A Bibliometric Analysis of Global Fine Roots Research in Forest Ecosystems during 1992–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Bibliometric Analysis
3. Results and Discussion
3.1. General Statistics
3.2. Co-Authorship Network Analysis
3.3. Co-Citation Network Analysis
3.4. Keyword Analysis
4. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aleixandre-Benavent, P.; Aleixandre-Tudó, J.L.; Castelló-Cogollos, L.; Aleixandre, J.L. Trends in scientific research on climate change in agriculture and forestry subject areas (2005–2014). J. Clean. Prod. 2017, 147, 406–418. [Google Scholar] [CrossRef] [Green Version]
- Andreo-Martinez, P.; Ortiz-Martinez, V.M.; Garcia-Martinez, N.; Lopez, P.P.; Quesada-Medina, J.; Camara, M.A.; Oliva, J. A descriptive bibliometric study on bioavailability of pesticides in vegetables, food or wine research (1976–2018). Environ. Toxicol. Pharmacol. 2020, 77, 103374. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Biresselioglu, M.E.; Demir, M.H.; Solak, B.; Kayacan, A.; Altinci, S. Investigating the trends in arctic research: The increasing role of social sciences and humanities. Sci. Total Environ. 2020, 729, 139027. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, Y.N.; Zhang, G.Q.; Zhang, J.; Chen, M. Fine root C:N:P stoichiometry and its driving factors across forest ecosystems in northwestern China. Sci. Total Environ. 2020, 737, 140299. [Google Scholar] [CrossRef]
- Clemmensen, K.E.; Bahr, A.; Ovaskainen, O.; Dahlberg, A.; Ekblad, A.; Wallander, H.; Stenlid, J.; Finlay, R.D.; Wardle, D.A.; Lindahl, B.D. Roots and Associated Fungi Drive Long-Term Carbon Sequestration in Boreal Forest. Science 2013, 339, 1615–1618. [Google Scholar] [CrossRef] [PubMed]
- Cudlin, P.; Kieliszewska-Rojucka, B.; Rudawska, M.; Grebenc, T.; Alberton, O.; Lehto, T.; Bakker, M.R.; Borja, I.; Konopka, B.; Leski, T.; et al. Fine roots and ectomycorrhizas as indicators of environmental change. Plant Biosyst. 2007, 141, 406–425. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.Y.; Leppalammi-Kujansuu, J.; Helmisaari, H.S. Fine root longevity and below- and aboveground litter production in a boreal Betula pendula forest. For. Ecol. Manag. 2019, 431, 17–25. [Google Scholar] [CrossRef]
- Eissenstat, D.M.; Wells, C.E.; Yanai, R.D.; Whitbeck, J.L. Building roots in a changing environment: Implications for root longevity. New Phytol. 2000, 147, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Eissenstat, D.M.; Yanai, R.D. The ecology of root lifespan. Adv. Ecol. Res. 1997, 27, 1–60. [Google Scholar]
- Eldhuset, T.D.; Kjonaas, O.J.; Lange, H. Decomposition rates and nutrient dynamics of Picea abies needles, twigs and fine roots after stem-only harvesting in eastern and western Norway. Plant Soil 2017, 418, 357–375. [Google Scholar] [CrossRef]
- Finér, L.; Ohashi, M.; Noguchi, K.; Hirano, Y. Factors causing variation in fine root biomass in forest ecosystems. For. Ecol. Manag. 2011, 261, 265–277. [Google Scholar] [CrossRef]
- Freschet, G.T.; Cornwell, W.K.; Wardle, D.A.; Elumeeva, T.G.; Liu, W.D.; Jackson, B.G.; Onipchenko, V.G.; Soudzilovskaia, N.A.; Tao, J.P.; Cornelissen, J.H.C. Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide. J. Ecol. 2013, 101, 943–952. [Google Scholar] [CrossRef]
- Germon, A.; Laclau, J.P.; Robin, A.; Jourdan, C. Tamm Review: Deep fine roots in forest ecosystems: Why dig deeper? For. Ecol. Manag. 2020, 466, 118135. [Google Scholar] [CrossRef]
- Gill, R.A.; Jackson, R.B. Global patterns of root turnover for terrestrial ecosystems. New Phytol. 2000, 147, 13–31. [Google Scholar] [CrossRef]
- Gower, S.T.; Pongracic, S.; Landsberg, J.J. A global trend in belowground carbon allocation: Can we use the relationship at smaller scales? Ecology 1996, 77, 1750–1755. [Google Scholar] [CrossRef]
- Guo, D.; Mitchell, R.; Hendricks, J. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia 2004, 140, 450–457. [Google Scholar] [CrossRef]
- Guo, D.L.; Li, H.; Mitchell, R.J.; Han, W.X.; Hendricks, J.J.; Fahey, T.J.; Hendrick, R.L. Fine root heterogeneity by branch order: Exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods. New Phytol. 2008, 177, 443–456. [Google Scholar] [CrossRef]
- Hanson, P.J.; Edwards, N.T.; Garten, C.T.; Andrews, J.A. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 2000, 48, 115–146. [Google Scholar] [CrossRef]
- Hendricks, J.J.; Nadelhoffer, K.J.; Aber, J.D. Assessing the role of fine roots in carbon and nutrient cycling. Trends Ecol. Evol. 1993, 8, 174–178. [Google Scholar] [CrossRef]
- Hendricks, J.J.; Hendrick, R.L.; Wilson, C.A.; Mitchell, R.J.; Pecot, S.D.; Guo, D.L. Assessing the patterns and controls of fine root dynamics: An empirical test and methodological review. J. Ecol. 2006, 94, 40–57. [Google Scholar] [CrossRef]
- Hendrick, R.L.; Pregitzer, K.S. The demography of fine roots in a northern hardwood forest. Ecology 1992, 73, 1094–1104. [Google Scholar] [CrossRef]
- Hong, T.; Feng, X.Z.; Tong, W.W.; Xu, W.D. Bibliometric analysis of research on the trends in autophagy. PeerJ 2019, 7, e7103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.; Zhou, M.; Lv, J.; Chen, K. Trends in global research in forest carbon sequestration: A bibliometric analysis. J. Clean. Prod. 2020, 252, 1199008. [Google Scholar] [CrossRef]
- Iversen, C.M.; McCormack, M.L.; Powell, A.S.; Blackwood, C.B.; Freschet, G.T.; Kattge, J.P.M.; Violle, C. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology. New Phytol. 2017, 215, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.B.; Canadell, J.; Ehleringer, J.R.; Mooney, H.A.; Sala, O.E.; Schulze, E.D. A global analysis of root distributions for terrestrial biomes. Oecologia 1996, 108, 389–411. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.B.; Mooney, H.A.; Schulze, E.D. A global budget for fine root biomass, surface area, and nutrient contents. Proc. Natl. Acad. Sci. USA 1997, 94, 7362–7366. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.G.; Tingey, D.T.; Phillips, D.L.; Storm, M.J. Advancing fine root research with minirhizotrons. Environ. Exp. Bot. 2001, 45, 263–289. [Google Scholar] [CrossRef]
- Kulak, M.; Ozkan, A.; Bindak, R. A bibliometric analysis of the essential oil-bearing plants exposed to the water stress: How long way we have come and how much further? Sci. Hortic. 2019, 246, 418–436. [Google Scholar] [CrossRef]
- Liu, Y.N.; Wu, K.N.; Zhao, R. Bibliometric analysis of research on soil health from 1999 to 2018. J. Soils Sediments 2020, 20, 1513–1525. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, Y. Global Research Trends and Hotspots on Submarine Groundwater Discharge (SGD): A Bibliometric Analysis. Int. J. Environ. Res. Public Health 2020, 17, 830. [Google Scholar] [CrossRef] [Green Version]
- Majdi, H.; Pregitzer, K.; Moren, A.S.; Nylund, J.E.; Agren, G.I. Measuring fine root turnover in forest ecosystems. Plant Soil 2005, 276, 1–8. [Google Scholar] [CrossRef]
- Matamala, R.; Gonzalez-Meler, M.A.; Jastrow, J.D.; Norby, R.J.; Schlesinger, W.H. Impacts of Fine Root Turnover on Forest NPP and Soil C Sequestration Potential. Science 2003, 302, 1385–1387. [Google Scholar] [CrossRef] [PubMed]
- McCormack, M.L.; Adams, T.S.; Smithwick, E.A.; Eissenstat, D.M. Predicting fine root lifespan from plant functional traits in temperate trees. New Phytol. 2012, 195, 823–831. [Google Scholar] [CrossRef]
- McCormack, M.L.; Dickie, I.A.; Eissenstat, D.M.; Fahey, T.J.; Fernandez, C.W.; Guo, D.L.; Helmisaari, H.S.; Hobbie, E.A.; Iversen, C.M.; Jackson, R.B.; et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol. 2015, 207, 505–518. [Google Scholar] [CrossRef]
- Mourao, P.R.; Martinho, V.D. Forest entrepreneurship: A bibliometric analysis and a discussion about the co-authorship networks of an emerging scientific field. J. Clean. Prod. 2020, 256, 120413. [Google Scholar] [CrossRef]
- Nadelhoffer, K.J.; Raich, J.W. Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 1992, 73, 1139–1147. [Google Scholar] [CrossRef]
- Norby, R.J.; Jackson, R.B. Root dynamics and global change: Seeking an ecosystem perspective. New Phytol. 2000, 147, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Ostonen, I.; Puttsepp, U.; Biel, C.; Alberton, O.; Bakker, M.R.; Lohmus, K.; Majdi, H.; Metcalfe, D.; Olsthoorn, A.F.M.; Pronk, A.; et al. Specific root length as an indicator of environmental change. Plant Biosyst. 2007, 141, 426–442. [Google Scholar] [CrossRef]
- Palviainen, M.; Finer, L.; Kurka, A.M.; Mannerkoski, H.; Piirainen, S.; Starr, M. Decomposition and nutrient release from logging residues after clear-cutting of mixed boreal forest. Plant Soil 2004, 263, 53–67. [Google Scholar] [CrossRef]
- Pregitzer, K.S.; DeForest, J.L.; Burton, A.J.; Allen, M.F.; Ruess, R.W.; Hendrick, R.L. Fine root architecture of nine North American trees. Ecol. Monogr. 2002, 72, 293–309. [Google Scholar] [CrossRef]
- Pregitzer, K.S.; King, J.A.; Burton, A.J.; Brown, S.E. Responses of tree fine roots to temperature. New Phytol. 2000, 147, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Pregitzer, K.S.; Laskowski, M.J.; Burton, A.J.; Lessard, V.C.; Zak, D.R. Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiol. 1998, 18, 665–670. [Google Scholar] [CrossRef] [Green Version]
- Reich, P.B. The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto. J. Ecol. 2014, 102, 275–301. [Google Scholar] [CrossRef]
- Ryan, M.G.; Hubbard, R.M.; Pongracic, S.; Raison, R.J.; McMurtrie, R.E. Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status. Tree Physiol. 1996, 16, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Steele, S.J.; Gower, S.T.; Vogel, J.G.; Norman, J.M. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada. Tree Physiol. 1997, 17, 577–587. [Google Scholar] [CrossRef] [Green Version]
- Silver, W.L.; Miya, R.K. Global patterns in root decomposition: Comparisons of climate and litter quality effects. Oecologia 2001, 129, 407–419. [Google Scholar] [CrossRef]
- Su, Y.A.; Yu, Y.N.; Zhang, N. Carbon emissions and environmental management based on Big Data and Streaming Data: A bibliometric analysis. Sci. Total Environ. 2020, 733, 138984. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.T.; Fernandes, J.; Carvalho, J.; Cunha, M.V.; Caetano, T.; Mendo, S.; Serrano, E.; Fonseca, C. Wild boar as a reservoir of antimicrobial resistance. Sci. Total Environ. 2020, 717, 135001. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas, S.A.; Esteves, G.R.T.; Macaira, P.M.; Bastos, B.Q.; Oliveira, F.L.C.; Souza, R.C. Wind power generation: A review and a research agenda. J. Clean. Prod. 2019, 218, 850–870. [Google Scholar] [CrossRef]
- Vogt, K.A.; Grier, C.C.; Vogt, D.J. Production, Turnover, and Nutrient Dynamics of Above- and Belowground Detritus of World Forests. Adv. Ecol. Res. 1986, 15, 303–377. [Google Scholar]
- Vogt, K.A.; Vogt, D.J.; Palmiotto, P.A.; Boon, P.; O’Hara, J.; Asbjornsen, H. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 1995, 187, 159–219. [Google Scholar] [CrossRef]
- Wan, R.; Li, L.; Peng, R.G.; Gao, L. Worldwide scientific productions with immunotherapy of sepsis: A bibliometric analysis. PeerJ 2019, 7, e7116. [Google Scholar] [CrossRef]
- Weemstra, M.; Mommer, L.; Visser, E.J.W.; van Ruijven, J.; Kuyper, T.W.; Mohren, G.M.J.; Sterck, F.J. Towards a multidimensional root trait framework: A tree root review. New Phytol. 2016, 211, 1159–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, J.Y.; Wang, J.; Niu, S.L. Research challenges and opportunities for using big data in global change biology. Global Change Biol. 2020, 26, 6040–6061. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.Y.; Chen, H.Y.H. Fine Root Biomass, Production, Turnover Rates, and Nutrient Contents in Boreal Forest Ecosystems in Relation to Species, Climate, Fertility, and Stand Age: Literature Review and Meta-Analyses. Crit. Rev. Plant Sci. 2010, 29, 204–221. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.P. Research trends and areas of focus on the Chinese Loess Plateau: A bibliometric analysis during 1991–2018. Catena 2020, 194, 104798. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, K.; Yu, Y.J.; Yang, B.B. Mapping of water footprint research: A bibliometric analysis during 2006–2015. J. Clean. Prod. 2017, 149, 70–79. [Google Scholar] [CrossRef]
- Zhang, Y.; Pu, S.Y.; Lv, X.; Gao, Y.; Ge, L. Global trends and prospects in microplastics research: A bibliometric analysis. J. Hazard. Mater. 2020, 400, 123110. [Google Scholar] [CrossRef]
Rank | Country | N (%) | Citations | h-Index | Institution | N (%) | Citations | h-Index |
---|---|---|---|---|---|---|---|---|
1 | USA | 1175 (35.50%) | 81,621 | 143 | Chinese Academy of Sciences, China | 307 (9.27%) | 7073 | 38 |
2 | China | 663 (20.03%) | 14,641 | 53 | United States Forest Service, USA | 143 (4.32%) | 9119 | 49 |
3 | Germany | 390 (11.78%) | 19,491 | 67 | Swedish University of Agricultural Science, Sweden | 129 (3.89%) | 6919 | 46 |
4 | Canada | 263 (7.95%) | 9703 | 51 | University of Göttingen, Germany | 123 (3.72%) | 6543 | 42 |
5 | Japan | 197 (5.95%) | 4999 | 37 | University of Chinese Academy of Sciences, China | 95 (2.87%) | 1216 | 20 |
6 | Sweden | 195 (5.89%) | 10,089 | 56 | Cornell University, USA | 85 (2.57%) | 6146 | 38 |
7 | France | 180 (5.44%) | 8957 | 46 | University of Helsinki, Finland | 79 (2.39%) | 3699 | 30 |
8 | Australia | 151 (4.56%) | 7164 | 44 | INRAE, France | 76 (2.29%) | 3848 | 32 |
9 | Finland | 150 (4.53%) | 7325 | 46 | Kyoto University, Japan | 72 (2.17%) | 1545 | 21 |
10 | Switzerland | 147 (4.44%) | 5845 | 40 | Duke University, USA | 66 (1.99%) | 9728 | 48 |
Rank | Productive Author (Affiliate) | N (%) | Citations | h-Index | Co-Cited Author (Affiliate) | Co-Citations |
---|---|---|---|---|---|---|
1 | Leuschner C (University of Göttingen, Germany) | 67 (2.02%) | 2902 | 31 | Vogt KA (University of Washington, USA) | 1312 |
2 | Hertel D (University of Göttingen, Germany) | 59 (1.78%) | 2557 | 30 | Pregitzer KS (University of Idaho, USA) | 1194 |
3 | Pregitzer KS (University of Idaho, USA) | 53 (1.60%) | 6365 | 40 | Jackson RB. (Stanford University, USA) | 788 |
4 | Fahey TJ (Cornell University, USA) | 49 (1.48%) | 3816 | 29 | Norby RJ (Oak Ridge National Laboratory, USA) | 762 |
5 | Helmisaari HS (University of Helsinki, Finland) | 36 (1.08%) | 1983 | 25 | Eissenstat DM (Pennsylvania State University, USA) | 757 |
6 | Chen HYH (Lakehead University, Canada) | 35(1.05%) | 1600 | 20 | Hendrick RL (Ohio State University, USA) | 691 |
7 | Zak DR (University of Michigan, USA) | 35(1.05%) | 3098 | 26 | Nadelhoffer KJ (University of Michigan, USA) | 690 |
8 | Brunner I (Swiss Federal Institute for Forest, Switzerland) | 33 (0.99%) | 1264 | 17 | Vitousek PM (Stanford University, USA) | 645 |
9 | Jourdan C (Universite de Montpellier, France) | 33 (0.99%) | 1113 | 20 | Reich PB (University of Minnesota System, USA) | 640 |
10 | Norby RJ(Oak Ridge National Laboratory, USA) | 33 (0.99%) | 4676 | 28 | Raich JW (Lowa State University, USA) | 635 |
Rank | Cited Publications | Citations | Co-Cited Publications | Co-Citations | Local Citation Score Publications | LCS | GCS |
---|---|---|---|---|---|---|---|
1 | A global analysis of root distributions for terrestrial biomes (Jackson RB, 1996, Oecologia) | 1706 | A global budget for fine root biomass, surface area, and nutrient contents (Jackson RB, 1997, P Natl Acad Sci USA) | 389 | A global budget for fine root biomass, surface area, and nutrient contents (Jackson RB, 1997, P Natl Acad Sci USA) | 384 | 891 |
2 | Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest (Davidson EA, 1998, Glob Change Biol) | 1289 | Fine root architecture of nine North American trees (Pregitzer KS, 2002, Ecol Monogr) | 310 | Global patterns of root turnover for terrestrial ecosystems (Gill RA, 2000, New Phytol) | 299 | 733 |
3 | The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto (Reich PB, 2014, J Ecol) | 1145 | Global patterns of root turnover for terrestrial ecosystems (Gill RA, 2000, New Phytol) | 301 | The ecology of root lifespan (Eissenstat DM, 1997, Adv Ecol Res) | 227 | 550 |
4 | A global budget for fine root biomass, surface area, and nutrient contents (Jackson RB, 1997, P Natl Acad Sci USA) | 891 | Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species (Vogt KA, 1996, Plant Soil) | 257 | Fine root production estimates and belowground carbon allocation in forest ecosystems (Nadelhoffer KJ, 1992, Ecology) | 205 | 337 |
5 | Deep soil organic matter-a key but poorly understood component of terrestrial C cycle (Rumpel C, 2011, Plant Soil) | 757 | The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems (McClaugherty CA, 1982, Ecology) | 240 | The demography of fine roots in a northern hardwood forest (Hendrick RL, 1992, Ecology) | 190 | 315 |
6 | Root biomass allocation in the world’s upland forests (Cairns MA, 1997, Oecologia) | 744 | The ecology of root lifespan (Eissenstat DM, 1997, Adv Ecol Res) | 229 | The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems (Hendrick RL, 1993, Can J For Res) | 179 | 285 |
7 | Neotropical secondary forest succession: changes in structural and functional characteristics (Guariguata MR, 2001, Forest Ecol Manag) | 739 | Production, turnover, and nutrient dynamics of above-and belowground detritus of world forests (Vogt KA, 1986, Adv Ecol Res) | 220 | A global analysis of root distributions for terrestrial biomes (Jackson RB, 1996, Oecologia) | 177 | 1706 |
8 | Global patterns of root turnover for terrestrial ecosystems (Gill RA, 2000, New Phytol) | 733 | Fine root production estimates and belowground carbon allocation in forest ecosystems (Nadelhoffer KJ, 1992, Ecology) | 206 | Global patterns in root decomposition: comparisons of climate and litter quality effects (Silver WL, 2001, Oecologia) | 166 | 528 |
9 | Global-scale similarities in nitrogen release patterns during long-term decomposition (Parton W, 2007, Science) | 702 | Large-scale forest girdling shows that current photosynthesis drives soil respiration (Hogberg P, 2001, Nature) | 197 | Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review (Hendricks JJ, 2006, J Ecol) | 162 | 251 |
10 | Productivity overshadows temperature in determining soil and ecosystem respiration across European forests (Janssens IA, 2001, Glob Change Biol) | 690 | The demography of fine roots in a northern hardwood forest (Hendrick RL, 1992, Ecology) | 191 | Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, NH (Fahey TJ, 1994, J Ecol) | 158 | 250 |
Rank | Journal Name | N (%) | h-Index | Citation | Impact Factor (2019) |
---|---|---|---|---|---|
1 | Plant and Soil | 321 (9.70%) | 50 | 9866 | 3.299 |
2 | Forest Ecology and Management | 304 (9.18%) | 60 | 12,820 | 3.17 |
3 | Soil Biology Biochemistry | 123 (3.72%) | 40 | 4598 | 5.795 |
4 | Global Change Biology | 122 (3.70%) | 60 | 13,499 | 8.512 |
5 | New Phytologist | 121 (3.66%) | 56 | 10,610 | 8.555 |
6 | Tree Physiology | 119 (3.60%) | 43 | 6186 | 3.655 |
7 | Oecologia | 85 (2.60%) | 45 | 8539 | 2.654 |
8 | Forests | 78 (2.36%) | 10 | 586 | 2.221 |
9 | Ecosystems | 76 (2.30%) | 34 | 3679 | 4.207 |
10 | Canadian Journal of Forest Research | 72 (2.18%) | 30 | 2329 | 1.812 |
Rank | Author Keywords | Occurrences | Keywords Plus | Occurrences |
---|---|---|---|---|
1 | fine roots | 336 | dynamics | 637 |
2 | soil respiration | 178 | growth | 556 |
3 | nitrogen | 157 | forest | 491 |
4 | fine root | 127 | biomass | 480 |
5 | decomposition | 109 | nitrogen | 439 |
6 | fine root biomass | 106 | fine roots | 427 |
7 | biomass | 97 | carbon | 353 |
8 | climate change | 95 | organic-matter | 331 |
9 | minirhizotron | 87 | turnover | 327 |
10 | picea abies | 86 | soil | 314 |
11 | carbon | 78 | ecosystems | 282 |
12 | root biomass | 76 | norway spruce | 254 |
13 | phosphorus | 68 | patterns | 220 |
14 | drought | 63 | responses | 205 |
15 | production | 63 | decomposition | 201 |
16 | roots | 63 | respiration | 185 |
17 | soil carbon | 63 | net primary production | 177 |
18 | carbon sequestration | 62 | fine-root | 175 |
19 | carbon allocation | 60 | litter decomposition | 161 |
20 | specific root length | 60 | productivity | 160 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Xia, Z.; Cao, Y. A Bibliometric Analysis of Global Fine Roots Research in Forest Ecosystems during 1992–2020. Forests 2022, 13, 93. https://doi.org/10.3390/f13010093
Huang L, Xia Z, Cao Y. A Bibliometric Analysis of Global Fine Roots Research in Forest Ecosystems during 1992–2020. Forests. 2022; 13(1):93. https://doi.org/10.3390/f13010093
Chicago/Turabian StyleHuang, Linjia, Ziqian Xia, and Yang Cao. 2022. "A Bibliometric Analysis of Global Fine Roots Research in Forest Ecosystems during 1992–2020" Forests 13, no. 1: 93. https://doi.org/10.3390/f13010093