone | Trifolium pratense Linn, Erigeron annuus (Linn.) Pers, Anaphalis sinica Hance |
S8 | 2322 | 1557 | 5.7 | Steep | Forestland | Slope deposit and such weathering material as Triassic limestone | Pinus armandii Franch, Cotoneaster adpressus Bois |
Horizon (CST) | Horizon (ST) | Depth (cm) | Soil Color | BD 1 (g cm−3) | Clay (%) | RF 2 (%) | pH | SOC 3 (g kg−1) | CCE 4 (g kg−1) | CEC7 5 (cmol kg−1) | ECa2+ 6 (cmol kg−1) | BS 7(%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dry | Moist | ||||||||||||
S1—789 m | |||||||||||||
Ap | A | 0–20 | 10YR 7/4 | 10YR 5/4 | 1.42 | 42 | 0 | 6.3 | 9.50 | 7.06 | 23.42 | 11.88 | 61.30 |
Br1 | Bw1 | 20–46 | 10YR 6/6 | 10YR 5/6 | 1.56 | 39 | 2 | 7.2 | 6.77 | 9.32 | 14.62 | 4.59 | ND |
Br2 | Bw2 | 46–80 | 10YR 6/6 | 10YR 5/6 | 1.57 | 32 | 2 | 7.1 | 5.99 | 8.11 | 14.66 | 13.48 | ND |
Br3 | Bw3 | 80–121 | 10YR 6/4 | 10YR 4/4 | 1.58 | 17 | 2 | 7.1 | 6.37 | 6.57 | 15.27 | 9.62 | ND |
Br4 | Bw4 | 121–140 | 10YR 7/4 | 10YR 5/4 | 1.57 | 46 | 0 | 6.6 | 3.38 | 6.12 | 13.85 | 6.88 | 64.24 |
S2—861 m | |||||||||||||
Ap | A | 0–20 | 10YR 6/4 | 10YR 4/4 | 1.40 | 39 | 0 | 7.2 | 10.32 | 13.92 | 17.35 | 8.52 | ND |
AB | AB | 20–50 | 10YR 6/4 | 10YR 4/4 | 1.51 | 35 | 2 | 7.5 | 8.94 | 14.59 | 17.13 | 23.76 | ND |
Bt1 | Bt1 | 50–75 | 10YR 6/4 | 10YR 4/4 | 1.59 | 53 | 2 | 7.7 | 7.42 | 15.98 | 23.69 | 27.20 | ND |
Bt2 | Bt2 | 75–105 | 10YR 6/4 | 10YR 4/4 | 1.52 | 47 | 2 | 7.6 | 7.19 | 13.46 | 34.88 | 22.38 | ND |
Bw | Bw | 105–138 | 10YR 6/4 | 10YR 4/4 | 1.57 | 40 | 2 | 7.7 | 6.84 | 16.37 | 28.16 | 23.11 | ND |
S3—1041 m | |||||||||||||
O | O | +1–0 | ND | ||||||||||
Ah | A | 0–20 | 10YR 7/4 | 10YR 5/4 | 1.41 | 30 | 2 | 5.1 | 7.16 | 5.64 | 10.51 | 4.62 | 49.75 |
Bw1 | Bw1 | 20–45 | 10YR 7/4 | 10YR 5/4 | 1.49 | 28 | 2 | 5.6 | 2.91 | 4.80 | 11.33 | 5.70 | 55.54 |
Bw2 | Bw2 | 45–69 | 10YR 7/4 | 10YR 5/4 | 1.53 | 29 | 2 | 6.1 | 2.95 | 5.29 | 11.42 | 6.16 | 60.14 |
Bw3 | Bw3 | 69–99 | 10YR 7/4 | 10YR 5/4 | 1.60 | 32 | 2 | 6.1 | 2.75 | 4.34 | 13.23 | 7.01 | 59.47 |
Bw4 | Bw4 | 99–129 | 10YR 7/4 | 10YR 5/4 | 1.57 | 31 | 2 | 6.3 | 1.91 | 4.09 | 12.30 | 6.66 | 62.89 |
S4—1275 m | |||||||||||||
O | O | +2–0 | ND | ||||||||||
Ah | A | 0–18 | 10YR 7/4 | 10YR 5/4 | 1.25 | 33 | 0 | 4.9 | 9.90 | 4.56 | 13.54 | 4.45 | 44.90 |
AB | AB | 18–51 | 10YR 7/4 | 10YR 6/4 | 1.50 | 33 | 0 | 5.3 | 5.26 | 5.50 | 14.15 | 6.74 | 50.08 |
BA | BA | 51–91 | 10YR 7/4 | 10YR 6/4 | 1.55 | 32 | 0 | 5.4 | 4.19 | 3.92 | 13.49 | 6.59 | 51.67 |
Bt1 | Bt1 | 91–114 | 10YR 6/4 | 10YR 5/4 | 1.57 | 34 | 2 | 5.9 | 4.05 | 5.05 | 16.91 | 9.72 | 60.04 |
Bt2 | Bt2 | 114–128 | 10YR 6/4 | 10YR 5/4 | 1.55 | 40 | 2 | 6.3 | 3.28 | 7.21 | 18.22 | 10.93 | 62.54 |
S5—1556 m | |||||||||||||
O | O | +7–0 | ND | ||||||||||
Ah | A | 0–28 | 2.5Y 6/1 | 2.5Y 4/1 | 1.14 | 19 | 2 | 6.2 | 20.07 | 11.17 | 21.19 | 11.86 | 62.23 |
Bt1 | Bt1 | 28–43 | 2.5Y 7/3 | 2.5Y 6/3 | 1.40 | 30 | 0 | 6.1 | 8.60 | 7.71 | 14.14 | 7.65 | 60.24 |
Bt2 | Bt2 | 43–69 | 2.5Y 7/3 | 2.5Y 6/3 | 1.47 | 30 | 0 | 5.9 | 8.18 | 7.76 | 19.03 | 11.23 | 63.13 |
Bt3 | Bt3 | 69–94 | 2.5Y 7/3 | 2.5Y 6/3 | 1.46 | 23 | 0 | 5.9 | 4.66 | 8.15 | 18.84 | 10.58 | 62.01 |
Bt4 | Bt4 | 94–128 | 10YR 7/4 | 10YR 6/4 | 1.44 | 36 | 10 | 6.1 | 3.74 | 8.00 | 27.17 | 14.94 | 58.50 |
S6—1836 m | |||||||||||||
O | O | +4–0 | ND | ||||||||||
Ah | A | 0–19 | 10YR 6/3 | 10YR 4/3 | 1.18 | 33 | 1 | 5.6 | 16.39 | 5.59 | 14.84 | 6.87 | 54.74 |
AB | AB | 19–46 | 10YR 7/3 | 10YR 5/4 | 1.29 | 30 | 0 | 5.6 | 10.56 | 6.03 | 10.53 | 4.64 | 55.43 |
BA | BA | 46–69 | 10YR 7/3 | 10YR 5/4 | 1.45 | 25 | 0 | 6.0 | 10.59 | 7.53 | 10.64 | 5.14 | 60.97 |
Bt1 | Bt1 | 69–105 | 10YR 7/4 | 10YR 5/6 | 1.46 | 32 | 1 | 6.3 | 4.27 | 6.86 | 15.59 | 7.96 | 62.10 |
Bt2 | Bt2 | 105–151 | 10YR 7/4 | 10YR 5/6 | 1.29 | 41 | 2 | 6.4 | 4.33 | 8.71 | 19.19 | 9.98 | 63.04 |
S7—2049 m | |||||||||||||
Ah | Ah | 0–21 | 10YR 6/4 | 10YR 4/4 | 1.17 | 20 | 2 | 4.5 | 28.21 | 2.96 | 32.02 | 9.54 | 31.59 |
AB | AB | 21–50 | 10YR 7/4 | 10YR 5/6 | 1.33 | 19 | 0 | 4.7 | 16.35 | 3.15 | 26.17 | 9.45 | 37.77 |
Bt1 | Bt1 | 50–90 | 10YR 7/4 | 10YR 5/6 | 1.55 | 30 | 1 | 4.8 | 7.49 | 2.53 | 29.67 | 9.06 | 32.21 |
Bt2 | Bt2 | 90–133 | 10YR 7/4 | 10YR 5/6 | 1.53 | 31 | 0 | 4.8 | 5.35 | 3.77 | 46.36 | 13.39 | 30.52 |
S8—2322 m | |||||||||||||
O | O | +4–0 | ND | ||||||||||
Ah | Ah | 0–12 | 10YR 7/3 | 10YR 5/3 | 0.98 | 28 | 2 | 6.6 | 16.73 | 13.55 | 23.82 | 11.07 | 63.37 |
AB | AB | 12–36 | 10YR 7/4 | 10YR 5/4 | 1.09 | 30 | 0 | 6.7 | 9.36 | 8.15 | 20.80 | 10.35 | 61.78 |
BA | BA | 36–70 | 10YR 7/4 | 10YR 5/4 | 1.06 | 31 | 0 | 6.5 | 8.97 | 7.09 | 18.69 | 11.28 | 71.63 |
Bt1 | Bt1 | 70–103 | 10YR 7/4 | 10YR 5/4 | 1.26 | 38 | 2 | 6.5 | 5.70 | 7.49 | 24.61 | 12.43 | 62.03 |
Bt2 | Bt2 | 103–141 | 10YR 7/4 | 10YR 5/4 | 1.09 | 35 | 3 | 6.5 | 7.57 | 9.17 | 24.60 | 11.86 | 62.71 |
R | R | >141 | ND |
Site | Horizon (CST) | Major Oxides (%) | Si: Al | ba1 | Fed: FeT 2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | TFe2O3 | MgO | CaO | Na2O | K2O | MnO | (Molar Ratio) | mol% | |||
S1 | Ap | 67.85 | 14.06 | 5.41 | 1.23 | 0.37 | 0.31 | 2.24 | 0.09 | 8.20 | 0.26 | 39.53 |
Br1 | 68.54 | 14.13 | 5.93 | 1.09 | 0.47 | 0.32 | 2.13 | 0.07 | 8.25 | 0.26 | 52.29 | |
Br2 | 68.13 | 14.25 | 5.66 | 1.05 | 0.37 | 0.28 | 2.19 | 0.07 | 8.13 | 0.25 | 66.05 | |
Br3 | 69.44 | 13.64 | 5.56 | 1.12 | 0.37 | 0.29 | 2.15 | 0.08 | 8.65 | 0.26 | 60.48 | |
Br4 | 71.29 | 12.63 | 4.76 | 1.15 | 0.27 | 0.38 | 1.90 | 0.08 | 9.60 | 0.25 | 45.12 | |
S2 | Ap | 66.29 | 14.01 | 5.43 | 2.04 | 0.78 | 0.39 | 2.77 | 0.13 | 8.04 | 0.36 | 58.37 |
AB | 66.86 | 13.73 | 5.27 | 2.09 | 0.76 | 0.42 | 2.67 | 0.13 | 8.28 | 0.36 | 57.35 | |
Bt1 | 66.81 | 13.52 | 5.23 | 2.06 | 0.88 | 0.41 | 2.62 | 0.13 | 8.40 | 0.38 | 54.64 | |
Bt2 | 67.89 | 13.21 | 5.09 | 1.85 | 0.71 | 0.41 | 2.53 | 0.13 | 8.74 | 0.36 | 55.53 | |
Bw | 67.47 | 13.44 | 5.26 | 1.83 | 0.83 | 0.39 | 2.66 | 0.14 | 8.53 | 0.37 | 58.49 | |
S3 | Ah | 74.09 | 12.12 | 4.22 | 0.98 | 0.27 | 0.50 | 2.13 | 0.12 | 10.39 | 0.30 | 50.47 |
Bw1 | 73.35 | 12.19 | 4.30 | 1.02 | 0.27 | 0.53 | 2.19 | 0.12 | 10.23 | 0.31 | 47.21 | |
Bw2 | 73.59 | 12.46 | 4.44 | 1.04 | 0.27 | 0.49 | 2.25 | 0.13 | 10.04 | 0.30 | 48.20 | |
Bw3 | 71.95 | 12.54 | 4.74 | 0.98 | 0.26 | 0.45 | 2.23 | 0.15 | 9.75 | 0.29 | 45.70 | |
Bw4 | 73.76 | 12.77 | 4.83 | 0.88 | 0.23 | 0.34 | 2.25 | 0.18 | 9.82 | 0.27 | 48.55 | |
S4 | Ah | 68.90 | 13.65 | 5.05 | 1.30 | 0.40 | 0.61 | 1.84 | 0.08 | 8.58 | 0.27 | 36.36 |
AB | 70.31 | 13.64 | 5.04 | 1.31 | 0.42 | 0.63 | 1.89 | 0.10 | 8.76 | 0.28 | 42.20 | |
BA | 70.28 | 13.44 | 4.88 | 1.28 | 0.42 | 0.62 | 1.91 | 0.11 | 8.89 | 0.29 | 38.49 | |
Bt1 | 69.06 | 14.44 | 5.25 | 1.34 | 0.48 | 0.58 | 1.98 | 0.11 | 8.13 | 0.28 | 39.16 | |
Bt2 | 66.83 | 15.12 | 5.62 | 1.31 | 0.59 | 0.55 | 2.00 | 0.12 | 7.51 | 0.27 | 40.52 | |
S5 | Ah | 65.86 | 13.11 | 4.83 | 1.51 | 0.81 | 0.71 | 1.95 | 0.10 | 8.54 | 0.36 | 42.18 |
Bt1 | 68.39 | 13.41 | 4.91 | 1.54 | 0.65 | 0.74 | 1.94 | 0.06 | 8.67 | 0.34 | 36.99 | |
Bt2 | 67.45 | 13.77 | 5.13 | 1.59 | 0.68 | 0.76 | 2.00 | 0.08 | 8.33 | 0.34 | 53.74 | |
Bt3 | 67.32 | 14.59 | 5.63 | 1.70 | 0.63 | 0.73 | 2.04 | 0.10 | 7.84 | 0.31 | 42.14 | |
Bt4 | 64.98 | 15.29 | 5.93 | 1.74 | 0.67 | 0.65 | 2.07 | 0.10 | 7.22 | 0.30 | 46.31 | |
S6 | Ah | 63.00 | 14.76 | 6.16 | 1.77 | 0.45 | 0.77 | 2.81 | 0.14 | 7.26 | 0.35 | 39.62 |
AB | 64.35 | 14.65 | 6.08 | 1.76 | 0.45 | 0.89 | 2.62 | 0.13 | 7.47 | 0.35 | 39.32 | |
BA | 65.39 | 14.75 | 6.34 | 1.77 | 0.45 | 0.88 | 2.67 | 0.17 | 7.54 | 0.35 | 36.39 | |
Bt1 | 62.68 | 15.90 | 7.01 | 1.95 | 0.38 | 0.60 | 3.23 | 0.15 | 6.70 | 0.33 | 49.69 | |
Bt2 | 58.57 | 17.52 | 8.20 | 2.20 | 0.39 | 0.41 | 3.78 | 0.14 | 5.68 | 0.31 | 51.13 | |
S7 | Ah | 60.55 | 13.95 | 5.62 | 1.69 | 0.35 | 0.76 | 2.52 | 0.10 | 7.38 | 0.33 | 33.58 |
AB | 62.23 | 14.92 | 5.80 | 1.83 | 0.36 | 0.72 | 2.61 | 0.10 | 7.09 | 0.31 | 29.01 | |
Bt1 | 62.80 | 15.37 | 5.89 | 2.02 | 0.36 | 0.76 | 2.73 | 0.10 | 6.95 | 0.32 | 25.89 | |
Bt2 | 62.92 | 15.67 | 6.10 | 2.04 | 0.30 | 0.60 | 2.91 | 0.10 | 6.83 | 0.30 | 36.50 | |
S8 | Ah | 62.63 | 14.00 | 5.61 | 2.06 | 0.73 | 0.76 | 2.78 | 0.12 | 7.61 | 0.40 | 55.88 |
AB | 63.22 | 14.45 | 5.83 | 2.02 | 0.51 | 0.80 | 2.86 | 0.12 | 7.44 | 0.37 | 41.51 | |
BA | 64.40 | 14.87 | 6.00 | 2.02 | 0.50 | 0.84 | 2.95 | 0.14 | 7.36 | 0.37 | 37.26 | |
Bt1 | 61.48 | 16.66 | 6.62 | 2.48 | 0.46 | 0.72 | 3.14 | 0.13 | 6.27 | 0.33 | 37.43 | |
Bt2 | 58.71 | 18.09 | 7.07 | 2.67 | 0.48 | 0.58 | 3.08 | 0.12 | 5.52 | 0.29 | 44.23 |
Site | Horizon | Depth (cm) | Major Oxides (%) | Si: Al | Si: (Al + Fe) | ||
---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | TFe2O3 | (Molar Ratio) | ||||
S1 | Br2 | 46–80 | 42.08 | 25.05 | 9.84 | 2.86 | 2.28 |
S2 | Bt1 | 50–75 | 42.68 | 22.63 | 9.33 | 3.21 | 2.54 |
S3 | Bw3 | 69–99 | 40.95 | 24.05 | 8.96 | 2.89 | 2.34 |
S4 | BA | 51–91 | 41.56 | 24.32 | 8.85 | 2.90 | 2.36 |
S5 | Bt2 | 43–69 | 40.64 | 23.84 | 10.08 | 2.90 | 2.28 |
S6 | Bt1 | 69–105 | 41.28 | 22.65 | 10.16 | 3.10 | 2.41 |
S7 | Bt1 | 50–90 | 41.62 | 23.21 | 10.07 | 3.05 | 2.39 |
S8 | Bt1 | 70–103 | 41.66 | 23.28 | 10.13 | 3.04 | 2.38 |
Site | Horizon (CST) | Depth (cm) | Minerals % 1 | ||||
---|---|---|---|---|---|---|---|
Illite-Smectite | Illite | Kaolinite | Vermiculite | Illite-Vermiculite | |||
S1 | Br2 | 46–80 | +++ | + | ++ | + | + |
S2 | Bt1 | 50–75 | ++ | ++ | + | + | + |
S3 | Bw3 | 69–99 | ○ | ++ | ++ | ++ | + |
S4 | BA | 51–91 | +++ | + | + | ++ | + |
S5 | Bt2 | 43–69 | ○ | + | + | +++ | + |
S6 | Bt1 | 69–105 | ○ | +++ | + | ++ | + |
S7 | Bt1 | 50–90 | ○ | ++ | ++ | + | ++ |
S8 | Bt1 | 70–103 | ○ | ++ | ++ | ++ | ++ |
Site | Chinese Soil Taxonomy (2001) (Subgroup) | Soil Taxonomy (2014) (Subgroup) | World Reference Base for Soil Resources (2015) |
---|---|---|---|
S1 | Brown Carbonati—Udic Cambosols | Typic Eutrudepts | Stagnic Eutric Xanthic Cambisols (Aric, Loamic, Protocalcic) |
S2 | Typic Carbonati—Perudic Argosols | Typic Hapludalfs | Calcaric Luvisols (Aric, Differentic, Hypereutric, Loamic, Ochric) |
S3 | Ferric Hapli—Perudic Cambosols | Typic Eutrudepts | Dystric Cambisols (Loamic) |
S4 | Typic Hapli—Perudic Argosols | Typic Hapludalfs | Calcaric Luvisols (Differentic, Epidystric, Loamic, Ochric, Profondic) |
S5 | Humic Carbonati—Perudic Argosols | Typic Hapludalfs | Calcaric Luvisols (Differentic, Epidystric, Humic, Loamic, Profondic) |
S6 | Humic-Brown Carbonati—Perudic Argosols | Typic Hapludalfs | Calcaric Luvisols (Differentic, Humic, Epidystric, Loamic, Profondic) |
S7 | Humic Hapli—Perudic Argosols | Ultic Hapludalfs | Hapli Alisols (Differentic, Humic, Epidystric, Profondic, Siltic) |
S8 | Typic Carbonati—Perudic Argosols | Typic Hapludalfs | Calcaric Luvisols (Differentic, Humic, Loamic, Profondic) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Ci, E.; Li, S.; Lian, M.; Zhong, S. The Pedogenesis of Soil Derived from Carbonate Rocks along a Climosequence in a Subtropical Mountain, China. Forests 2021, 12, 1044. https://doi.org/10.3390/f12081044
Hu J, Ci E, Li S, Lian M, Zhong S. The Pedogenesis of Soil Derived from Carbonate Rocks along a Climosequence in a Subtropical Mountain, China. Forests. 2021; 12(8):1044. https://doi.org/10.3390/f12081044
Chicago/Turabian StyleHu, Jin, En Ci, Song Li, Maoshan Lian, and Shouqin Zhong. 2021. "The Pedogenesis of Soil Derived from Carbonate Rocks along a Climosequence in a Subtropical Mountain, China" Forests 12, no. 8: 1044. https://doi.org/10.3390/f12081044
APA StyleHu, J., Ci, E., Li, S., Lian, M., & Zhong, S. (2021). The Pedogenesis of Soil Derived from Carbonate Rocks along a Climosequence in a Subtropical Mountain, China. Forests, 12(8), 1044. https://doi.org/10.3390/f12081044