Development of a Methodology for the Conservation of Northern-Region Plant Resources under Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The Target Species
2.3. Species Distribution Model (SDM)
2.4. Variables
2.5. Evaluation Method
2.6. Time Period of Management and Management Area
3. Results and Discussion
3.1. Analyzing Habitat Changes under Climate Change
3.2. Determining Time Period of Management
3.3. Management Area Classification
3.4. Formulation of Plans for the Management Area
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.; Tank, A.K.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Rusticucci, M.; et al. Observations: Surface and Atmospheric Climate Change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the 4th Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; pp. 235–336. [Google Scholar]
- National Institute of Meteorological Sciences. 100 Years of Climate Change on the Korean Peninsula; Korea Meteorological Administration, Ed.; National Institute of Meteorological Sciences: Jeju, Korea, 2018.
- Climap Project Members. Relative Abundance of Planktic Foraminifera in the 120 kyr Time Slice Reconstruction of Sediment Core GIK12392-1; PANGAEA: Bremerhaven, Germany, 1981. [Google Scholar]
- Korea Meteorological Administration (Ed.) Korean Cliamte Change Assessment Report 2020; Korea Meteorological Administration: Seoul, Korea, 2020.
- Klausmeyer, K.R.; Shaw, M.R. Climate Change, Habitat Loss, Protected Areas and the Climate Adaptation Potential of Species in Mediterranean Ecosystems Worldwide. PLoS ONE 2009, 4, e6392. [Google Scholar] [CrossRef]
- Davis, M.B.; Shaw, R.G. Range Shifts and Adaptive Responses to Quaternary Climate Change. Science 2001, 292, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.K.; Park, H.Y.; Kim, S.H. A Study on Planning for Joint Growth through Collaboration of Bio-Resources between Korea and Peru; Ministry of Science ICT, Ed.; Ministry of Science ICT: Sejong, Korea, 2017.
- van Treuren, R.; Hoekstra, R.; Wehrens, R.; van Hintum, T. Effects of climate change on the distribution of crop wild relatives in the Netherlands in relation to conservation status and ecotope variation. Glob. Ecol. Conserv. 2020, 23, e01054. [Google Scholar] [CrossRef]
- Cahyaningsih, R.; Phillips, J.; Brehm, J.M.; Gaisberger, H.; Maxted, N. Climate change impact on medicinal plants in Indonesia. Glob. Ecol. Conserv. 2021, 30, e01752. [Google Scholar] [CrossRef]
- Lee, S.-H.; Choi, J.-Y.; Lee, Y.-M. Projection of climate change effects on the potential distribution of Abeliophyllum distichum in Korea. Korean J. Agric. Sci. 2011, 38, 219–225. [Google Scholar]
- Koo, K.A.; Kim, J.; Kong, W.-S.; Jung, H.; Kim, G. Projecting the Potential Distribution of Abies koreana in Korea Under the Climate Change Based on RCP Scenarios. J. Korea Soc. Environ. Restor. Technol. 2016, 19, 19–30. [Google Scholar] [CrossRef]
- Yun, J.-H.; Kim, J.-H.; Oh, K.-H.; Lee, B.-Y. Distributional Change and Climate Condition of Warm-temperate Evergreen Broad-leaved Trees in Korea. Korean J. Environ. Ecol. 2011, 25, 47–56. [Google Scholar]
- Yu, S.-B.; Kim, B.-D.; Shin, H.-T.; Kim, S.-J. Habitat Climate Characteristics of Lauraceae Evergreen Broad-leaved Trees and Distribution Change according to Climate Change. Korean J. Environ. Ecol. 2020, 34, 503–514. [Google Scholar] [CrossRef]
- Katsuki, T.; Zhang, D.; Rushforth, K. Abies holophylla. In The IUCN Red List of Threatened Species 2013: E.T42287A2969916; IUCN: Gland, Switzerland, 2013. [Google Scholar]
- Smith, D.R.; Allan, N.L.; McGowan, C.P.; Szymanski, J.A.; Oetker, S.R.; Bell, H.M. Development of a Species Status Assessment Process for Decisions under the U.S. Endangered Species Act. J. Fish Wildl. Manag. 2018, 9, 302–320. [Google Scholar] [CrossRef]
- Wilkening, J.L.; Magness, D.R.; Harrington, A.; Johnson, K.; Covington, S.; Hoffman, J.R. Incorporating Climate Uncertainty into Conservation Planning for Wildlife Managers. Earth 2022, 3, 93–114. [Google Scholar] [CrossRef]
- Franklin, J.; Regan, H.M.; Hierl, L.A.; Deutschman, D.H.; Johnson, B.S.; Winchell, C.S. Planning, implementing, and monitoring multiple-species habitat conservation plans. Am. J. Bot. 2011, 98, 559–571. [Google Scholar] [CrossRef] [PubMed]
- Shilling, F. Do Habitat Conservation Plans Protect Endangered Species? Science 1997, 276, 1662–1663. [Google Scholar] [CrossRef]
- Heo, T.; Suh, E.; Kwon, W. Spatial analysis on the rainfall data by utilizing Variogram models. J. Korean Data Anal. Soc. 2004, 6, 473–491. [Google Scholar]
- Korea National Arboretum. 300 Target Plats Adaptable to Climate Change in the Korean Peninsula; Korea Forest Service, Ed.; Korea Forest Service: Daejeon, Korea, 2010.
- Kitapbaeva, A.A.; Kabataeva, Z.K.; Alipina, K.B.; Komekova, G.K.; Tuktassinova, A.A. The research of winter hardiness and seasonal development of some woody plants in East Kazakhstan. IOP Conf. Ser. Earth Environ. Sci. 2020, 421, 082024. [Google Scholar] [CrossRef]
- Lee, T.B. Coloured Flora of Korea; Hyangmunsa: Seoul, Korea, 2003; p. 910. [Google Scholar]
- Corlett, R.T.; Westcott, D.A. Will plant movements keep up with climate change? Trends Ecol. Evol. 2013, 28, 482–488. [Google Scholar] [CrossRef]
- Politi, P.-I.; Georghiou, K.; Arianoutsou, M. Reproductive biology of Abies cephalonica Loudon in Mount Aenos National Park, Cephalonia, Greece. Trees 2011, 25, 655–668. [Google Scholar] [CrossRef]
- Cremer, E.; Ziegenhagen, B.; Schulerowitz, K.; Mengel, C.; Donges, K.; Bialozyt, R.; Hussendörfer, E.; Liepelt, S. Local seed dispersal in European silver fir (Abies alba Mill.): Lessons learned from a seed trap experiment. Trees 2012, 26, 987–996. [Google Scholar] [CrossRef]
- Moullec, F.; Barrier, N.; Drira, S.; Guilhaumon, F.; Hattab, T.; Peck, M.A.; Shin, Y.-J. Using species distribution models only may underestimate climate change impacts on future marine biodiversity. Ecol. Model. 2022, 464, 109826. [Google Scholar] [CrossRef]
- Marx, M.; Quillfeldt, P. Species distribution models of European Turtle Doves in Germany are more reliable with presence only rather than presence absence data. Sci. Rep. 2018, 8, 16898. [Google Scholar] [CrossRef]
- Hallgren, W.; Santana, F.; Low-Choy, S.; Zhao, Y.; Mackey, B. Species distribution models can be highly sensitive to algorithm configuration. Ecol. Model. 2019, 408, 108719. [Google Scholar] [CrossRef]
- Rew, J.; Cho, Y.; Hwang, E. A Robust Prediction Model for Species Distribution Using Bagging Ensembles with Deep Neural Networks. Remote Sens. 2021, 13, 1495. [Google Scholar] [CrossRef]
- Valavi, R.; Elith, J.; Lahoz-Monfort, J.J.; Guillera-Arroita, G. Modelling species presence-only data with random forests. Ecography 2021, 44, 1731–1742. [Google Scholar] [CrossRef]
- Charney, N.D.; Record, S.; Gerstner, B.E.; Merow, C.; Zarnetske, P.L.; Enquist, B.J. A Test of Species Distribution Model Transferability Across Environmental and Geographic Space for 108 Western North American Tree Species. Front. Ecol. Evol. 2021, 9, 689295. [Google Scholar] [CrossRef]
- Hongji, C. Ecological environment analysis ofAbies holophylla plantations under different cutting systems. J. For. Res. 1999, 10, 181–182. [Google Scholar] [CrossRef]
- Lee, O.; Kim, S. Estimation of Future Probable Maximum Precipitation in Korea Using Multiple Regional Climate Models. Water 2018, 10, 637. [Google Scholar] [CrossRef]
- Schwalm, C.R.; Glendon, S.; Duffy, P.B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl. Acad. Sci. USA 2020, 117, 19656–19657. [Google Scholar] [CrossRef]
- Doblas-Reyes, F.J.; Andreu-Burillo, I.; Chikamoto, Y.; García-Serrano, J.; Guemas, V.; Kimoto, M.; Mochizuki, T.; Rodrigues, L.R.; van Oldenborgh, G.J. Initialized near-term regional climate change prediction. Nat. Commun. 2013, 4, 1715. [Google Scholar] [CrossRef]
- Praveen, B.; Sharma, P. Climate variability and its impacts on agriculture production and future prediction using autoregressive integrated moving average method (ARIMA). J. Public Aff. 2020, 20, e2016. [Google Scholar] [CrossRef]
- Jiménez-Valverde, A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob. Ecol. Biogeogr. 2012, 21, 498–507. [Google Scholar] [CrossRef]
- Chapman, D.; Pescott, O.L.; Roy, H.E.; Tanner, R. Improving species distribution models for invasive non-native species with biologically informed pseudo-absence selection. J. Biogeogr. 2019, 46, 1029–1040. [Google Scholar] [CrossRef]
- Fernandes, R.F.; Scherrer, D.; Guisan, A. Effects of simulated observation errors on the performance of species distribution models. Divers. Distrib. 2019, 25, 400–413. [Google Scholar] [CrossRef]
- Hao, T.; Elith, J.; Lahoz-Monfort, J.J.; Guillera-Arroita, G. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography 2020, 43, 549–558. [Google Scholar] [CrossRef]
- IUCN Standards and Petitions Committee. Guidelines for Using the IUCN Red List Categories and Criteria, 14th ed.; Standards and Petitions Committee, Ed.; IUCN: Gland, Switzerland, 2019. [Google Scholar]
- Nagaya, Y.; Taniyama, T.; Yoshizaki, S. Relationship between distribution of air pollutants and vital degree of trees around Kwangyang bay in Korea. In Bulletin of the Faculty of Bioresources-Mie University (Japan); Mie University: Tsu, Japan, 1998. [Google Scholar]
- Kharuk, V. Air pollution impacts on subarctic forests at Noril’sk, Siberia. In Forest Dynamics in Heavily Polluted Regions Report No 1 of the IUFRO Task Force on Environmental Change; CABI Publishing: Wallingford, UK, 2000; pp. 77–86. [Google Scholar]
- Cronk, Q.C.B. Islands: Stability, diversity, conservation. Biodivers. Conserv. 1997, 6, 477–493. [Google Scholar] [CrossRef]
- Butsic, V.; Munteanu, C.; Griffiths, P.; Knorn, J.; Radeloff, V.C.; Lieskovský, J.; Mueller, D.; Kuemmerle, T. The effect of protected areas on forest disturbance in the Carpathian Mountains 1985–2010. Conserv. Biol. 2017, 31, 570–580. [Google Scholar] [CrossRef]
- Butt, N.; Chauvenet, A.L.M.; Adams, V.M.; Beger, M.; Gallagher, R.V.; Shanahan, D.F.; Ward, M.; Watson, J.; Possingham, H.P. Importance of species translocations under rapid climate change. Conserv. Biol. 2021, 35, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Franklin, J.F.; Smith, C.E. Seeding Habits of Upper-Slope Tree Species, III: Dispersal of White and Shasta Red Fir Seeds on A Clearcut; Forgotten Books: London, UK, 2018. [Google Scholar]
- Nam, K.; Joo, K.Y.; Choi, E.H.; Jung, J.B.; Park, P.S. Distribution and Natural Regeneration of Abies holophylla in Plantations in Gapyeong, Gyeonggi-do. J. Korean Soc. For. Sci. 2021, 110, 341–354. [Google Scholar]
- Lee, D.-H. Above-and below-ground biomass of Abies holophylla under different stand conditions. Life Sci. J. 2013, 10, 751–758. [Google Scholar]
Scientific Name | Growth Form | Characteristic | Use | Number of Points | |
---|---|---|---|---|---|
Direct | Indirect | ||||
Abies holophylla Maxim. | Tree | Evergreen coniferous | Timber Landscape tree | Antioxidant Antibacterial Neuroprotective | 127 |
Category | Variables | Explanation | Unit |
---|---|---|---|
Topographic Factors | Aspect | Compass direction that a slope faces | Degree |
Slope | Angle of inclination to the horizontal | Degree | |
Distance from road (D_road) | Represents distance from road | km | |
Distance from water (D_Water) | Represents distance from water | km | |
Meteorological Factors | Bio01 | Annual mean temperature | °C |
Bio02 | Mean diurnal range (mean of monthly values [max − min]) | °C | |
Bio04 | Temperature seasonality (standard deviation × 100) | °C | |
Bio12 | Annual precipitation | mm | |
Bio13 | Precipitation of wettest month | mm | |
Bio14 | Precipitation of driest month | mm |
Value | Cutoff | Sensitivity | Specificity | |
---|---|---|---|---|
KAPPA | 0.534 | 774 | 52.128 | 95.732 |
TSS | 0.703 | 547 | 90.426 | 79.675 |
ROC | 0.915 | 548 | 90.426 | 79.878 |
GLM | GBM | MARS | FDA | CTA | RF | ANN | Mean | |
---|---|---|---|---|---|---|---|---|
Bio01 | 0.43754 | 0.39607 | 0.32398 | 0.33512 | 0.30557 | 0.32716 | 0.02244 | 0.27548 |
Bio02 | 0.09345 | 0.03747 | 0.05830 | 0.06528 | 0.02506 | 0.04174 | 0.00121 | 0.04402 |
Bio04 | 0.03407 | 0.06926 | 0.10987 | 0.12500 | 0.10938 | 0.11041 | 0.04643 | 0.08280 |
Bio12 | 0.04271 | 0.04802 | 0.08437 | 0.08548 | 0.08171 | 0.08070 | 0.09299 | 0.07687 |
Bio13 | 0.26916 | 0.24901 | 0.24913 | 0.24280 | 0.30999 | 0.19547 | 0.24424 | 0.25679 |
Bio14 | 0.01076 | 0.01010 | 0.03293 | 0.02187 | 0.01596 | 0.01888 | 0.01406 | 0.01809 |
Aspect | 0.00636 | 0.01339 | 0.00560 | 0.00820 | 0.01425 | 0.01212 | 0.07739 | 0.02522 |
Slope | 0.05025 | 0.12619 | 0.09309 | 0.09007 | 0.11238 | 0.13836 | 0.00856 | 0.07392 |
D_road | 0.03975 | 0.02222 | 0.02918 | 0.01823 | 0.02570 | 0.03693 | 0.26439 | 0.08339 |
D_water | 0.01594 | 0.02827 | 0.01353 | 0.00796 | 0.00000 | 0.03822 | 0.22830 | 0.06341 |
Variable | Bio01 | Bio02 | Bio04 | Bio12 | Bio13 | Bio14 | Aspect | Slope | D_road | D_water |
---|---|---|---|---|---|---|---|---|---|---|
Unit | °C | °C | °C | mm | mm | mm | Degree | Degree | km | km |
A. holophylla | 9.3 | 10.8 | 1003.5 | 1426.9 | 392.0 | 20.1 | 160.3 | 4.9 | 2.1 | 1.7 |
South Korea | 11.8 | 11.0 | 992.5 | 1367.5 | 333.1 | 21.8 | 181.1 | 3.2 | 1.9 | 1.5 |
Y2030 | Y2042 | ||||
1 | 0 | 1 | 0 | ||
Y2022 | 1 | 13,340 | 6272 | 10,333 | 9279 |
0 | 901 | 74,708 | 385 | 75,224 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, Y.; Choi, Y.; Chung, H.I.; Hwang, J.; Lim, N.O.; Lee, J.; Kim, Y.; Kim, M.J.; Kim, T.S.; Jeon, S. Development of a Methodology for the Conservation of Northern-Region Plant Resources under Climate Change. Forests 2022, 13, 1559. https://doi.org/10.3390/f13101559
Yoo Y, Choi Y, Chung HI, Hwang J, Lim NO, Lee J, Kim Y, Kim MJ, Kim TS, Jeon S. Development of a Methodology for the Conservation of Northern-Region Plant Resources under Climate Change. Forests. 2022; 13(10):1559. https://doi.org/10.3390/f13101559
Chicago/Turabian StyleYoo, Youngjae, Yuyoung Choi, Hye In Chung, Jinhoo Hwang, No Ol Lim, Jiyeon Lee, Yoonji Kim, Myeong Je Kim, Tae Su Kim, and Seongwoo Jeon. 2022. "Development of a Methodology for the Conservation of Northern-Region Plant Resources under Climate Change" Forests 13, no. 10: 1559. https://doi.org/10.3390/f13101559
APA StyleYoo, Y., Choi, Y., Chung, H. I., Hwang, J., Lim, N. O., Lee, J., Kim, Y., Kim, M. J., Kim, T. S., & Jeon, S. (2022). Development of a Methodology for the Conservation of Northern-Region Plant Resources under Climate Change. Forests, 13(10), 1559. https://doi.org/10.3390/f13101559