The Spatially Inhomogeneous Influence of Snow on the Radial Growth of Schrenk Spruce (Picea schrenkiana Fisch. et Mey.) in the Ili-Balkhash Basin, Central Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Method of Establishing Tree-Ring Chronologies
2.3. Meteorological Data
3. Results
3.1. Relationship between the Radial Growth of P. schrenkiana and Climate
3.2. Tree Growth–Snow Relationship
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, X.; Liu, H.; Guo, D.; Anenkhonov, O.A.; Badmaeva, N.K.; Sandanov, D.V. Growth Decline Linked to Warming-Induced Water Limitation in Hemi-Boreal Forests. PLoS ONE 2012, 7, e42619. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Williams, A.P.; Allen, C.D.; Guo, D.; Wu, X.; Anenkhonov, O.A.; Liang, E.; Sandanov, D.V.; Yin, Y.; Qi, Z.; et al. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia. Glob. Chang. Biol. 2013, 19, 2500–2510. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Liu, H.; Anenkhonov, O.A.; Shangguan, H.; Sandanov, D.V.; Korolyuk, A.Y.; Hu, G.; Wu, X. Vegetation can strongly regulate permafrost degradation at its southern edge through changing surface freeze-thaw processes. Agric. For. Meteorol. 2018, 252, 10–17. [Google Scholar] [CrossRef]
- Zhang, R.; Ouyang, Z.-T.; Xie, X.; Guo, H.-Q.; Tan, D.-Y.; Xiao, X.-M.; Qi, J.-G.; Zhao, B. Impact of Climate Change on Vegetation Growth in Arid Northwest of China from 1982 to 2011. Remote Sens. 2016, 8, 364. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Moore, D.J.P.; Burns, S.P.; Monson, R.K. Longer growing seasons lead to less carbon sequestration by a subalpine forest. Glob. Chang. Biol. 2010, 16, 771–783. [Google Scholar] [CrossRef]
- Blume-Werry, G.; Kreyling, J.; Laudon, H.; Milbau, A. Short-term climate change manipulation effects do not scale up to long-term legacies: Effects of an absent snow cover on boreal forest plants. J. Ecol. 2016, 104, 1638–1648. [Google Scholar] [CrossRef]
- Christiansen, C.T.; Lafreniére, M.J.; Henry, G.H.R.; Grogan, P. Long-term deepened snow promotes tundra evergreen shrub growth and summertime ecosystem net CO2 gain but reduces soil carbon and nutrient pools. Glob. Chang. Biol. 2018, 24, 3508–3525. [Google Scholar] [CrossRef]
- Huo, Y.; Gou, X.; Liu, W.; Li, J.; Zhang, F.; Fang, K. Climate–growth relationships of Schrenk spruce (Picea schrenkiana) along an altitudinal gradient in the western Tianshan mountains, northwest China. Trees 2017, 31, 429–439. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Jin, L.; Shao, X.; He, Q.; Li, Z.; Li, J. Variations of the spring precipitation day numbers reconstructed from tree rings in the Urumqi River drainage, Tianshan Mts. over the last 370 years. Chin. Sci. Bull. 2003, 48, 1507–1510. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, J.; Zhang, J. 348 year precipitation reconstruction from tree-rings for the North Slope of the middle Tianshan Mountains. Acta Meteorol. Sin. 2001, 15, 95–104. Available online: http://www.cqvip.com/qk/88418x/200101/1001466102.html (accessed on 12 May 2015).
- Zhang, R.; Shang, H.; Yu, S.; He, Q.; Yuan, Y.; Bolatov, K.; Mambetov, B.T. Tree-ring-based precipitation reconstruction in southern Kazakhstan, reveals drought variability since A.D. 1770. Int. J. Clim. 2016, 37, 741–750. [Google Scholar] [CrossRef]
- Zhang, R.; Yuan, Y.; Gou, X.; He, Q.; Shang, H.; Zhang, T.; Chen, F.; Ermenbaev, B.; Yu, S.; Qin, L.; et al. Tree-ring-based moisture variability in western Tianshan Mountains since A.D. 1882 and its possible driving mechanism. Agric. For. Meteorol. 2016, 218–219, 267–276. [Google Scholar] [CrossRef]
- Zhang, R.; Yuan, Y.; Gou, X.; Zhang, T.; Zou, C.; Ji, C.; Fan, Z.; Qin, L.; Shang, H.; Li, X. Intra-annual radial growth of Schrenk spruce (Picea schrenkiana Fisch. et Mey) and its response to climate on the northern slopes of the Tianshan Mountains. Dendrochronologia 2016, 40, 36–42. [Google Scholar] [CrossRef]
- Panyushkina, I.P.; Meko, D.M.; Macklin, M.G.; Toonen, W.H.J.; Mukhamadiev, N.S.; Konovalov, V.G.; Ashikbaev, N.Z.; Sagitov, A.O. Runoff variations in Lake Balkhash Basin, Central Asia, 1779–2015, inferred from tree rings. Clim. Dyn. 2018, 51, 3161–3177. [Google Scholar] [CrossRef]
- Fritts, H.C. Tree Rings and Climate; Academic Press: New York, NY, USA, 1976. [Google Scholar]
- Holmes, R.L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 1983, 43, 69–75. Available online: https://repository.arizona.edu/bitstream/handle/10150/261223/trb-43-069-078.pdf (accessed on 12 May 2015).
- Cook, E.R. A Time-Series Analysis Approach to Tree-Ring Standardization. Ph.D. Thesis, University of Arizona, Arizona, AZ, USA, 1985. [Google Scholar]
- Cook, E.R.; Kairiukstis, L.A. Methods of Dendrochronology: Applications in the Environmental Sciences; Kluwer Academic Publishers: Boston, MA, USA, 1990. [Google Scholar]
- Briffa, K.R.; Melvin, T.M. A Closer Look at Regional Curve Standardisation of Tree-Ring Records: Justification of the Need, a Warning of Some Pitfalls, and Suggested Improvements in Its Application. In Dendroclimatology: Developments in Paleoenvironmental Research; Hughes, M.K., Diaz, H.F., Swetnam, T.W., Eds.; Springer: Dordrecht, The Netherlands, 2010; Volume 11, pp. 113–145. [Google Scholar]
- Potopová, V.; Boroneanţ, C.; Možný, M.; Soukup, J. Driving role of snow cover on soil moisture and drought development during the growing season in the Czech Republic. Int. J. Clim. 2015, 36, 3741–3758. [Google Scholar] [CrossRef] [Green Version]
- Shamir, E.; Meko, D.; Touchan, R.; Lepley, K.S.; Campbell, R.; Kaliff, R.N.; Georgakakos, K.P. Snowpack- and soil water content-related hydrologic indices and their association with radial growth of conifers in the Sierra Nevada, California. J. Geophys. Res. Biogeosci. 2019, 125, e2019JG005331. [Google Scholar] [CrossRef]
- Reinmann, A.B.; Templer, P.H. Reduced Winter Snowpack and Greater Soil Frost Reduce Live Root Biomass and Stimulate Radial Growth and Stem Respiration of Red Maple (Acer rubrum) Trees in a Mixed-Hardwood Forest. Ecosystems 2015, 19, 129–141. [Google Scholar] [CrossRef]
- Reinmann, A.B.; Templer, P.H. Increased soil respiration in response to experimentally reduced snow cover and increased soil freezing in a temperate deciduous forest. Biogeochemistry 2018, 140, 359–371. [Google Scholar] [CrossRef]
- Wipf, S.; Rixen, C. A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Res. 2010, 29, 95–109. [Google Scholar] [CrossRef]
- Wipf, S.; Stoeckli, V.; Bebi, P. Winter climate change in alpine tundra: Plant responses to changes in snow depth and snowmelt timing. Clim. Chang. 2009, 94, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Reinmann, A.B.; Susser, J.R.; DeMaria, E.M.C.; Templer, P.H. Declines in northern forest tree growth following snowpack decline and soil freezing. Glob. Chang. Biol. 2018, 25, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, X.; Liu, H.; Ciais, P.; Li, Y.; Xu, C.; Babst, F.; Guo, W.; Hao, B.; Wang, P.; et al. Uneven winter snow influence on tree growth across temperate China. Glob. Chang. Biol. 2018, 25, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Akkemik, Ü. Tree rings of Cedrus libani at the northern boundary of its natural distribution. IAWA J. 2003, 24, 63–73. Available online: https://brill.com/view/journals/iawa/24/1/article-p63_6.xml?ebody=pdf-49903 (accessed on 12 May 2015). [CrossRef] [Green Version]
- Liang, E.; Liu, X.; Yuan, Y.; Qin, N.; Fang, X.; Huang, L.; Zhu, H.; Wang, L.; Shao, X. The 1920S Drought Recorded by Tree Rings and Historical Documents in the Semi-Arid and Arid Areas of Northern China. Clim. Chang. 2006, 79, 403–432. [Google Scholar] [CrossRef]
- D’Arrigo, R.D.; Jacoby, G.C. A 1000-year record of winter precipitation from northwestern New Mexico, USA: A reconstruction from tree-rings and its relation to El Nino and the Southern Oscillation. Holocene 1991, 1, 95–101. [Google Scholar] [CrossRef]
- Díaz, S.C.; Therrell, M.D.; Stahle, D.W.; Cleaveland, M.K. Chihuahua (Mexico) winter-spring precipitation reconstructed from tree-rings, 1647–1992. Clim. Res. 2002, 22, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Vaganov, E.A.; Hughes, M.K.; Kirdyanov, A.V.; Schweingruber, F.H.; Silkin, P.P. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nat. Cell Biol. 1999, 400, 149–151. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Beguería, S.; Trigo, R.; Lopez-Moreno, J.I.; Azorin-Molina, C.; Pasho, E.; Lorenzo-Lacruz, J.; Revuelto, J.; et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. USA 2013, 110, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wu, X.; Huang, Y.; Li, X.; Shi, F.; Zhao, S.; Yang, Y.; Tian, Y.; Wang, P.; Zhang, S.; et al. Compensation effect of winter snow on larch growth in Northeast China. Clim. Chang. 2021, 164, 1–17. [Google Scholar] [CrossRef]
Region | Sampling Sites | Codename | Longitude (E) | Latitude (N) | Elevation (m) | Aspect | Slope | Trees/Cores | Start and End Year |
---|---|---|---|---|---|---|---|---|---|
Southeastern Kazakhstan | Chimbulak Ski Resort | CSR | 77°05′ | 43°07′ | 2525 | W | 35° | 26/44 | 1594–2015 |
Ecik Lake | ECK | 77°28′ | 43°15′ | 1850 | N | 50° | 24/45 | 1722–2015 | |
Turgen | TGY | 77°48′ | 43°14′ | 2000 | NW | 40° | 27/54 | 1728–2016 | |
Zumblak | ZBK | 79°03′ | 43°08′ | 2050 | N | 40° | 26/51 | 1762–2015 | |
Upper Ili River, China | Qishisituan | QST | 80°12′ | 42°38′ | 2610 | NE | 30° | 29/60 | 1811–2014 |
Zhongmachang | ZMC | 81°12′ | 43°19′ | 2500 | E-W | 30° | 22/50 | 1689–2014 | |
Kalajunxia | KLX | 82°09′ | 43°05′ | 2150 | N | 10° | 21/55 | 1825–2014 | |
Talimu | TLM | 82°31′ | 43°06′ | 1540 | NW | 30° | 20/41 | 1855–2014 | |
Qapuhe | QPH | 83°11′ | 43°19′ | 1570 | N | 40° | 24/43 | 1861–2014 | |
Tianchengtai | TCT | 83°56′ | 43°11′ | 2395 | N | 5° | 23/46 | 1803–2014 | |
Nalati | NLT | 84°15′ | 43°15′ | 1995 | NW | 15° | 27/53 | 1743–2014 | |
Nalatidong | NLD | 84°18′ | 43°17′ | 1770 | N | 30° | 24/46 | 1865–2014 | |
Tulashala | TLS | 84°22′ | 43°10′ | 2540 | NW | 15° | 25/50 | 1690–2014 | |
Gongnaisi | GNS | 84°49′ | 43°13′ | 2620 | W | 20° | 35/69 | 1772–2014 |
Region | Meteorological Station | Codename | Longitude (E) | Latitude (N) | Elevation (m) | Start and End Year |
---|---|---|---|---|---|---|
Southeastern Kazakhstan | Almaty | ALM | 76°56′ | 43°14′ | 847 | 1933–2016 |
Ulken Almaty lake | UAL | 76°59′ | 43°04′ | 2516 | 1977–2016 | |
Mynzhylky | MYN | 77°05′ | 43°05′ | 3017 | 1977–2016 | |
Assy | ASS | 78°07 | 43°16′ | 2216 | 1977–2016 | |
Zhalanash | ZHA | 78°39′ | 43°03′ | 1699 | 1971–2012 | |
Kegen | KEG | 79°13′ | 43°02′ | 1845 | 1977–2016 | |
Narynkol | NAR | 80°11′ | 42°43′ | 1806 | 1977–2016 | |
Upper Ili River, China | Zhaosu | ZS | 81°08′ | 43°09′ | 1854.6 | 1954–2015 |
Tekesi | TKS | 81°46′ | 43°11′ | 1210.9 | 1960–2015 | |
Gongliu | GL | 82°14′ | 43°28′ | 776.5 | 1960–2015 | |
Nileke | NLK | 82°34′ | 43°48′ | 1106.1 | 1959–2015 | |
Xinyuan | XY | 83°18′ | 43°27′ | 929.2 | 1956–2015 | |
Snow avalanche station | SA | 84°09′ | 43°02′ | 1776 | 1968–2005 |
Region | Station | T (℃) | P (mm) | T56 (℃) | P56 (mm) |
---|---|---|---|---|---|
Southeastern Kazakhstan | ALM | 9.4 | 640 | 18.8 | 163 |
UAL | 1.8 | 838 | 7.8 | 271 | |
MYN | −1.2 | 876 | 4.4 | 300 | |
ASS | 0.4 | 381 | 8.0 | 137 | |
ZHA | 5.9 | 530 | 13.5 | 152 | |
KEG | 3.5 | 411 | 11.9 | 132 | |
NAR | 3.8 | 391 | 12.8 | 113 | |
Upper Ili River, China | ZS | 3.4 | 504 | 11.7 | 175 |
TKS | 6.1 | 395 | 15.4 | 133 | |
GL | 8.1 | 277 | 18.2 | 74 | |
NLK | 6.4 | 384 | 15.9 | 105 | |
XY | 8.9 | 505 | 17.8 | 138 | |
SA | 1.6 | 840 | 10.4 | 240 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, L.; Bolatov, K.; Yuan, Y.; Shang, H.; Yu, S.; Zhang, T.; Bagila, M.; Bolatova, A.; Zhang, R. The Spatially Inhomogeneous Influence of Snow on the Radial Growth of Schrenk Spruce (Picea schrenkiana Fisch. et Mey.) in the Ili-Balkhash Basin, Central Asia. Forests 2022, 13, 44. https://doi.org/10.3390/f13010044
Qin L, Bolatov K, Yuan Y, Shang H, Yu S, Zhang T, Bagila M, Bolatova A, Zhang R. The Spatially Inhomogeneous Influence of Snow on the Radial Growth of Schrenk Spruce (Picea schrenkiana Fisch. et Mey.) in the Ili-Balkhash Basin, Central Asia. Forests. 2022; 13(1):44. https://doi.org/10.3390/f13010044
Chicago/Turabian StyleQin, Li, Kainar Bolatov, Yujiang Yuan, Huaming Shang, Shulong Yu, Tongwen Zhang, Maisupova Bagila, Aigerim Bolatova, and Ruibo Zhang. 2022. "The Spatially Inhomogeneous Influence of Snow on the Radial Growth of Schrenk Spruce (Picea schrenkiana Fisch. et Mey.) in the Ili-Balkhash Basin, Central Asia" Forests 13, no. 1: 44. https://doi.org/10.3390/f13010044
APA StyleQin, L., Bolatov, K., Yuan, Y., Shang, H., Yu, S., Zhang, T., Bagila, M., Bolatova, A., & Zhang, R. (2022). The Spatially Inhomogeneous Influence of Snow on the Radial Growth of Schrenk Spruce (Picea schrenkiana Fisch. et Mey.) in the Ili-Balkhash Basin, Central Asia. Forests, 13(1), 44. https://doi.org/10.3390/f13010044