Evaluating the Influence of Climate Change on Sophora moorcroftiana (Benth.) Baker Habitat Distribution on the Tibetan Plateau Using Maximum Entropy Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. S. moorcroftiana Occurrence Records
2.3. Environmental Factors
2.4. MaxEnt Model Parameterization and Evaluation
2.5. Quantifying the Magnitude and Direction of S. moorcroftiana Habitat Shifts
3. Results
3.1. Habitat Distribution and Key Environmental Factors Driving S. moorcroftiana Distribution under Current Environmental Conditions
3.2. Potential Distribution of S. moorcroftiana under Future Climate Scenarios
3.3. Spatial Shift in the Habitat of S. moorcroftiana during the 21st Century
4. Discussion
4.1. Relationship between S. moorcroftiana Habitat Suitability and Environmental Variables
4.2. Response of Suitable Habitat Distribution to Future Climate Change
4.3. Uncertainties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hughes, L. Biological consequences of global warming: Is the signal already apparent? Trends Ecol. Evol. 2000, 15, 56–61. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change. 2014. Available online: http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm (accessed on 9 May 2020).
- Eastman, J.; Florencia, S.; Elia, M.; John, R.; Assaf, A. Global Trends in Seasonality of Normalized Difference Vegetation Index (NDVI), 1982–2011. Remote Sens. 2013, 5, 4799–4818. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yan, L.; Li, S.; Motesharrei, S. Spatial and Temporal Patterns of Global NDVI Trends: Correlations with Climate and Human Factors. Remote Sens. 2015, 7, 13233–13250. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Qin, X.; Yang, J. The response of vegetation dynamics of the different alpine grassland types to temperature and precipitation on the Tibetan Plateau. Environ. Monit. Assess. 2016, 188, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.; Tignor, M.; Miller, H. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; p. 996. [Google Scholar]
- Liu, X.; Chen, B. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. A J. R. Meteorol. Soc. 2000, 20, 1729–1742. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, G.; Zhang, Y.; Guan, X.; Wei, Y.; Guo, R. Global desertification vulnerability to climate change and human activities. Land Degrad. Dev. 2020, 31, 1380–1391. [Google Scholar] [CrossRef]
- Xue, X.; Guo, J.; Han, B.; Sun, Q.; Liu, L. The effect of climate warming and permafrost thaw on desertification in the Qinghai–Tibetan Plateau. Geomorphology 2009, 108, 182–190. [Google Scholar] [CrossRef]
- Dong, G.; Chen, H.; Wang, G.; Li, X.; Shao, Y.; Jin, J. The evolution of deserts with climatic changes in China since 150 ka BP. Sci. China Ser. D Earth Sci. 1997, 40, 370–382. [Google Scholar] [CrossRef]
- Liu, Y.; Yi, F.; Yang, G.; Wang, Y.; Pubu, C.; He, R.; Xiao, Y.; Wang, J.; Lu, N.; Wang, J. Geographic population genetic structure and diversity of Sophora moorcroftiana based on genotyping-by-sequencing (GBS). PeerJ 2020, 8, e9609. [Google Scholar] [CrossRef]
- Li, S.; Dong, G.; Shen, J.; Yang, P.; Liu, X.; Wang, Y.; Jin, H.; Wang, Q. Formation mechanism and development pattern of aeolian sand landform in Yarlung Zangbo River valley. Sci. China Ser. D Earth Sci. 1999, 42, 272–284. [Google Scholar] [CrossRef]
- Shen, W.; Li, H.; Sun, M.; Jiang, J. Dynamics of aeolian sandy land in the Yarlung Zangbo River basin of Tibet, China from 1975 to 2008. Glob. Planet. Chang. 2012, 86, 37–44. [Google Scholar] [CrossRef]
- Zou, X.-Y.; Li, S.; Zhang, C.-L.; Dong, G.-R.; Dong, Y.-X.; Yan, P. Desertification and control plan in the Tibet Autonomous Region of China. J. Arid. Environ. 2002, 51, 183–198. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, W.; Yang, G.; Wang, J.; Yi, F.; Wang, Y.; Wang, J.; Wang, C. Geographical Variation of the Seed and Germination Characteristics of Natural Populations of Sophora moorcroftiana. J. Northwest For. Univ. 2019, 34, 22–29. [Google Scholar]
- Zeng, J.; Tian, X.; Liu, Y.; Chi, Z. Benefit of Soil and Water Conservation for Sophora moorcroftiana in Tibet. Prot. For. Sci. Technol. 2015, 4–6. [Google Scholar]
- Liu, W.; Liu, S.; Xin, F.; Zhao, K. Response of growth and physiological changes of Sophora moorcroftiana seedlings to root-cutting intensity. J. Zhejiang Univ. (Agric. Life Sci.) 2021, 47, 243–250. [Google Scholar]
- Zhang, F.; Hu, C.; Cheng, S.; Wang, S.; Li, B.; Cao, D.; Fan, H.; Pan, R.; Mei, Y.; Xu, Y. The Investigation of the Effect and Mechanism of Sophora moorcroftiana Alkaloids in Combination with Albendazole on Echinococcosis in an Experimental Rats Model. Evid.-Based Complement. Altern. Med. 2018, 2018, 3523126. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Ladle, R.J.; Moore, P.D.; Cox, C.B. Biogeography: An Ecological and Evolutionary Approach; Blackwell: Hoboken, NJ, USA, 1980. [Google Scholar]
- Araújo, M.B.; Peterson, A.T. Uses and misuses of bioclimatic envelope modeling. Ecology 2012, 93, 1527–1539. [Google Scholar] [CrossRef] [Green Version]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Zhu, G.; Liu, G.; Bu, W.; Gao, Y. Ecological niche modeling and its applications in biodiversity conservation. Biodivers. Sci. 2013, 21, 90–98. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Edwards, T.C.; Guisan, A.; Mcmahon, S.M.; Normand, S.; Thuiller, W.; Wüest, R.O.; Zimmermann, N.E.; Elith, J. What do we gain from simplicity versus complexity in species distribution models? Ecography 2014, 37, 1267–1281. [Google Scholar] [CrossRef]
- Stockwell, D.; Peters, D.P. The GARP modelling system: Problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 1999, 13, 143–158. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudik, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Beaumont, L.J.; Hughes, L.; Poulsen, M.; Beaumont, L.J.; Hughes, L.; Poulsen, M. Predicting species distributions: Use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distribution. Ecological Modelling. Ecol. Model. 2005, 186, 251–270. [Google Scholar] [CrossRef]
- Cutler, A.; Cutler, D.R.; Stevens, J.R. Random forests. In Ensemble Machine Learning; Springer: Berlin/Heidelberg, Germany, 2012; pp. 157–175. [Google Scholar]
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Pecchi, M.; Marchi, M.; Burton, V.; Giannetti, F.; Moriondo, M.; Bernetti, I.; Bindi, M.; Chirici, G. Species distribution modelling to support forest management. A literature review. Ecol. Model. 2019, 411, 108817. [Google Scholar] [CrossRef]
- Wang, W.; Yang, J.; Luo, X.; Zhou, C.; Chen, S.; Yang, Z.; Hou, R.; Chen, Z.; Li, Y. Assessment of Potential Habitat for Firmiana danxiaensis, a Plant Species with Extremely Small Populations in Danxiashan National Nature Reserve Based on Maxent Model. Sci. Silvae Sin. 2019, 55, 19–27. [Google Scholar]
- Guo, Y.; Guo, J.; Shen, X.; Wang, G.; Wang, T. Predicting the Bioclimatic Habitat Suitability of Ginkgo biloba L. in China with Field-Test Validations. Forests 2019, 10, 705. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Xie, L.; Wang, H.; Zhong, J.; Li, Y.; Liu, J.; Ou, Z.; Liang, X.; Li, Y.; Huang, H. Geographic distribution and impacts of climate change on the suitable habitats of Zingiber species in China. Ind. Crop. Prod. 2019, 138, 111429. [Google Scholar] [CrossRef]
- Rong, Z.; Zhao, C.; Liu, J.; Gao, Y.; Zang, F.; Guo, Z.; Mao, Y.; Wang, L. Modeling the Effect of Climate Change on the Potential Distribution of Qinghai Spruce (Picea crassifolia Kom.) in Qilian Mountains. Forests 2019, 10, 62. [Google Scholar] [CrossRef] [Green Version]
- Ramos, R.S.; Kumar, L.; Shabani, F.; Picanco, M.C. Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios. Agric. Syst. 2019, 173, 524–535. [Google Scholar] [CrossRef]
- Sultana, S.; Baumgartner, J.B.; Dominiak, B.C.; Royer, J.E.; Beaumont, L.J. Impacts of climate change on high priority fruit fly species in Australia. PLoS ONE 2020, 15, e0213820. [Google Scholar] [CrossRef]
- Melo-Merino, S.M.; Reyes-Bonilla, H.; Lira-Noriega, A. Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecol. Model. 2020, 415, 108837. [Google Scholar] [CrossRef]
- Sterne, T.K.; Retchless, D.; Allee, R.; Highfield, W. Predictive modelling of mesophotic habitats in the north-western Gulf of Mexico. Aquat. Conserv.-Mar. Freshw. Ecosyst. 2020, 30, 846–859. [Google Scholar] [CrossRef]
- Convertino, M.; Annis, A.; Nardi, F. Information-theoretic portfolio decision model for optimal flood management. Environ. Model. Softw. 2019, 119, 258–274. [Google Scholar] [CrossRef] [Green Version]
- Ardestani, E.G.; Mokhtari, A. Modeling the lumpy skin disease risk probability in central Zagros Mountains of Iran. Prev. Vet. Med. 2020, 176, 104887. [Google Scholar] [CrossRef]
- Hanafi-Bojd, A.A.; Vatandoost, H.; Yaghoobi-Ershadi, M.R. Climate Change and the Risk of Malaria Transmission in Iran. J. Med. Entomol. 2020, 57, 50–64. [Google Scholar] [CrossRef]
- Norsang, G.; Kocbach, L.; Stamnes, J.; Tsoja, W.; Pincuo, N. Spatial distribution and temporal variation of solar UV radiation over the Tibetan Plateau. Appl. Phys. Res. 2011, 3, 37. [Google Scholar] [CrossRef]
- Ni, J. A Simulation of Biomes on the Tibetan Plateau and Their Responses to Global Climate Change. Mt. Res. Dev. 2000, 20, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Qin, A.; Jin, K.; Batsaikhan, M.-E.; Nyamjav, J.; Li, G.; Li, J.; Xue, Y.; Sun, G.; Wu, L.; Indree, T. Predicting the current and future suitable habitats of the main dietary plants of the Gobi Bear using MaxEnt modeling. Glob. Ecol. Conserv. 2020, 22, e01032. [Google Scholar] [CrossRef]
- Veloz, S.D. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J. Biogeogr. 2010, 36, 2290–2299. [Google Scholar] [CrossRef]
- Boria, R.A.; Olson, L.E.; Goodman, S.M.; Anderson, R.P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 2014, 275, 73–77. [Google Scholar] [CrossRef]
- Brown, J.L. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Y.; Sun, C.; Wang, X.; Zheng, Y.; Shi, S.; Chen, Z.; He, Q.; Weng, X.; Jia, L. Distinct Ecological Adaptations and Habitat Responses to Future Climate Change in Three East and Southeast Asian Sapindus Species. 2021; Unpublished work. [Google Scholar]
- Jones, C.D.; Arora, V.; Friedlingstein, P.; Bopp, L.; Brovkin, V.; Dunne, J.; Graven, H.; Hoffman, F.; Ilyina, T.; John, J.G.; et al. C4MIP–The Coupled Climate–Carbon Cycle Model Intercomparison Project: Experimental protocol for CMIP6. Geosci. Model Dev. 2016, 9, 2853–2880. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Xu, G.; Guo, K.; Du, S. Mapping the Global Potential Geographical Distribution of Black Locust (Robinia Pseudoacacia L.) Using Herbarium Data and a Maximum Entropy Model. Forests 2014, 5, 2773–2792. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chang, H.; Liu, T.; Zhang, C. The potential geographical distribution of Haloxylon across Central Asia under climate change in the 21st century. Agric. For. Meteorol. 2019, 275, 243–254. [Google Scholar] [CrossRef]
- Phillips, S.J. Transferability, sample selection bias and background data in presence-only modelling: A response to Peterson et al. (2007). Ecography 2008, 31, 272–278. [Google Scholar] [CrossRef]
- Araujo, M.B.; Pearson, R.G.; Thuiller, W.; Erhard, M. Validation of species–climate impact models under climate change. Glob. Chang. Biol. 2005, 11, 1504–1513. [Google Scholar] [CrossRef] [Green Version]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- Zhong, L.; Ma, Y.; Salama, M.S.; Su, Z. Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau. Clim. Chang. 2010, 103, 519–535. [Google Scholar] [CrossRef]
- Ashraf, U.; Chaudhry, M.N.; Ahmad, S.R.; Ashraf, I.; Arslan, M.; Noor, H.; Jabbar, M. Impacts of climate change on Capparis spinosa L. based on ecological niche modeling. PeerJ 2018, 6, e5792. [Google Scholar] [CrossRef] [Green Version]
- Lawler, J.J. Climate Change Adaptation Strategies for Resource Management and Conservation Planning. Ann. N. Y. Acad. Sci. 2009, 1162, 79–98. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zou, H.X.; Bachelot, B.; Dong, T.; Zhu, Z.; Liao, Y.; Plenković-Moraj, A.; Wu, Y. Predicting the responses of subalpine forest landscape dynamics to climate change on the southeastern Tibetan Plateau. Glob. Chang. Biol. 2021, 27, 4352–4366. [Google Scholar] [CrossRef]
- Ma, B.; Sun, J. Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecol. 2018, 18, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuang, X.; Jiao, J.J. Review on climate change on the Tibetan Plateau during the last half century. J. Geophys. Res. Atmos. 2016, 121, 3979–4007. [Google Scholar] [CrossRef]
- Xu, M.; Peng, F.; You, Q.; Guo, J.; Tian, X.; Xue, X.; Liu, M. Year-round warming and autumnal clipping lead to downward transport of root biomass, carbon and total nitrogen in soil of an alpine meadow. Environ. Exp. Bot. 2015, 109, 54–62. [Google Scholar] [CrossRef]
- Cao, M.; Prince, S.D.; Small, J.; Goetz, S.J. Remotely sensed interannual variations and trends in terrestrial net primary productivity 1981–2000. Ecosystems 2004, 7, 233–242. [Google Scholar] [CrossRef]
- Yang, Y.-H.; Piao, S.-L. Variations in grassland vegetation cover in relation to climatic factors on the Tibetan Plateau. Chin. J. Plant Ecol. 2006, 30, 1. [Google Scholar]
- Xu, M.; Xue, X. Analysis on the effects of climate warming on growth and phenology of alpine plants. J. Arid Land Resour. Environ. 2013, 27, 137–141. [Google Scholar]
- Pan, X.; Li, J.; Wang, J.; He, Q.; Su, Y.; Ma, J.; Du, K. The Impact of Drought Stress on Physiological Indicators of Four Shrub Species on the Qinghai-Tibet Plateau. Forest. Res. 2013, 26, 352–358. [Google Scholar]
- Zhao, W.; Liu, Z. Responses of Growth and Reproduction of Sophora moorcroftiana to Altitude and Sand-Burying in Tibet. Acta Ecol. Sin. 2002, 22, 134–138. [Google Scholar]
Data Type | Code | Environmental Factor |
---|---|---|
Bioclimatic factor | Bio1 | Annual mean temperature |
Bio2 | Mean diurnal range | |
Bio3 | Isothermality | |
Bio4 | Temperature seasonality | |
Bio5 | Max. temperature of warmest month | |
Bio6 | Min. temperature of coldest month | |
Bio7 | Temperature annual range | |
Bio8 | Mean temperature of wettest quarter | |
Bio9 | Mean temperature of driest quarter | |
Bio10 | Mean temperature of warmest quarter | |
Bio11 | Mean temperature of coldest quarter | |
Bio12 | Annual precipitation | |
Bio13 | Precipitation of wettest month | |
Bio14 | Precipitation of driest month | |
Bio15 | Precipitation seasonality | |
Bio16 | Precipitation of wettest quarter | |
Bio17 | Precipitation of driest quarter | |
Bio18 | Precipitation of warmest quarter | |
Bio19 | Precipitation of coldest quarter | |
Eva | Evapotranspiration | |
Gdd | Growing degree days | |
Topographic factor | Elv | Elevation |
Soil factor | Npp | Net primary productivity |
Sm | Soil moisture | |
Soc | Soil organic carbon | |
Sph | Soil pH | |
Ar | Annual runoff |
Variable | Environmental Factor | Percent Contribution (%) | Suitable Threshold |
---|---|---|---|
Elv | Elevation | 26 | 3400~4250 |
Bio 3 | Isothermality | 20.9 | 43~48 |
Bio 6 | Min. temperature of coldest month | 17.5 | −14~−9 |
Soc | Soil organic carbon | 9.2 | 6.1~8.2 |
Bio15 | Precipitation seasonality | 8.2 | 124~160 |
Npp | Net primary productivity | 6 | 0.27~0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, F.; Liu, J.; Chang, C.; Wang, Y.; Jia, L. Evaluating the Influence of Climate Change on Sophora moorcroftiana (Benth.) Baker Habitat Distribution on the Tibetan Plateau Using Maximum Entropy Model. Forests 2021, 12, 1230. https://doi.org/10.3390/f12091230
Xin F, Liu J, Chang C, Wang Y, Jia L. Evaluating the Influence of Climate Change on Sophora moorcroftiana (Benth.) Baker Habitat Distribution on the Tibetan Plateau Using Maximum Entropy Model. Forests. 2021; 12(9):1230. https://doi.org/10.3390/f12091230
Chicago/Turabian StyleXin, Fumei, Jiming Liu, Chen Chang, Yuting Wang, and Liming Jia. 2021. "Evaluating the Influence of Climate Change on Sophora moorcroftiana (Benth.) Baker Habitat Distribution on the Tibetan Plateau Using Maximum Entropy Model" Forests 12, no. 9: 1230. https://doi.org/10.3390/f12091230
APA StyleXin, F., Liu, J., Chang, C., Wang, Y., & Jia, L. (2021). Evaluating the Influence of Climate Change on Sophora moorcroftiana (Benth.) Baker Habitat Distribution on the Tibetan Plateau Using Maximum Entropy Model. Forests, 12(9), 1230. https://doi.org/10.3390/f12091230