Fruit Tree Legume Herb Intercropping Orchard System Is an Effective Method to Promote the Sustainability of Systems in a Karst Rocky Desertification Control Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Description of the Orchard Systems
2.2. Collection of Data
2.3. Emergy Analysis
2.4. Ecosystem Services Based on Emergy Analysis
2.4.1. Groundwater Recharge
2.4.2. Soil Conservation
2.4.3. Soil Carbon Sequestration
2.5. Calculation of Emergy Indices
2.6. Economic Analysis
2.7. Integrated Pest Management Scenario Simulation Analysis
3. Results
3.1. Structure of Emergy
3.1.1. Renewable Environmental Flows (R)
3.1.2. Non-Renewable Environmental Flows (No)
3.1.3. Purchased Input Flows (FN and FR)
3.1.4. The Performance and Total Flow of Emergy (U)
3.2. Emergy Yield
3.3. Emergy Indices
3.4. Emergy Value of Ecosystem Services
3.5. Economic Analysis
3.5.1. Economic Input Structure for Systems
3.5.2. Economic Profit
3.6. Integrated Pest Management Scenario Simulation for Orchard Legume Herb Intercropping Systems
4. Discussion
4.1. Emergy and Sustainability Effects of Orchard Monoculture and Intercropping Orchards Transitioning from Maize Field
4.2. Economic and Ecosystem Services Effects of Orchard Monoculture and Intercropping Orchards Transitioning from Maize Field
4.3. Integrated Pest Management Scenario Simulation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. The Emergy Calculation Process of Five Planting Systems
References
- Li, D.; Wen, L.; Jiang, S.; Song, T.; Wang, K. Responses of soil nutrients and microbial communities to three restoration strategies in a karst area, southwest China. J. Environ. Manag. 2018, 207, 456–464. [Google Scholar] [CrossRef]
- Hu, P.; Liu, S.; Ye, Y.; Zhang, W.; He, X.; Su, Y.; Wang, K. Soil carbon and nitrogen accumulation following agricultural abandonment in a subtropical karst region. Appl. Soil Ecol. 2018, 132, 169–178. [Google Scholar] [CrossRef]
- Cheng, H.T.; Li, Q.F.; Wang, X.M.; Lu, T.Y.; Zhang, X.B. Effects of Different Vegetation Restoration Strategies on Soil Penetrability of Karst Ecosystem in Guizhou Province. J. Soil Water Conserv. 2020, 34, 110–116. (In Chinese) [Google Scholar]
- Jiang, Z.; Lian, Y.; Qin, X. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Chen, H.; Yue, Y.; Wang, K. Comprehensive control on rocky desertification in karst regions of southwestern China: Achievements, problems, and countermeasures. Carsolog. Sin. 2018, 37, 37–42. Available online: https://kns.cnki.net/kcms/detail/45.1157.p.20171127.0944.002.html (accessed on 15 August 2017).
- Song, T.Q.; Peng, W.X.; Du, H.; Wang, K.L.; Zeng, F.P. Occurrence, spatial-temporal dynamics and regulation strategies of karst rocky desertification in southwest China. Acta Ecol. Sin. 2014, 34, 5328–5341. (In Chinese) [Google Scholar]
- Amiri, Z.; Asgharipour, M.R.; Campbell, D.E.; Armin, M. A Sustainability Analysis of Two Rapeseed Farming Ecosystems in Khorramabad, Iran Based on Emergy and Economic Analyses. J. Clean. Prod. 2019, 226, 1051–1066. [Google Scholar] [CrossRef]
- Lu, X.; Toda, H.; Ding, F.; Fang, S.; Yang, W.; Xu, H. Effect of vegetation types on chemical and biological properties of soils of karst ecosystems. Eur. J. Soil. Biol. 2014, 61, 49–57. [Google Scholar] [CrossRef]
- Cheng, F.; Lu, H.; Ren, H.; Zhou, L.; Zhang, L.; Li, J.; Lu, X.; Huang, D.; Zhao, D. Integrated emergy and economic evaluation of three typical rocky desertification control modes in karst areas of Guizhou Province, China. J. Clean. Prod. 2017, 161, 1104–1128. [Google Scholar] [CrossRef]
- Odum, H.T. Environmental Accounting: Emergy and Environmental Decision Making; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Geng, Y.; Sarkis, J.; Ulgiati, S.; Zhang, P. Measuring China’s Circular Economy. Science 2013, 339, 1526–1527. Available online: https://www.science.org/doi/10.1126/science.1227059 (accessed on 29 March 2013). [CrossRef]
- Amiri, Z.; Asgharipour, M.R.; Campbell, D.E.; Azizi, K.; Kakolvand, E.; Moghadam, E.H. Conservation agriculture, a selective model based on emergy analysis for sustainable production of shallot as a medicinal-industrial plant. J. Clean. Prod. 2021, 292, 126000–126019. [Google Scholar] [CrossRef]
- Calvo, G.; Valero, A.; Valero, A. Material flow analysis for Europe: An exergoecological approach. Ecol. Indic. 2016, 60, 603–610. [Google Scholar] [CrossRef]
- Steinberger, J.K.; Krausmann, F.; Eisenmenger, N. Global patterns of materials use: A socioeconomic and geophysical analysis. Ecol. Econ. 2010, 69, 1148–1158. [Google Scholar] [CrossRef]
- Van der Wiel, B.Z.; Weijma, J.; van Middelaar, C.E.; Kleinke, M.; Buisman, C.J.N.; Wichern, F. Restoring nutrient circularity: A review of nutrient stock and flow analyses of local agro-food-waste systems. Resour. Conserv. Recycl. X 2019, 3, 100014. [Google Scholar] [CrossRef]
- Wu, H.; Huang, Z.; Gao, L.; Li, H.; Yang, T.; Yang, J.; Li, X. Understanding Farmers’ Behaviors and Driving Factors Toward Phosphorus Security of Crop Farming in Chaohu Watershed, China. Pol. J. Environ. Stud. 2021, 30, 1865–1879. [Google Scholar] [CrossRef]
- Liu, Z.; Li, B.; Chen, M.; Li, T. Evaluation on sustainability of water resource in karst area based on the emergy ecological footprint model and analysis of its driving factors: A case study of Guiyang city, China. Environ. Sci. Pollut. Res. 2021, 28, 49232–49243. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, L.; Yin, J.; Zhang, B. Assessment and prediction of environmental sustainability in China based on a modified ecological footprint model. Resour. Conserv. Recycl. X 2018, 132, 301–313. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, X.; Huang, Y.J.E.S.; Research, P. Spatial and temporal changes in ecosystem service values in karst areas in southwestern China based on land use changes. Environ. Sci. Pollut. Res. Int. 2021, 28, 45724–45738. [Google Scholar] [CrossRef]
- Tamburini, E.; Pedrini, P.; Marchetti, M.G.; Fano, E.A.; Castaldelli, G. Life Cycle Based Evaluation of Environmental and Economic Impacts of Agricultural Productions in the Mediterranean Area. Sustainability 2015, 7, 2915–2935. [Google Scholar] [CrossRef]
- Campbell, D.E. Emergy baseline for the Earth: A historical review of the science and a new calculation. Ecol. Model. 2016, 339, 96–125. [Google Scholar] [CrossRef]
- Asgharipour, M.R.; Amiri, Z.; Campbell, D.E. Evaluation of the sustainability of four greenhouse vegetable production ecosystems based on an analysis of emergy and social characteristics. Ecol. Model. 2020, 424, 109021–109038. [Google Scholar] [CrossRef]
- Liu, W.; Wang, J.; Sun, L.; Wang, T.; Li, C.; Chen, B. Sustainability evaluation of soybean-corn rotation systems in the Loess Plateau region of Shaanxi, China. J. Clean. Prod. 2019, 210, 1229–1237. [Google Scholar] [CrossRef]
- Nan, B.; Li, B.; Yang, Z.; Dai, X.; Fan, Y.; Fu, Q.; Hao, L.; Zhang, X. Sustainability of sown systems of cultivated grassland at the edge of the Junggar Desert Basin: An integrated evaluation of emergy and economics. J. Clean. Prod. 2020, 276, 122800–122811. [Google Scholar] [CrossRef]
- Cheng, H.; Chen, C.; Wu, S.; Mirza, Z.A.; Liu, Z. Emergy evaluation of cropping, poultry rearing, and fish raising systems in the drawdown zone of Three Gorges Reservoir of China. J. Clean. Prod. 2017, 144, 559–571. [Google Scholar] [CrossRef]
- Hou, J.; Wang, X.; Xu, Q.; Cao, Y.; Zhu, J. Rice-crayfish systems are not a panacea for sustaining cleaner food production. Environ. Sci. Pollut. Res. Int. 2021, 28, 22913–22926. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, Y.; Geng, Y.; Wang, R.; Zhang, J. Measuring regional sustainability with an integrated social-economic-natural approach: A case study of the Yellow River Delta region of China. J. Clean. Prod. 2016, 114, 189–198. [Google Scholar] [CrossRef]
- Jaklič, T.; Juvančič, L.; Kavčič, S.; Debeljak, M. Complementarity of socio-economic and emergy evaluation of agricultural production systems: The case of Slovenian dairy sector. Ecol. Econ. 2014, 107, 469–481. [Google Scholar] [CrossRef]
- Kocjančič, T.; Debeljak, M.; Žgajnar, J.; Juvančič, L. Incorporation of emergy into multiple-criteria decision analysis for sustainable and resilient structure of dairy farms in Slovenia. Agric. Syst. 2018, 164, 71–83. [Google Scholar] [CrossRef]
- Zou, Z.; Zeng, F.; Wang, K.; Zeng, Z.; Zhao, L.; Du, H.; Zhang, F.; Zhang, H. Emergy and Economic Evaluation of Seven Typical Agroforestry Planting Patterns in the Karst Region of Southwest China. Forests 2019, 10, 138. [Google Scholar] [CrossRef]
- Fonseca, A.M.P.; Marques, C.A.F.; Pinto-Correia, T.; Campbell, D.E. Emergy analysis of a silvo-pastoral system, a case study in southern Portugal. Agroforestr. Syst. 2015, 90, 137–157. [Google Scholar] [CrossRef]
- Fonseca, A.M.P.; Marques, C.; Pinto-Correia, T.; Guiomar, N.; Campbell, D.E. Emergy evaluation for decision-making in complex multifunctional farming systems. Agric. Syst. 2019, 171, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, N.; Monlau, F.; Sambusiti, C.; Ficara, E.; Barakat, A.; Zabaniotou, A. Contribution to Circular Economy options of mixed agricultural wastes management: Coupling anaerobic digestion with gasification for enhanced energy and material recovery. J. Clean. Prod. 2019, 209, 505–514. [Google Scholar] [CrossRef]
- Xu, Z.; Fan, W.; Dong, X.; Wang, X.-C.; Liu, Y.; Xue, H.; Klemeš, J.J. Analysis of the functional orientation of agricultural systems from the perspective of resource circulation. J. Clean. Prod. 2020, 258, 120642–120658. [Google Scholar] [CrossRef]
- Zhan, C.; Zhao, R.; Hu, S. Emergy-based sustainability assessment of forest ecosystem with the aid of mountain eco-hydrological model in Huanjiang County, China. J. Clean. Prod. 2020, 251, 119638–119652. [Google Scholar] [CrossRef]
- Odum, H.T. Systems Ecology; Wiley: New York, NY, USA, 1983. [Google Scholar]
- Ulgiati, S.; Odum, H.T.; Bastianoni, S. Emergy use, environmental loading and sustainability an emergy analysis of Italy. Ecol. Model. 1994, 73, 215–268. [Google Scholar] [CrossRef]
- Campbell, D.E.; Brandt-Williams, S.L.; Meisch, M.E. Environmental Accounting Using Emergy: Evaluation of the State of West Virginia; US Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 2005.
- Asgharipour, M.R.; Shahgholi, H.; Campbell, D.E.; Khamari, I.; Ghadiri, A. Comparison of the sustainability of bean production systems based on emergy and economic analyses. Environ. Monit. Assess. 2019, 191, 2. [Google Scholar] [CrossRef]
- Cohen, M.J.; Brown, M.T.; Shepherd, K.D. Estimating the environmental costs of soil erosion at multiple scales in Kenya using emergy synthesis. Agric. Ecosyst. Environ. 2006, 114, 249–269. [Google Scholar] [CrossRef]
- Lu, H.; Campbell, D.E. Ecological and economic dynamics of the Shunde agricultural system under China’s small city development strategy. J. Environ. Manag. 2009, 90, 2589–2600. [Google Scholar] [CrossRef]
- Rótolo, G.C.; Francis, C.A.; Ulgiati, S. Environmentally sound resource valuation for a more sustainable international trade: Case of argentine maize. Resour. Conserv. Recycl. X 2018, 131, 271–282. [Google Scholar] [CrossRef]
- Brown, M.T.; Ulgiati, S. Emergy assessment of global renewable sources. Ecol. Model. 2016, 339, 148–156. [Google Scholar] [CrossRef]
- Lu, N.; Wei, H.; Fan, W.; Xu, Z.; Wang, X.; Xing, K.; Dong, X.; Viglia, S.; Ulgiati, S. Multiple influences of land transfer in the integration of Beijing-Tianjin-Hebei region in China. Ecol. Indic. 2018, 90, 101–111. [Google Scholar] [CrossRef]
- Dai, E.; Zhu, J.; Wang, X.; Xi, W. Multiple ecosystem services of monoculture and mixed plantations: A case study of the Huitong experimental forest of Southern China. Land Use Policy 2018, 79, 717–724. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, G.; Casazza, M.; Campbell, E.T.; Giannetti, B.F.; Brown, M.T. Development of a new framework for non-monetary accounting on ecosystem services valuation. Ecosyst. Serv. 2018, 34, 37–54. [Google Scholar] [CrossRef]
- Yang, X.; Sui, P.; Zhang, X.; Dai, H.; Yan, P.; Li, C.; Wang, X.; Chen, Y. Environmental and economic consequences analysis of cropping systems from fragmented to concentrated farmland in the North China Plain based on a joint use of life cycle assessment, emergy and economic analysis. J. Environ. Manag. 2019, 251, 109588–109600. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.X.; Xia, R.Y.; Wang, Z.; Lu, H.P.; Zhao, L.J. Infiltration coefficient of precipitation in karst peak-cluster depression area: A case study of Zhaidi karst underground river basin. Carsolog. Sin. 2017, 512–517. (In Chinese) [Google Scholar] [CrossRef]
- Brown, M.T.; Ulgiati, S. Emergy-based indices and ratios to evaluate sustainability: Monitoring economies and technology toward environmentally sound innovation. Ecol. Eng. 1997, 9, 51–69. [Google Scholar] [CrossRef]
- Lu, H.F.; Lan, S.F.; Li, L.; Peng, S.L. New emergy indices for sustainable development. J. Environ. Sci. 2003, 15, 562–569. (In Chinese) [Google Scholar]
- Odum, H.; Brown, M.; Williams, S. Folio #1: Introduction and Global Budget. In Handbook of Emergy Evaluation; Center for Environmental Policy, Environmental Engineering Sciences, University of Florida: Gainesville, FL, USA, 2000; pp. 7–8. [Google Scholar]
- Agostinho, F.; Diniz, G.M.; Siche, R.; Ortega, E. The use of emergy assessment and the Geographical Information System in the diagnosis of small family farms in Brazil. Ecol. Model. 2008, 210, 37–57. [Google Scholar] [CrossRef]
- Lu, H.; Bai, Y.; Ren, H.; Campbell, D.E. Integrated emergy, energy and economic evaluation of rice and vegetable production systems in alluvial paddy fields: Implications for agricultural policy in China. J. Environ. Manag. 2010, 91, 2727–2835. [Google Scholar] [CrossRef]
- Gasparatos, A.; Gadda, T. Environmental support, energy security and economic growth in Japan. Energy Policy 2009, 37, 4038–4048. [Google Scholar] [CrossRef]
- Li, S.; Wu, J.; Wang, X.; Ma, L. Economic and environmental sustainability of maize-wheat rotation production when substituting mineral fertilizers with manure in the North China Plain. J. Clean. Prod. 2020, 271, 122683–122694. [Google Scholar] [CrossRef]
- Dai, X.; Zhou, W.; Liu, G.; Liang, G.; He, P.; Liu, Z. Soil C/N and pH together as a comprehensive indicator for evaluating the effects of organic substitution management in subtropical paddy fields after application of high-quality amendments. Geoderma 2019, 337, 1116–1125. [Google Scholar] [CrossRef]
- Zhang, B.; Su, S.; Duan, C.; Feng, H.; Chau, H.W.; He, J.; Li, Y.; Hill, R.L.; Wu, S.; Zou, Y. Effects of partial organic fertilizer replacement combined with rainwater collection system on soil water, nitrate-nitrogen and apple yield of rainfed apple orchard in the Loess Plateau of China: A 3-year field experiment. Agric. Water Manag. 2022, 260, 107295–107306. [Google Scholar] [CrossRef]
- Xiao, L.Y.; Wu, X.Q.; Zhou, J.X.; Xiao, G.Y. Comprehensive Benefit Evaluation of Rocky Desertification Control in the Typical County of Karst Fault Basin: A Case Study of Jianshui County, Yunnan Province. Acta Geosci. Sin. 2020, 42, 444–450. (In Chinese) [Google Scholar]
- Zhang, M.; Wang, K.; Liu, H.; Zhang, C.; Yue, Y.; Qi, X. Effect of ecological engineering projects on ecosystem services in a karst region: A case study of northwest Guangxi, China. J. Clean. Prod. 2018, 183, 831–842. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, W.; Wang, X.; Liu, Y.; Yu, B.-G.; Chen, X.-P.; Zou, C. Life cycle assessment of a long-term multifunctional winter wheat-summer maize rotation system on the North China Plain under sustainable P management. Sci. Total Environ. 2021, 783, 147039. [Google Scholar] [CrossRef]
- Helgason, B.L.; Walley, F.L.; Germida, J.J. No-till soil management increases microbial biomass and alters community profiles in soil aggregates. Appl. Soil Ecol. 2010, 46, 390–397. [Google Scholar] [CrossRef]
- Gao, X.; Liu, Z.; Zhao, X.; Ling, Q.; Huo, G.; Wu, P. Extreme natural drought enhances interspecific facilitation in semiarid agroforestry systems. Agric. Ecosyst. Environ. 2018, 265, 444–453. [Google Scholar] [CrossRef]
- Zhang, R.; Huang, Q.; Yan, T.; Yang, J.; Zheng, Y.; Li, H.; Li, M. Effects of intercropping mulch on the content and composition of soil dissolved organic matter in apple orchard on the loess plateau. J. Environ. Manag. 2019, 250, 109531–109540. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Q.; Gao, H.; Zhang, R.; Yang, L.; Guo, Y.; Li, H.; Awasthi, M.K.; Li, G. Long-term cover crops improved soil phosphorus availability in a rain-fed apple orchard. Chemosphere 2021, 275, 130093. [Google Scholar] [CrossRef]
- Fan, F.; van der Werf, W.; Makowski, D.; Lamichhane, J.R.; Huang, W.; Li, C.; Zhang, C.; Cong, W.-F.; Zhang, F. Cover crops promote primary crop yield in China: A meta-regression of factors affecting yield gain. Field Crops Res. 2021, 271, 108237–108247. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture—Trends and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Zikankuba, V.L.; Mwanyika, G.O.; Ntwenya, J.E.; James, A. Pesticide regulations and their malpractice implications on food and environment safety. Cogent Food Agric. 2019, 5, 1601544. [Google Scholar] [CrossRef]
- Dhananjayan, V.; Ravichandran, B. Occupational health risk of farmers exposed to pesticides in agricultural activities. Curr. Opin. Environ. Sci. Health 2018, 4, 31–37. [Google Scholar] [CrossRef]
- Maira, N.B.; Nayane, F.B.; Willian, N.D.S.; Cristina, A.F.; Thiago, A.V.; Denise, C.L. Beneficial soil fungi and Jabuticaba growth promotion. Agronomy 2021, 12, 367. [Google Scholar] [CrossRef]
- Jitendra, K.; Ayyagari, R.; Dharmendra, M.; Vachaspati, M. Review an overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants 2021, 10, 1185. [Google Scholar] [CrossRef]
- Baker, B.P.; Green, T.A.; Loker, A. Biological control and integrated pest management in organic and conventional systems. Biol. Control. 2020, 140, 104095–104105. [Google Scholar] [CrossRef]
- Lykogianni, M.; Bempelou, E.; Karamaouna, F.; Aliferis, K.A. Do pesticides promote or hinder sustainability in agriculture? The challenge of sustainable use of pesticides in modern agriculture. Sci. Total Environ. 2021, 795, 148625–148637. [Google Scholar] [CrossRef]
Area (ha) | Management Measures | Irrigation | Price | Fertilization | Weeding | Disinfestation and Sterilization | The Harvest | Residue Management | Extra Input | |
---|---|---|---|---|---|---|---|---|---|---|
MF | 4.33 | Manual | Flooding | 3.2 yuan·kg−1 | Chemical fertilizer | Manual and chemical weeding | Manual and pesticide | July to August | - | - |
MM | 5.33 | Manual | Flooding | 10 yuan·kg−1 | Chemical fertilizer | Mechanical and chemical weeding | Mechanical disinfectant and pesticide | July to August | - | Farmers bought seedlings and legume seeds. The mango nut orchards brought no income during the first four years. Irrigation was required during the early period. |
NM | 5.00 | Manual | Flooding | 50 yuan·kg−1 | Chemical fertilizer | Mechanical and chemical weeding | Mechanical disinfectant and pesticide | August to October | - | |
MVI | 6.33 | Manual | Flooding | 14 yuan·kg−1 | 20% organic manure + 80% chemical fertilizer | No weeding | Mechanical disinfectant | July to August | Pasture was returned to field | |
NDI | 6.67 | Manual | Flooding | 60 yuan·kg−1 | 20% organic manure + 80% chemical fertilizer | No weeding | Mechanical disinfectant | August to October | Pasture was returned to field |
SOC (g·kg−1) | TN (g·kg−1) | TP (g·kg−1) | TK (g·kg−1) | Total Soil Erosion (kg·ha−1·yr−1) | Total Runoff Flow (kg·ha−1·yr−1) | Vegetation Coverage % | ∆SOM (g·kg−1) | Texture | |
---|---|---|---|---|---|---|---|---|---|
MF | 24.91 ± 3.47 | 3.08 ± 0.12 | 1.73 ± 0.25 | 29.59 ± 0.58 | 12793.55 ± 1040.83 | 979.76 ± 76.37 | 42.46 ± 2.01 | −0.45 ± 0.01 | Loamy clay |
MM | 21.97 ± 2.37 | 2.17 ± 0.09 | 1.34 ± 0.42 | 21.63 ± 2.14 | 8598.65 ± 504.54 | 657.12 ± 45.54 | 45.00 ± 2.39 | +0.17 ± 0.01 | Loamy clay |
NM | 23.91 ± 4.58 | 2.66 ± 0.14 | 1.43 ± 0.36 | 26.45 ± 1.32 | 8754.57 ± 652.32 | 662.22 ± 49.52 | 50.00 ± 3.56 | +0.36 ± 0.02 | Loamy clay |
MVI | 30.25 ± 2.68 | 2.96 ± 0.09 | 1.89 ± 0.25 | 31.23 ± 1.14 | 167.92 ± 20.12 | 322.33 ± 30.21 | 98.54 ± 1.74 | +1.12 ± 0.05 | Loamy clay |
NDI | 32.14 ± 5.68 | 3.21 ± 0.13 | 1.94 ± 0.41 | 33.45 ± 0.95 | 63.87 ± 6.24 | 273.61 ± 25.24 | 100.00 ± 0.00 | +1.44 ± 0.04 | Loamy clay |
Number | Item | Unit | Symbols | Ren. Factor | MF | MM | NM | MVI | NDI |
---|---|---|---|---|---|---|---|---|---|
Renewable environmental inputs (R) | |||||||||
1 | Solar energy | J | J1 | 1 [10] | 3.77 × 1013 | 3.77 × 1013 | 3.77 × 1013 | 3.77 × 1013 | 3.77 × 1013 |
2 | Rainfall chemical energy | J | J2 | 1 [10] | 4.94 × 1010 | 4.94 × 1010 | 4.94 × 1010 | 4.94 × 1010 | 4.94 × 1010 |
3 | Rainfall potential energy | J | J2 | 1 [10] | 1.18 × 1010 | 1.18 × 1010 | 1.18 × 1010 | 1.18 × 1010 | 1.18 × 1010 |
4 | Evapotranspiration | J | J3 | 1 [10] | 2.75 × 109 | 2.22 × 109 | 2.52 × 109 | 7.36 × 107 | 5.03 × 105 |
5 | Runoff chemical energy | J | J4 | 1 [10] | 4.84 × 108 | 3.24 × 108 | 3.31 × 108 | 1.59 × 108 | 1.35 × 108 |
6 | Runoff geopotential energy | J | J4 | 1 [10] | 1.15 × 109 | 7.73 × 108 | 7.89 × 108 | 3.79 × 108 | 3.22 × 108 |
Non-renewable environmental inputs (No) | |||||||||
7 | Energy loss of soil | g | J5 | 0 [10] | 1.27 × 107 | 8.55 × 106 | 8.72 × 106 | 1.68 × 105 | 6.39 × 104 |
8 | SOM reduction | J | J5 | 0 [10] | 4.27 × 1010 | 0.00 | 0.00 | 0.00 | 0.00 |
9 | Irrigation water | J | J6 | 0 [10] | 0.00 | 5.98 × 106 | 5.98 × 106 | 5.98 × 106 | 5.98 × 106 |
Purchase resource inputs (FR and FN) | |||||||||
10 | Human labor | J | J7 | 0.1 [22] | 1.89 × 107 | 3.48 × 107 | 2.42 × 107 | 3.43 × 107 | 2.37 × 107 |
11 | Organic fertilizer | J | J8 | 0.8 [22] | 0.00 | 0.00 | 0.00 | 4.03 × 108 | 6.68 × 107 |
12 | Seedlings | J | J9 | 0.25 [37] | 0.00 | 6.10 × 108 | 6.33 × 108 | 6.10×108 | 6.33 × 108 |
13 | Seeds (pasture) | J | J10 | 0.25 [39] | 7.62 × 106 | 0.00 | 0.00 | 1.40 × 106 | 1.40 × 106 |
14 | Nitrogenous fertilizer | g | 0 | 5.22 × 105 | 3.58 × 105 | 7.42 × 104 | 2.33 × 105 | 5.94 × 104 | |
15 | Phosphatic fertilizer | g | J11 | 0 | 7.46 × 104 | 1.19 × 105 | 2.47 × 104 | 7.76 × 104 | 1.98 × 104 |
16 | Potash fertilizer | g | J11 | 0 | 7.46 × 104 | 5.97 × 105 | 1.24 × 105 | 3.88 × 105 | 9.90 × 104 |
17 | Pesticides | g | J11 | 0 | 4.08 × 107 | 1.72 × 108 | 1.53 × 108 | 1.55 × 108 | 1.38 × 108 |
18 | Paper bags | ¥ | J12 | 0 | 0.00 | 4.62 × 102 | 0.00 | 4.62 × 102 | 0.00 |
19 | Agricultural film | g | J13 | 0 | 0.00 | 1.50 × 103 | 1.20 × 103 | 1.50 × 103 | 1.20 × 103 |
20 | Machinery | g | J14 | 0 | 0.00 | 6.00 × 102 | 6.00 × 102 | 4.00 × 102 | 4.00 × 102 |
Output | J15 | ||||||||
21 | Maize (Zea mays L.) | J | J16 | 9.73 × 1010 | |||||
22 | Mango (Mangifera indica F.) | J | J16 | 1.68 × 1010 | 1.98 × 1010 | ||||
23 | Macadimia nut (Macadamia ternifolia F.) | J | J16 | 3.57 × 1010 | 4.27 × 1010 | ||||
24 | Desmodium intortum M. | J | J16 | 3.75 × 1010 | |||||
25 | Vicia angustifolia F. | J | J16 | 5.01 × 1010 |
Items | Emergy Unit−1 | MF | MM | NM | MVI | NDI | |
---|---|---|---|---|---|---|---|
Renewable environmental inputs (R) | |||||||
1 | Solar energy | 1.00 | 3.77 × 1013 | 3.77 × 1013 | 3.77 × 1013 | 3.77 × 1013 | 3.77 × 1013 |
2 | Rainfall chemical energy | 1.82 × 104 | 8.99 × 1014 | 8.99 × 1014 | 8.99 × 1014 | 8.99 × 1014 | 8.99 × 1014 |
3 | Rainfall potential energy | 1.05 × 105 | 1.23 × 1015 | 1.23 × 1015 | 1.23 × 1015 | 1.23 × 1015 | 1.23 × 1015 |
4 | Evapotranspiration | 2.88 × 104 | 7.91 × 1013 | 6.39 × 1013 | 7.26 × 1013 | 2.12 × 1012 | 1.45 × 1010 |
5 | Runoff chemical energy | 2.13 × 105 | 1.03 × 1014 | 6.91 × 1013 | 7.05 × 1013 | 3.39 × 1013 | 2.88 × 1013 |
6 | Runoff geopotential energy | 1.28 × 105 | 1.47 × 1014 | 9.89 × 1013 | 1.01 × 1014 | 4.85 × 1013 | 4.12 × 1013 |
Subtotal | 2.38 × 1015 | 2.30 × 1015 | 2.31 × 1015 | 2.22 × 1015 | 2.20 × 1015 | ||
Non-renewable environmental inputs (No) | |||||||
7 | Energy loss of soil | 1.27 × 109 | 1.62 × 1016 | 1.09 × 1016 | 1.11 × 1016 | 2.13 × 1014 | 8.11 × 1013 |
8 | SOM reduction | 9.36 × 104 | 4.00 × 1015 | 0.00 | 0.00 | 0.00 | 0.00 |
9 | Irrigation water | 6.81 × 104 | 0.00 | 4.07 × 1011 | 4.07 × 1011 | 4.07 × 1011 | 4.07 × 1011 |
Subtotal | 2.02 × 1016 | 1.09 × 1016 | 1.11 × 1016 | 2.14 × 1014 | 8.15 × 1013 | ||
Purchase energy inputs (FR and FN) | |||||||
10 | Human labor | 1.26 × 107 | 2.38 × 1014 | 4.38 × 1014 | 3.05 × 1014 | 4.32 × 1014 | 2.98 × 1014 |
11 | Organic fertilizer | 1.35 × 107 | 0.00 | 0.00 | 0.00 | 5.44 × 1014 | 9.02 × 1014 |
12 | Seedlings | 3.49 × 104 | 0.00 | 2.13 × 1013 | 2.21 × 1013 | 2.13 × 1013 | 2.21 × 1013 |
13 | Seeds (maize or pasture) | 1.60 × 107 | 1.22E+14 | 0.00 | 0.00 | 2.24 × 1013 | 2.24 × 1013 |
14 | Nitrogenous fertilizer | 4.62 × 109 | 2.41 × 1015 | 1.65 × 1015 | 3.43 × 1014 | 1.08 × 1015 | 2.74 × 1014 |
15 | Phosphatic fertilizer | 1.78 × 1010 | 1.33 × 1015 | 2.13 × 1015 | 4.40 × 1014 | 1.38 × 1015 | 3.52 × 1014 |
16 | Potash fertilizer | 2.69 × 109 | 2.01 × 1014 | 1.61 × 1015 | 3.33 × 1014 | 1.04 × 1015 | 2.66 × 1014 |
17 | Pesticides | 1.97 × 107 | 8.04 × 1014 | 3.39 × 1015 | 3.01 × 1015 | 3.05 × 1015 | 2.71 × 1015 |
18 | Paper bags | 5.88 × 1012 | 0.00 | 2.71 × 1015 | 0.00 | 2.71 × 1015 | 0.00 |
19 | Agricultural film | 4.83 × 108 | 0.00 | 7.25 × 1011 | 5.80 × 1011 | 7.25 × 1011 | 5.80 × 1011 |
20 | Machinery | 1.01 × 1011 | 0.00 | 6.06 × 1013 | 6.06 × 1013 | 4.04 × 1013 | 4.04 × 1013 |
Subtotal | 5.11 × 1015 | 1.20 × 1016 | 4.51 × 1015 | 1.52 × 1016 | 4.88 × 1015 | ||
Total | 2.77 × 1016 | 2.52 × 1016 | 1.79 × 1016 | 1.76 × 1016 | 7.17 × 1015 | ||
Output | |||||||
21 | Maize (Zea mays L.) | 8.52 × 104 | 8.29 × 1015 | ||||
22 | Mango (Mangifera indica F.) | 5.30 × 105 | 8.92 × 1015 | 1.05 × 1016 | |||
23 | Macadimia nut (Macadamia ternifolia F.) | 2.86 × 105 | 1.02 × 1016 | 1.22 × 1016 | |||
24 | Desmodium intortum M. | 6.03 × 104 | 2.26 × 1015 | ||||
25 | Vicia angustifolia F. | 6.03 × 104 | 3.02 × 1015 | ||||
Total output emergy | 8.29 × 1015 | 8.92 × 1015 | 1.02 × 1016 | 1.35 × 1016 | 1.45 × 1016 | ||
Total output energy | 9.73 × 1010 | 1.68 × 1010 | 3.55 × 1010 | 6.98 × 1010 | 8.01 × 1010 |
Indices | Expression | Specifications |
---|---|---|
Emergy indicators | ||
Renewable percent (R%) | (R + FR)/U | The reliance of planting modes on renewable energy. |
Emergy power density (EPD) | U/area | The ratio of total emergy input in a system to its total area |
Emergy exchange ratio (EER) | Ym/U | The ratio of emergy effectively received by a system to the emergy sent out |
Emergy investment ratio (EIR) | (FN + FR)/(R + No) | The proportion of purchased and environmental resource emergy |
Emergy yield ratio (EYR) | Y/ (FN + FR) | The ratio of the output emergy to the purchased emergy. It evaluates the contribution of the resource output to emergy invested by that system per unit |
Environmental loading ratio (ELR) | (FN + No)/(R + FR) | The potential environmental pressure, or the ecosystem stress caused by the production activity. |
Emergy sustainability index (ESI) | EYR/ELR | The environmental sustainability impact on the systems |
Emergy index of sustainable development (EISD) | EER × EYR/ELR | The market impacts on the system’s environmental sustainability |
Economic indicators | ||
Total cost (TC) (RMB·ha−1) | Total cost of the system input resources (which i = 1, 2…n) | |
Total income (TI) (RMB·ha−1) | price×yield | Total market price of the system output resources crop yield |
Economic profit (EP) (RMB·ha−1) | TI–TC′ | The actual income of the systems |
economic output/input ratio (O/I ratio) | TI/TC′ | Economic efficiency of the systems |
MF | MM | NM | MVI | NDI | |
---|---|---|---|---|---|
Renewable environmental inputs (R) | 2.38 × 1015 | 2.30 × 1015 | 2.31 × 1015 | 2.22 × 1015 | 2.20 × 1015 |
Non-renewable environmental inputs (No) | 2.02 × 1016 | 1.09 × 1016 | 1.11 × 1016 | 2.14 × 1014 | 8.15 × 1013 |
Purchased renewable inputs (FR) | 3.60 × 1014 | 4.59 ×1014 | 3.27 × 1014 | 5.92 × 1015 | 1.24 × 1015 |
Purchased non-renewable inputs (FN) | 4.75 × 1015 | 1.15 × 1016 | 4.19 × 1015 | 9.30 × 1015 | 3.64 × 1015 |
The purchased flow (F = FR + FN) | 5.11 × 1015 | 1.20 × 1016 | 4.51 × 1015 | 1.52 × 1016 | 4.89 × 1015 |
The renewable flow (RR = FR + R) | 2.74 × 1015 | 2.76 × 1015 | 2.63 × 1015 | 8.13 × 1015 | 3.45 × 1015 |
The non-renewable flow (FP = FN + No) | 2.49 × 1016 | 2.24 × 1016 | 1.53 × 1016 | 9.52 × 1015 | 3.72 × 1015 |
Total emergy input (U = R + No + FN + FR) | 2.77 × 1016 | 2.52 × 1016 | 1.79 × 1016 | 1.76 × 1016 | 7.17 × 1015 |
MF | MM | NM | MVI | NDI | |
---|---|---|---|---|---|
R% | 9.92% | 10.97% | 14.71% | 46.07% | 48.07% |
EPD | 2.77 × 1016 | 2.52 × 1016 | 1.79 × 1016 | 1.76 × 1016 | 7.17 × 1015 |
EER | 0.61 | 1.79 | 6.16 | 4.20 | 22.12 |
EIR | 0.23 | 0.91 | 0.34 | 6.26 | 2.14 |
ELR | 9.08 | 8.11 | 5.80 | 1.17 | 1.08 |
EYR | 1.62 | 0.74 | 2.25 | 0.89 | 2.96 |
ESI | 0.18 | 0.09 | 0.39 | 0.76 | 2.74 |
EISD | 0.11 | 0.16 | 2.39 | 3.18 | 60.53 |
TC (RMB·ha−1) | 19,740.80 | 38,375.75 | 18,625.00 | 42,153.25 | 18,531.5 |
TI (RMB·ha−1) | 19,104.48 | 51,000.00 | 125,000.00 | 84,000.00 | 180,000.00 |
EP (RMB·ha−1) | –636.32 | 19,770.25 | 113,770.00 | 49,075.25 | 168,946.00 |
O/I ratio | 0.97 | 1.63 | 11.13 | 2.41 | 16.28 |
Recharging groundwater (sej) | 1.83 × 1015 | 3.55 × 1015 | 3.50 × 1015 | 4.30 × 1015 | 4.42 × 1015 |
Soil conservation (sej) | - | 5.33 × 1015 | 5.13 × 1015 | 1.60 × 1016 | 1.62 × 1016 |
Soil carbon sequestration (sej) | - | 1.51 × 1011 | 3.20 × 1011 | 9.95 × 1011 | 1.28 × 1012 |
MVI | NDI | MVI-O | NDI-O | |
---|---|---|---|---|
R% | 46.07% | 48.07% | 54.37% | 60.80% |
EPD | 1.76 × 1016 | 7.17 × 1015 | 1.94 × 1016 | 9.67 × 1015 |
EER | 4.20 | 22.12 | 3.81 | 16.40 |
EIR | 6.26 | 2.14 | 6.99 | 3.23 |
ELR | 1.17 | 1.08 | 0.84 | 0.64 |
EYR | 0.89 | 2.96 | 0.80 | 1.96 |
ESI | 0.76 | 2.74 | 0.95 | 3.04 |
EISD | 3.18 | 60.53 | 3.61 | 49.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, H.; Hu, W.; Zhou, X.; Dong, R.; Liu, G.; Li, Q.; Zhang, X. Fruit Tree Legume Herb Intercropping Orchard System Is an Effective Method to Promote the Sustainability of Systems in a Karst Rocky Desertification Control Area. Forests 2022, 13, 1536. https://doi.org/10.3390/f13101536
Cheng H, Hu W, Zhou X, Dong R, Liu G, Li Q, Zhang X. Fruit Tree Legume Herb Intercropping Orchard System Is an Effective Method to Promote the Sustainability of Systems in a Karst Rocky Desertification Control Area. Forests. 2022; 13(10):1536. https://doi.org/10.3390/f13101536
Chicago/Turabian StyleCheng, Hanting, Wen Hu, Xiaohui Zhou, Rongshu Dong, Guodao Liu, Qinfen Li, and Xian Zhang. 2022. "Fruit Tree Legume Herb Intercropping Orchard System Is an Effective Method to Promote the Sustainability of Systems in a Karst Rocky Desertification Control Area" Forests 13, no. 10: 1536. https://doi.org/10.3390/f13101536
APA StyleCheng, H., Hu, W., Zhou, X., Dong, R., Liu, G., Li, Q., & Zhang, X. (2022). Fruit Tree Legume Herb Intercropping Orchard System Is an Effective Method to Promote the Sustainability of Systems in a Karst Rocky Desertification Control Area. Forests, 13(10), 1536. https://doi.org/10.3390/f13101536