Effects of Soil Nitrogen Addition on Crown CO2 Exchange of Fraxinus mandshurica Rupr. Saplings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Materials and Nitrogen Treatments
2.3. Measurement of Whole Crown CO2 Exchange
2.4. Meteorological Factors in the Chamber and at the Site
2.5. Calculation of Daily and Monthly GPP, R and Ne
2.6. Gap Filling and Statistical Analysis
3. Results
3.1. Meteorological Conditions
3.2. The Influence of Chamber Closure on Meteorological Conditions
3.3. Effects of Nitrogen Addition on GPP, R, and Ne
3.3.1. Diurnal Variation of Crown CO2 Exchange
3.3.2. Seasonal Dynamics and Monthly Accumulation of Net Crown CO2 Exchange
3.3.3. The Growing Season Accumulation of Net Crown CO2 Exchange
3.4. The Change of Crown CO2 Exchange with Environmental Variables
3.4.1. The Change of Crown CO2 Exchange with PAR
3.4.2. The Change of Crown CO2 Exchange with PAR under Different VPD Ranges
4. Discussion
4.1. The Response of GPP, R, and Ne to Nitrogen Addition
4.2. The Response of Plant Photosynthesis Parameters to Nitrogen Addition
4.3. The Change of Crown CO2 Exchange with Environmental Variables
4.4. Evaluation of Our Proposed Chamber Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, G.L.; Mo, J.M.; Zhou, G.Y. Effects of N deposition on soil fauna:a summary for one year. J. Beijing For. Univ. 2006, 28, 1–7. [Google Scholar]
- Riddell, J.; Nash, T.H.; Padgett, P. The effect of HNO3 gas on the lichen Ramalina menziesii. Flora—Morphol. Distrib. Funct. Ecol. Plants 2008, 203, 47–54. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P.; et al. Enhanced nitrogen deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef]
- Mo, J.; Li, D.; Gundersen, P. Seedling growth response of two tropical tree species to nitrogen deposition in southern China. Eur. J. For. Res. 2008, 127, 275–283. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Y.; Li, Q.; Xiao, W.; Song, X. Photosynthesis, Ecological Stoichiometry, and Non-Structural Carbohydrate Response to Simulated Nitrogen Deposition and Phosphorus Addition in Chinese Fir Forests. Forests 2019, 10, 1068. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, H.; Fu, X.; Wang, J.; Ni, H. Effects of Nitrogen Deposition on Photosynthetic Characteristics of Calamagrostis angustifolia. Chin. Agric. Sci. Bull. 2013, 29, 45–49. [Google Scholar]
- Liang, X.; Zhang, T.; Lu, X.; Ellsworth, D.S.; BassiriRad, H.; You, C.; Wang, D.; He, P.; Deng, Q.; Liu, H.; et al. Global response patterns of plant photosynthesis to nitrogen addition: A meta-analysis. Glob. Chang. Biol. 2020, 26, 3585–3600. [Google Scholar] [CrossRef]
- Clark, D.A.; Brown, S.; Kicklighter, D.W.; Chambers, J.Q.; Thomlinson, J.R.; Ni, J. Measuring Net Primary Production in Forests: Concepts and Field Methods. Ecol. Appl. 2001, 11, 356–370. [Google Scholar] [CrossRef]
- Curtis, P.S.; Hanson, P.J.; Bolstad, P.; Barford, C.; Randolph, J.C.; Schmid, H.P.; Wilson, K.B. Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous fore. Agric. For. Meteorol. 2002, 113, 3–19. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Niu, Y.; Li, Y.; Yun, H.; Wang, X.; Gong, X.; Duan, Y.; Liu, J. Variations in diurnal and seasonal net ecosystem carbon dioxide exchange in a semiarid sandy grassland ecosystem in China’s Horqin Sandy Land. Biogeosciences 2020, 17, 6309–6326. [Google Scholar] [CrossRef]
- Watham, T.; Srinet, R.; Nandy, S.; Padalia, H.; Sinha, S.K.; Patel, N.R.; Chauhan, P. Environmental control on carbon exchange of natural and planted forests in Western Himalayan foothills of India. Biogeochemistry 2020, 151, 291–311. [Google Scholar] [CrossRef]
- Wang, X.C.W.; Wang, C.K.; Bond-Lamberty, B. Quantifying and reducing the differences in forest CO 2 -fluxes estimated by eddy covariance, biometric and chamber methods: A global synthesis. Agric. For. Meteorol. 2017, 247, 93–103. [Google Scholar] [CrossRef]
- Fang, J.; Chen, A.; Peng, C.; Zhao, S.; Ci, L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef]
- Wang, B.; Huang, J.; Yang, X.; Zhang, B.; Liu, M. Estimation of biomass, net primary production and net ecosystem production of China’s forests based on the 1999–2003 National Forest Inventory. Scand. J. For. Res. 2010, 25, 544–553. [Google Scholar] [CrossRef]
- Baldocchi, D. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere—The state and future of the eddy covariance method. Glob. Chang. Biol. 2014, 20, 3600–3609. [Google Scholar] [CrossRef]
- Novriyanti, E.; Watanabe, M.; Kitao, M.; Utsugi, H.; Uemura, A.; Koike, T. High nitrogen and elevated [CO2] effects on the growth, defense and photosynthetic performance of two eucalypt species. Environ. Pollut. 2012, 170, 124–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Wu, J.; Ren, L.; Zhang, G.; Ren, F.; Yao, F. Response of photosynthetic characteristies to nitrogen addition by seedlings of two dominant tree species in a broadleaved-Korean pine mixed forest on Changbai Mountain. Acta Ecol. Sin. 2016, 36, 6777–6785. [Google Scholar]
- Wang, M.; Zhang, W.-W.; Li, N.; Liu, Y.-Y.; Zheng, X.-B.; Hao, G.-Y. Photosynthesis and growth responses of Fraxinus mandshurica Rupr. seedlings to a gradient of simulated nitrogen deposition. Annal. For. Sci. 2017, 75. [Google Scholar] [CrossRef] [Green Version]
- Fenghui, Y. Study on Gas Exchange Measurements at Whole-Tree Scale. Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, 2008. [Google Scholar]
- Cheeseman, J.M. PATCHY: Simulating and visualizing the effects of stomatal patchiness on photosynthetic CO2 exchange studies. Plant Cell Environ. 1991, 14, 593–599. [Google Scholar] [CrossRef]
- Escalona, J.M.; Pou, A.; Tortosa, I.; Hernández-Montes, E.; Tomás, M.; Martorell, S.; Bota, J.; Medrano, H. Using whole-plant chambers to estimate carbon and water fluxes in field-grown grapevines. Theor. Exp. Plant Physiol. 2016, 28, 241–254. [Google Scholar] [CrossRef]
- Kolling, K.; George, G.M.; Kunzli, R.; Flutsch, P.; Zeeman, S.C. A whole-plant chamber system for parallel gas exchange measurements of Arabidopsis and other herbaceous species. Plant Methods 2015, 11, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burkart, S.; Manderscheid, R.; Weigel, H.-J. Design and performance of a portable gas exchange chamber system for CO2- and H2O-flux measurements in crop canopies. Environ. Exp. Bot. 2007, 61, 25–34. [Google Scholar] [CrossRef]
- Pérez-Priego, O.; Testi, L.; Orgaz, F.; Villalobos, F.J. A large closed canopy chamber for measuring CO2 and water vapour exchange of whole trees. Environ. Exp. Bot. 2010, 68, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Fan, M.; Kuzyakov, Y.; Billen, N.; Stahr, K. Comparison of net ecosystem CO2 exchange in cropland and grassland with an automated closed chamber system. Nutr. Cycl. Agroecosyst. 2014, 98, 113–124. [Google Scholar] [CrossRef]
- Bunce, J.A. Responses of soybeans and wheat to elevated CO2 in free-air and open top chamber systems. Field Crop Res. 2016, 186, 78–85. [Google Scholar] [CrossRef]
- Guidolotti, G.; De Dato, G.; Liberati, D.; De Angelis, P. Canopy Chamber: A useful tool to monitor the CO2 exchange dynamics of shrubland. iForest—Biogeosci. For. 2017, 10, 597–604. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Shi, S.; Lin, F.; Hao, Z.; Jiang, P.; Dai, G. Effects of soil water and nitrogen on growth and photosynthetic response of Manchurian ash (Fraxinus mandshurica) seedlings in northeastern China. PLoS ONE 2012, 7, e30754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, L.L. Analysis on Seedling Breeding and Management Technology of Fraxinus mandshurica in Liaoning. J. Temp. For. Res. 2021, 4, 60–62. [Google Scholar]
- Zhou, W.M.; Guo, Y.; Zhu, B.K. Seasonal variations of nitrogen flux and composition in a wet deposition forest ecosystem on Changbai Mountain. Acta Ecol. Sin. 2015, 163, 125–133. [Google Scholar]
- Zhang, X.L.; Zhai, P.H.; Huang, J.H. Advances in the Influences of Precipitation and Nitrogen Deposition Change on the Carbon Cycle of Grassland Ecosystem. Acta Agrestia Sin. 2018, 26, 21–25. [Google Scholar]
- Fleck, D.; He, Y.; Alexander, C.; Jacobson, G.; Cunningham, K. Simultaneous soil Flux Measurements of Five Gases—N2O, CH4, CO2, NH3, and H2O—With the Picarro G2508; Picarro Inc.: Santa Clara, CA, USA, 2013. [Google Scholar]
- Xu, L.B.; Dennis, D. Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agric. For. Meteorol. 2004, 123, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Zhou, G.; Jia, Q. Annual cycle of CO2 exchange over a reed (Phragmites australis) wetland in Northeast China. Aquat. Bot. 2009, 91, 91–98. [Google Scholar] [CrossRef]
- Baly, E.C.C. The Kinetics of Photosynthesis; Royal Society: London, UK, 1935; Volume 117, pp. 218–239. [Google Scholar]
- Burkart, S.; Manderscheid, R.; Wittich, K.P.; Lopmeier, F.J.; Weigel, H.J. Elevated CO2 effects on canopy and soil water flux parameters measured using a large chamber in crops grown with free-air CO2 enrichment. Plant Biol. 2011, 13, 258–269. [Google Scholar] [CrossRef]
- Grau, A. A closed chamber technique for field measurement of gas exchange of forage canopies. N. Z. J. Agric. Res. 2010, 38, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Steduto, P.; Çetinkökü, Ö.; Albrizio, R.; Kanber, R. Automated closed-system canopy-chamber for continuous field-crop monitoring of CO2 and H2O fluxes. Agric. For. Meteorol. 2002, 111, 171–186. [Google Scholar] [CrossRef]
- Braun, S.; Thomas, V.F.; Quiring, R.; Fluckiger, W. Does nitrogen deposition increase forest production? The role of phosphorus. Environ. Pollut. 2010, 158, 2043–2052. [Google Scholar] [CrossRef]
- Fan, H.B.; Huang, Y.Z.; Yuan, Y.H.; Li, Y.Y.; Huang, R.Z.; Fan, H.Y. Carbon cycling of forest ecosystems in response to global nitrogen deposition: A review. Acta Ecol. Sin. 2007, 27, 2997–3009. [Google Scholar]
- Zhang, L.; Zeng, C.; Hu, W. Reviews on effects of nitrogen addition on plant photosynthetic carbon fixation. Acta Ecol. Sin. 2017, 37, 147–155. [Google Scholar]
- De Vries, W.; Du, E.; Butterbach-Bahl, K. Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems. Curr. Opin. Environ. Sustain. 2014, 9, 90–104. [Google Scholar] [CrossRef]
- Dejun, L.; Jiangming, M.; Yunting, F.; Shaolin, P.; Gundersen, P. Impact of nitrogen deposition on forest plants. Acta Ecol. Sin. 2003, 23, 1891–1900. [Google Scholar]
- Wang, F.; Zhang, J.H.; Gu, Y.; Zhao, T.; Han, S.J. Meta-analysis of the effects of nitrogen addition on photosynthesis of forests. Chin. J. Ecol. 2017, 36, 1539–1547. [Google Scholar]
- Bai, Y.; Wu, J.; Clark, C.M.; Naeem, S.; Pan, Q.; Huang, J.; Zhang, L.; Guohan, X. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from inner Mongolia Grasslands. Glob. Chang. Biol. 2010, 16, 889. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, F.; Wu, J.; Jin, C.; Pivovaroff, A.L.; Tian, J.; Li, W.; Guan, D.; Wang, A.; McDowell, N.G. Responses of functional traits to seven-year nitrogen addition in two tree species: Coordination of hydraulics, gas exchange and carbon reserves. Tree Physiol. 2021, 41, 190–205. [Google Scholar] [CrossRef]
- Li, D.J.; Mo, J.M.; Peng, S.L.; Fang, Y.T. Effects of simulated nitrogen deposition on elemental concentrations of Schima superba and Cryptocarya concinna seedlings in subtropical China. Acta Ecol. Sin. 2005, 25, 2165–2172. [Google Scholar]
- Lu, X.K.; Mo, J.M.; Li, D.J.; Zang, W.; Fang, Y.T. Effects of simulated N deposition on the photosynthetic and physiologic characteristics of dominant understorey plants in Dinghushan Mountain of subtropical China. J. Beijing For. Univ. 2007, 29, 1–9. [Google Scholar]
- Pei, H.; Gao, W.; Fang, J.; Ye, K.; Zhu, Y.; Huang, F.; Li, Q. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of one-year-old Toona sinensis seedlings. Chin. J. Eco-Agric. 2019, 10, 1546–1552. [Google Scholar] [CrossRef]
- Reich, P.B.; Walters, M.B.; Tjoelker, M.G.; Vanderklein, D.; Buschena, C. Photosynthesis and Respiration Rates Depend on Leaf and Root Morphology and Nitrogen Concentration in Nine Boreal Tree Species Differing in Relative Growth Rate. Funct. Ecol. 1998, 12, 395–405. [Google Scholar] [CrossRef]
- Kromer, S. Respiration during photosynthesis. Annu. Rev. Plant Biol. 1995, 46, 45–70. [Google Scholar] [CrossRef]
- You, C.M.; Hu, Z.M.; Guo, Q.; Gan, Y.M.; Li, L.H.; Bai, W.M.; Li, S.G. Effects of nitrogen addition on carbon exchange in a typical steppe in Inner Mongolia. Acta Ecol. Sin. 2016, 36, 2142–2150. [Google Scholar]
- Ryan, M.G.; Hubbard, R.M.; Pongracic, S.; Raison, R.J. Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status. Tree Physiol. 1996, 16, 333–343. [Google Scholar] [CrossRef]
- Weerasinghe, L.K.; Creek, D.; Crous, K.Y.; Xiang, S.; Liddell, M.J.; Turnbull, M.H.; Atkin, O.K. Canopy position affects the relationships between leaf respiration and associated traits in a tropical rainforest in Far North Queensland. Tree Physiol. 2014, 34, 564–584. [Google Scholar] [CrossRef] [Green Version]
- Asao, S.; Bedoya-Arrieta, R.; Ryan, M.G. Variation in foliar respiration and wood CO2 efflux rates among species and canopy layers in a wet tropical forest. Tree Physiol. 2015, 35, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Niu, S.; Wan, S. Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe. Glob. Chang. Biol. 2009, 15, 1544–1556. [Google Scholar] [CrossRef]
- Jose, S.; Merritt, S.; Ramsey, C.L. Growth, nutrition, photosynthesis and transpiration responses of longleaf pine seedlings to light, water and nitrogen. For. Ecol. Manag. 2003, 180, 335–344. [Google Scholar] [CrossRef]
- Wang, M.; Xu, X.; Wei, L.; Chen, J.; Wen, X.; Hu, X.; Zhang, F. Photosynthetic Response to Light in Clones of Casuarina equisetifolia. J. S. China Agric. Univ. 2011, 32, 76–79. [Google Scholar]
- Minocha, R.; Stephanie, L.; Bauer, G.A.; Berntson, G.M.; Magill, A.H.; Aber, J.; Bazzaz, F.A. Nitrogen Availability and Net Primary Production in Temperate Forests: The Role of Leaf Physiology, Foliage Turnover and Canopy Structure. Available online: http://abstracts.aspb.org/pb2001/public/P34/0093.html (accessed on 13 May 2021).
- Xiao, L.; Liu, G.B.; Zhang, J.Y.; Yang, T.; Xue, S. Effects of Elevated CO2,Drought Stress and Nitrogen Deposition on Photosynthesis Light Response Curves of Bothriochloa ischaemum. Acta Ecol. Sin. 2016, 24, 69–75. [Google Scholar]
- Li, X.; Li, Z.; Liu, H.; Shi, S.; Feng, J. Foliage Respiratory Characteristics of 5 Evergreen Tree Species Native to the Temperate Deciduous Evergreen Mixed Forest of North American. Sci. Silvae Sin. 2016, 52, 1–10. [Google Scholar]
- Deb Burman, P.K.; Shurpali, N.J.; Chowdhuri, S.; Karipot, A.; Chakraborty, S.; Lind, S.E.; Martikainen, P.J.; Chellappan, S.; Arola, A.; Tiwari, Y.K.; et al. Eddy covariance measurements of CO2 exchange from agro-ecosystems located in subtropical (India) and boreal (Finland) climatic conditions. J. Earth Syst. Sci. 2020, 129. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, C.; Wang, A.; Yuan, F.; Liu, Y.; Cui, C.; Zhu, K.; Guan, D.; Wu, J. Effects of Soil Nitrogen Addition on Crown CO2 Exchange of Fraxinus mandshurica Rupr. Saplings. Forests 2021, 12, 1170. https://doi.org/10.3390/f12091170
Gong C, Wang A, Yuan F, Liu Y, Cui C, Zhu K, Guan D, Wu J. Effects of Soil Nitrogen Addition on Crown CO2 Exchange of Fraxinus mandshurica Rupr. Saplings. Forests. 2021; 12(9):1170. https://doi.org/10.3390/f12091170
Chicago/Turabian StyleGong, Chunjuan, Anzhi Wang, Fenghui Yuan, Yage Liu, Chen Cui, Kai Zhu, Dexin Guan, and Jiabing Wu. 2021. "Effects of Soil Nitrogen Addition on Crown CO2 Exchange of Fraxinus mandshurica Rupr. Saplings" Forests 12, no. 9: 1170. https://doi.org/10.3390/f12091170
APA StyleGong, C., Wang, A., Yuan, F., Liu, Y., Cui, C., Zhu, K., Guan, D., & Wu, J. (2021). Effects of Soil Nitrogen Addition on Crown CO2 Exchange of Fraxinus mandshurica Rupr. Saplings. Forests, 12(9), 1170. https://doi.org/10.3390/f12091170