Estimating Regional Aggregate Economic Value of Forest Recreation Services with Linked Travel Cost Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model
2.3. Data and Survey Implementation
2.4. Econometric Analyses
3. Results
3.1. Determinants of Site Choice and Trip Demand
3.2. Welfare Estimates and Demand Changes
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pearce, D. An intellectual history of environmental economics. Annu. Rev. Energy Environ. 2002, 27, 57–81. [Google Scholar] [CrossRef]
- Phaneuf, D.; Smith, V.K. Recreation Demand Models. In The Handbook of Environmental Economics Volume 2 Valuing Environmental Changes; Mäler, K.G., Vincent, J.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Clawson, M. Methods of Measuring the Demand for and Value of Outdoor Recreation; Reprint No. 10; Resources for the Future Press: Washington, DC, USA, 1959. [Google Scholar]
- Freeman, A.M. The Measurement of Environmental and Resource Values: Theory and Methods, 1st ed.; Resources for the Future Press: Washington, DC, USA, 1993. [Google Scholar]
- Bateman, I.J.; Lovett, A.A.; Brainard, J.S. Developing a methodology for benefit transfers using geographical information systems: Modelling demand for woodland recreation. Reg. Stud. 1999, 33, 191–205. [Google Scholar] [CrossRef]
- Loomis, J. A Comparison of the Effect of Multiple Destination Trips on Recreation Benefits as Estimated by Travel Cost and Contingent Valuation Methods. J. Leis. Res. 2006, 38, 46–60. [Google Scholar] [CrossRef]
- Rosenthal, D.H.; Loomis, J.B.; Peterson, G.L. The Travel Cost Model: Concepts and Applications; Gen. Tech. Rpt. RM-109; U.S. Department of Agriculture Rocky Mountain Forest and Range Experiment Station: Fort Collins, CO, USA, 1984. [Google Scholar]
- Randall, A. A Difficulty with the Travel Cost Method. Land Econ. 1994, 70, 88–96. [Google Scholar] [CrossRef]
- Willig, R.D. Consumer surplus without apology. Am. Econ. Rev. 1976, 66, 589–597. Available online: http://www.jstor.org/stable/1806699 (accessed on 10 March 2022).
- Ward, F.A.; Beal, D. Valuing Nature with Travel Cost: A Manual; Edward Elgar: Cheltenham, UK, 2000. [Google Scholar]
- Zandersen, M.; Tol, R.S. A meta-analysis of forest recreation values in Europe. J. For. Econ. 2009, 15, 109–130. [Google Scholar] [CrossRef]
- Parsons, G.R. The Travel Cost Model. In A Primer on Nonmarket Valuation: The Economics of Non-Market Goods and Resources, vol 3.; Champ, P.A., Boyle, K.J., Brown, T.C., Eds.; Springer: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Heagney, E.C.; Rose, J.M.; Ardeshiri, A.; Kovac, M. The economic value of tourism and recreation across a large protected area network. Land Use Pol. 2019, 88, 104084. [Google Scholar] [CrossRef]
- Bestard, A.B.; Font, A.F. Estimating the aggregate value of forest recreation in a regional context. J. For. Econ. 2010, 16, 205–216. [Google Scholar] [CrossRef]
- Riccioli, F.; Marone, E.; Boncinelli, F.; Tattoni, C.; Rocchini, D.; Fratini, R. The recreational value of forests under different management systems. New For. 2018, 50, 345–360. [Google Scholar] [CrossRef]
- Hill, G.W.; Courtney, P.R. Demand analysis projections for recreational visits to countryside woodlands in Great Britain. Forestry 2006, 79, 185–200. [Google Scholar] [CrossRef]
- Lovett, A.A.; Brainard, J.S.; Bateman, I.J. Improving benefit transfer demand functions: A GIS approach. J. Environ. Manage 1997, 51, 373–389. [Google Scholar] [CrossRef]
- Juutinen, A.; Kosenius, A.; Ovaskainen, V. Estimating the benefits of recreation-oriented management in state-owned commercial forests in Finland: A choice experiment. J. Forest Econ. 2014, 20, 396–412. [Google Scholar] [CrossRef]
- Knoche, S.; Lupi, F. Valuing deer hunting ecosystem services from farm landscapes. Ecol. Econ. 2007, 64, 313–320. [Google Scholar] [CrossRef]
- Okuyama, T. A model for estimating values of recreational activity time in multi-sites. J. Environ. Info. Sci. 2015, 44, 11–22. [Google Scholar] [CrossRef]
- Garber-Yonts, B.E. Conceptualizing and Measuring Demand for Recreation on National Forests: A Review and Synthesis; Gen. Tech. Rep. PNW-GTR-645; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2005. [Google Scholar]
- Riera, P.; Signorello, G.; Thiene, M.; Mahieu, P.-A.; Navrud, S.; Kaval, P.; Rulleau, B.; Mavsar, R.; Madureira, L.; Meyerhoff, J.; et al. Good practice guidelines for the non-market forest goods and services. J. For. Econ. 2012, 18, 259–270. [Google Scholar] [CrossRef]
- Heal, G.M.; Barbier, E.B.; Boyle, K.J.; Covich, A.; Gloss, S.P.; Hershner, C.H.; Hoehn, J.P.; Pringle, C.M.; Polasky, S.; Segerson, K.; et al. Valuing Ecosystem Services: Towards Better Environmental Decision-Making; National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- McFadden, D. Conditional Logit Analysis of Qualitative Choice Behavior. In Frontiers in Econometrics; Zarembka, P., Ed.; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Hanemann, W.M. A Methodological and Empirical Study of the Recreation Benefits from Water Quality Improvement. Ph.D. Dissertation, Harvard University, Cambridge, MA, USA, 1978. [Google Scholar]
- Herriges, J.A.; Kling, C.L.; Phaneuf, D.J. Corner Solution Models of Recreation Demand: A Comparison of Competing Frameworks. In Valuing Recreation and the Environment: Revealed Preference Methods in Theory and Practice; Herriges, J.A., Kling, C.L., Eds.; Edward Elgar: Cheltenham, UK, 1999. [Google Scholar]
- Parsons, G.R.; Jakus, P.M.; Tomasi, T. A comparison of welfare estimates from four models for linking seasonal recreational trips to multinomial logit models of site choice. J. Environ. Econ. Manage 1999, 38, 143–157. [Google Scholar] [CrossRef]
- Bockstael, N.E.; Hanemann, W.M.; Kling, C.L. Estimating the Value of Water Quality Improvements in a Recreation Demand Framework. Water Resour. Res. 1987, 23, 951–960. [Google Scholar] [CrossRef]
- Bockstael, N.E.; Hanemann, W.M.; Strand, I.E. Measuring the Benefits of Water Quality Improvements Using Recreation Demand Models; U.S. Environmental Protection Agency: Washington, D.C., USA, 1986; Volume 2. [Google Scholar]
- Hausman, J.A.; Leonard, G.K.; McFadden, D. A utility-consistent, combined discrete choice and count data model: Assessing recreational use losses due to natural resource damage. J. Public Econ. 1995, 56, 1–30. [Google Scholar] [CrossRef]
- Feather, P.; Hellerstein, D.; Tomasi, T. A discrete-count model of recreation demand. J. Environ. Econ. Manage 1995, 29, 316–322. [Google Scholar] [CrossRef]
- Parsons, G.R.; Kealy, M.J. A demand theory for number of trips in a random utility model of recreation. J. Environ. Econ. Manage 1995, 29, 357–367. [Google Scholar] [CrossRef]
- Termansen, M.; McClean, C.J.; Jensen, F.S. Modelling and mapping spatial heterogeneity in forest recreation services. Ecol. Econ. 2013, 92, 48–57. [Google Scholar] [CrossRef]
- Abildtrup, J.; Horokoski, T.T.; Piedallu, C.; Perez, V.; Stenger, A.; Thirion, E. Mapping of the Forest Recreation Service in Lorraine: Applying High-Resolution Spatial Data and Travel Mode Information. In Proceedings of the 2nd FAERE (French Association of Environmental and Resource Economists) Annual Conference, Toulouse, France, 1–10 September 2015. [Google Scholar]
- McCollum, D.W. Nonmarket valuation in Action. In A Primer on Nonmarket Valuation: The Economics of Non-Market Goods and Resources, vol 3.; Champ, P.A., Boyle, K.J., Brown, T.C., Eds.; Springer: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Morey, E.R.; Rowe, R.D.; Watson, M. A Repeated nested-logit Model of Atlantic salmon fishing. Am. J. Agric. Econ. 1993, 75, 578–592. [Google Scholar] [CrossRef]
- Parsons, G.R.; Kang, A.K.; Leggett, C.G.; Boyle, K.J. Valuing beach closures on the Padre Island National Seashore. Mar. Resour. Econ. 2009, 24, 213–235. [Google Scholar] [CrossRef]
- Gustafsson, J. Modelling Recreational Angling Demand in Sweden Based on Region-Specific Inclusive Values. Ph.D. Dissertation, Umea University, Umea, Sweden, 2017. [Google Scholar]
- Zandersen, M. Valuing Forest Recreation in Europe: Time and Spatial Considerations. Ph.D. Dissertation, Hamburg University and International Max Planck Research School on Earth System Modelling, Hamburg, Germany, 2005. [Google Scholar]
- Abildtrup, J.; Garcia, S.; Olsen, S.B.; Stenger, A. Recreation Value of Forests in Lorraine: Local Determinants of Preferences. In Proceedings of the 58. Annual North American Meetings of the Regional Science Association International, Miami, FL, USA, 10 November 2011. [Google Scholar]
- Turkish General Directorate of Forestry. Annual Activity Reports. Available online: https://www.ogm.gov.tr/tr/faaliyet-raporu (accessed on 15 April 2022).
- Akesen, A. Fethiye Yöresinde Rekreasyon Amacı ile Kullanılan Bazı Orman Alanlarında Rekreasyon Talep Değerinin Belirlenmesi Üzerine Araştırmalar [Research on the Determination of Recreation Demand Value in Some Forest Areas Used for Recreation Purposes in the Fethiye Region]; Istanbul University Faculty of Forestry Publications: İstanbul, Turkey, 1983. [Google Scholar]
- Kaya, G.; Daşdemir, İ.; Akça, Y. Soğuksu Milli Parkının ekonomik değerinin belirlenmesi [Determining the Economic Values of Recreation Services of Soğuksu National Park]. BAROFD 2000, 1, 59–87. [Google Scholar]
- Pak, M. Orman Kaynağından Rekreasyon Amaçlı Yararlanmanın Ekonomik Değerinin Tahmin Edilmesi ve Bu Değer Üzerinde Etkili Olan Değişkenler Üzerine Bir Araştırma (Doğu Akdeniz ve Doğu Karadeniz Bölgesi Orman İçi Dinlenme Yerleri Örneği) [A Study on The Estimation of Economic Value of Recreational Benefit from Forest Resources and Effective Variables on The Estimated Value (East Mediterranean and East Black Sea Region Forest Recreation Sites Sample)]. Ph.D. Dissertation, Karadeniz Teknik University, Trabzon, Turkey, 2003. [Google Scholar]
- Ortaçeşme, V.; Özkan, B.; Karagüzel, O. An estimation the recreation use value of Kursunlu Waterfall Nature Park by the individual travel cost method. Turk. J. Agric. For. 2002, 26, 57–62. [Google Scholar]
- Başar, H. Dilek Yarımadası-Büyük Menderes Deltası Milli Parkının Rekreasyon Amacıyla Kullanımının Ekonomik Değerinin Saptanması: Bir Seyahat Maliyeti Uygulaması [The recreational use and the economic value of Dilek Peninsula-great Meander Delta national park by travel cost method]. Ph.D. Dissertation, Ege University, İzmir, Turkey, 2007. [Google Scholar]
- Özdemir, E. Çevre Sorunlarının Ekonomik Niteliği Bağlamında Dışsallıkların Ortadan Kaldırılması [Elimination of Externalities in the Context of the Economic Nature of Environmental Problems]. Master’s Thesis, Ankara Üniversitesi, Ankara, Turkey, 2006. [Google Scholar]
- Kaya, G.; Aytekin, A.; Yıldız, Y.; Şaltu, Z. Bartın İlinde Yaban Hayatı Kaynaklarını Korumanın ve Avlanma Hizmetinin Ekonomik Değerinin Belirlenmesi [The Economic Valuation of Conservation of Wildlife Resources and Hunting in Bartın]; TÜBİTAK 107O072 Research Project Report; Bartın Faculty of Forestry: Bartın, Turkey, 2009. [Google Scholar]
- Kaya, G.; Ok, K.; Porsuk, T.; Deniz, T.; Çetiner, M. Seyahat maliyeti yöntemiyle Ankara ilinde orman içi rekreasyon alanlarına yönelik bölgesel talebin tahmini [Estimating regional recreational demand for forest recreation sites with travel cost method in Ankara province]. OGMOAD 2018, 5, 15–30. [Google Scholar] [CrossRef]
- Turkish Statistical Institute. Geographic Statistics Portal. Available online: https://cip.tuik.gov.tr/ (accessed on 10 April 2022).
- Ankara Regional Directorate of Forestry. General information and organization status. Available online: https://ankaraobm.ogm.gov.tr/Sayfalar/Kurulusumuz/GenelBilgiler.aspx (accessed on 10 April 2022).
- Ankara Regional Directorate of Forestry. Official Documentaries and Statistics on Forest Recreation Sites; Ankara RDF Non-Wood Forest Products Division: Ankara, Turkey, 2016. [Google Scholar]
- Turkish General Directorate of Nature Conservation and National Parks. Official Documentaries and Annual Statistics on National Parks and Nature Parks in Turkey. Turkish General Directorate of Nature Conservation and National Parks: Ankara, Turkey, 2016. [Google Scholar]
- Train, K. Mixed Logit Models for Recreation Demand. In Valuing Recreation and the Environment: Revealed Preference Methods in Theory and Practice; Kling, C., Herriges, J., Eds.; Edward Elgar Press: Cheltenham, UK, 1999. [Google Scholar]
- McFadden, D.; Train, K.E. Mixed MNL models for discrete response. J. Appl. Econom. 2000, 15, 447–470. [Google Scholar] [CrossRef]
- Hensher, D.A.; Greene, W.H. The mixed logit model: The state of practice. Transportation 2003, 30, 133–176. [Google Scholar] [CrossRef]
- Train, K. Discrete Choice Methods with Simulation; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Train, K.E. Recreation demand models with taste differences over people. Land Econ. 1998, 74, 230–239. [Google Scholar] [CrossRef]
- Haab, T.; Hicks, R.; Schnier, K.; Whitehead, J.C. angler heterogeneity and the species-specific demand for marine recreational fishing. Mar. Resour. Econ. 2012, 27, 229–251. [Google Scholar] [CrossRef]
- Brownstone, D.; Train, K. Forecasting new product penetration with flexible substitution patterns. J. Econom. 1999, 89, 109–129. [Google Scholar] [CrossRef]
- Hanemann, W.M. Applied Welfare Analysis with Qualitative Response Models; CUDARE Working Papers; University of California: Berkeley, CA, USA, 1982. [Google Scholar]
- McFadden, D. Econometric Models of Probabilistic Choice. In Structural Analysis of Discrete Data with Econometric Applications; Manski, C.F., McFadden, D., Eds.; The MIT Press: Cambridge, MA, USA, 1981. [Google Scholar]
- Small, K.A.; Rosen, H.S. Applied welfare economics with discrete choice models. Econometrica 1981, 49, 105–130. [Google Scholar] [CrossRef]
- Roussel, S.; Salles, J.-M.; Tardieu, L. Recreation Demand Analysis of the Sensitive Natural Areas (Hérault District, France): A Travel Cost Appraisal using Count Data Models; Working Papers 12-30; LAMETA, Universtiy of Montpellier: Montpellier, France, 2012. [Google Scholar]
- Haab, T.C.; McConnell, K.E. Valuing Environmental and Natural Resources: The Econometrics of Non-Market Valuation; Edward Elgar Publishing: Northampton, UK, 2002. [Google Scholar]
- Cameron, A.C.; Trivedi, P.K. Econometric models based on count data: Comparisons and applications of some estimators and tests. J. Appl. Econ. 1986, 1, 29–53. [Google Scholar] [CrossRef]
- Long, J.S. Regression Models for Categorical and Limited Dependent Variables; Sage Publications: London, UK, 1997. [Google Scholar]
- Hilbe, J.M. Negative Binomial Regression; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Cesario, F.J.; Knetsch, J.L. The time bias in recreation benefit estimates. Water Resour. Res. 1970, 6, 700–704. [Google Scholar] [CrossRef]
- Turkish Statistical Institute. Inflation & Price. Available online: https://data.tuik.gov.tr/Kategori/GetKategori?p=enflasyon-ve-fiyat-106 (accessed on 15 April 2022).
- Greene, W.H. NLOGIT Version4.0; Econometric Software, Inc.: Plainview, NY, USA, 2012. [Google Scholar]
- McFadden, D. Quantitative Methods for Analyzing Travel Behaviour of Individuals: Some Recent Developments. Cowles Foundation Discussion Papers 707. 1977. Available online: https://elischolar.library.yale.edu/cowles-discussion-paper-series/707 (accessed on 10 April 2022).
- Agimass, F.; Lundhede, t.; Panduro, T.E.; Jacobsen, J.B. The choice of forest site for recreation: A revealed preference analysis using spatial data. Ecosyst 2018, 31, 445–454. [Google Scholar] [CrossRef]
- Abildtrup, J.; Garcia, S.; Olsen, S.B.; Stenger, A. Spatial preference heterogeneity in forest recreation. Ecol. Econ. 2013, 92, 67–77. [Google Scholar] [CrossRef]
- Abildtrup, J.; Olsen, S.B.; Stenger, A. Combining RP and SP data while accounting for large choice sets and travel mode–an application to forest recreation. J. Environ. Econ. Pol. 2014, 4, 177–201. [Google Scholar] [CrossRef]
- Nielsen, A.B.; Olsen, S.B.; Lundhede, T. An economic valuation of the recreational benefits associated with nature-based forest management practices. Landsc. Urban Plan 2007, 80, 63–71. [Google Scholar] [CrossRef]
- Filyushkina, A.; Agimass, F.; Lundhede, T.; Strange, N.; Jacobsen, J.B. Preferences for variation in forest characteristics: Does diversity between stands matter? Ecol. Econ. 2017, 140, 22–29. [Google Scholar] [CrossRef]
- Termansen, M.; McClean, C.J.; Skov-Petersen, H. Recreational site choice modelling using high-resolution spatial data. Environ. Plan. 2004, 36, 1085–1099. [Google Scholar] [CrossRef]
- Zandersen, M.; Termansen, M.; Jensen, F.S. Evaluating approaches to predict recreation values of new forest sites. J. For. Econ. 2007, 13, 03–128. [Google Scholar] [CrossRef]
- Termansen, M.; Zandersen, M.; McClean, C.J. Spatial substitution patterns in forest recreation. Reg. Sci. Urban Econ. 2008, 38, 81–97. [Google Scholar] [CrossRef]
- Edwards, D.; Jay, M.; Jensen, F.S.; Lucas, B.; Marzano, M.; Montagne, C.; Peace, A.; Weiss, G. Assessment of the Recreational Value of European Forest Management Alternatives; EFI Technical Report 62; European Forest Institute: Joensuu, Finland, 2011. [Google Scholar]
- Ebenberger, M.; Arnberger, A. Exploring visual preferences for structural attributes of urban forest stands for restoration and heat relief. Urban For. Urban Green. 2019, 41, 272–282. [Google Scholar] [CrossRef]
- Christie, M.; Hanley, N.; Hynes, S. Valuing enhancements to forest recreation using choice experiment and contingent behaviour methods. J. For. Econ. 2007, 13, 75–102. [Google Scholar] [CrossRef]
- Giergiczny, M.; Czajkowski, M.; Żylicz, M.; Angelstam, P. Choice experiment assessment of public preferences for forest structural attributes. Ecol. Econ. 2015, 119, 8–23. [Google Scholar] [CrossRef]
- Lutz, J.; Englin, J.; Shonkwiler, J.S. On the Aggregate Value of Recreational Activities: A Nested Price Index Approach Using Poisson Demand Systems. Environ. Resour. Econ. 2000, 15, 217–226. [Google Scholar] [CrossRef]
- Borzykowski, N.; Baranzini, A.; Maradan, D. A travel cost assessment of the demand for recreation in Swiss forests. Rev. Agric. Food Environ. Stud. 2017, 98, 149–171. [Google Scholar] [CrossRef]
- Derks, J.; Giessen, L.; Winkel, G. Nature recreation in times of social distancing–booming visits during the COVID-19 pandemic reveal forests as critical infrastructure. For. Policy Econ. 2020, 118, 102253. [Google Scholar] [CrossRef]
- Morse, J.W.; Gladkikh, T.M.; Hackenburg, D.M.; Gould, R.K. COVID-19 and human-nature relationships: Vermonters’ activities in nature and associated nonmaterial values during the pandemic. PLoS ONE 2020, 12, e0243697. [Google Scholar] [CrossRef]
- Taff, B.D.; Rice, W.L.; Lawhon, B.; Newman, P. Who started, stopped, and continued participating in outdoor recreation during the COVID-19 pandemic in the United States? Results from a National Panel Study. Land 2021, 10, 1396. [Google Scholar] [CrossRef]
- Zander, S.V.; Barton, D.N.; Gundersen, V.; Figari, H.; Nowell, M.S. Back to Nature: Norwegians sustain increased recreational use of urban green space months after the COVID-19 outbreak. Landsc. Urban Plan 2021, 214, 104175. [Google Scholar] [CrossRef]
- Erdönmez, C.; Atmiş, E. The impact of the Covid-19 pandemic on green space use in Turkey: Is closing green spaces for use a solution? Urban For. Urban Green 2021, 64, 127295. [Google Scholar] [CrossRef] [PubMed]
- Güngör, S.; Yıldız, F. Covid-19 Pandemisi öncesi ve sürecinde kentsel yeşil alanlardaki sosyal ilişkilerin incelenmesi. JASA 2022, 7, 27–39. [Google Scholar] [CrossRef]
Variables | Descriptions | σ | +/− | |
---|---|---|---|---|
Travel cost | Travel cost per trip (TL) | 34.43 | 30.34 | − |
Stand development stage | A stand area-weighted average score of stand development stages from regenerated (1) to overmature (7) in the recreation site | 3.46 | 1.44 | +/− |
Coniferous stands | Equals 1 if coniferous stands exist at the recreation site, 0 if not | 0.93 | 0.26 | +/− |
Mixed stands | Equals 1 if mixed stands exist at the recreation site, 0 if not | 0.07 | 0.26 | +/− |
Normal canopy | Area (ha) of stands with 71%–100% canopy closure in the recreation site | 11.30 | 14.89 | +/− |
Destructed coppice | Area (ha) of destructed coppice stands at the recreation size | 1.13 | 2.19 | +/− |
Picnicking | Equals 1 if a picnic area exists at the recreation site and the visitor is a picnicker, 0 otherwise | 0.79 | 0.41 | + |
Hiking | Equals 1 if a hiking trail exists at the recreation site and the visitor is a hiker, 0 otherwise | 0.42 | 0.49 | + |
Camping | Equals 1 if a camping area exists at the recreation site and the visitor is a camper, 0 otherwise | 0.03 | 0.17 | + |
Guided activities | Equals 1 if the site presents guided activities, and the visitor preferred the site for these activities, 0 otherwise | 0.01 | 0.11 | + |
Electricity | Equals 1 if electricity is available at the recreation site, 0 if not | 0.93 | 0.26 | + |
Expected consumer surplus | Expected consumer surplus per trip (TL) | 43.71 | 42.84 | + |
Individual income | Monthly individual income (1 for less than 5000 TL; 2 for 5000–9999 TL; 3 for higher than 10,000 TL | 1.14 | 0.38 | +/− |
Sex | Equals 1 if a respondent is a man, 2 if a woman | 1.13 | 0.33 | |
Education | Education time (year) | 11.65 | 3.18 | +/− |
Under 18 | Equals 1 if the number of minors in the visitor group is more than 1, 0 otherwise | 0.32 | 0.47 | +/− |
Activity number | Equals 1 if the number of recreational activities performed by visitors is more than 1, 0 otherwise | 0.89 | 0.32 | +/− |
Weekday visitor | Equals 1 if visiting the site on weekdays, 0 otherwise | 0.26 | 0.44 | +/− |
Variables | Coefficients | St. Error |
---|---|---|
Travel cost | −0.0490 *** | 0.006 |
Stand development stage | 0.2241 ** | 0.088 |
Coniferous stands | 0.9292 * | 0.477 |
Mixed stands | −1.4467 *** | 0.277 |
Normal canopy | 0.0462 *** | 0.004 |
Destructed coppice area | −0.1112 *** | 0.036 |
Picnicking | 2.5737 *** | 0.622 |
Hiking | 1.2782 *** | 0.304 |
Camping | 1.5396 *** | 0.359 |
Guided activities | 1.1795 ** | 0.504 |
Electricity | 2.3267 *** | 0.729 |
Distances of random parameters standard deviations | ||
Travel cost | 0.0239 *** | 0.007 |
Stand development stage | 0.3874 ** | 0.159 |
Log-L | −701.034 | |
Restricted Log-L | −1016.037 | |
χ2 | 630.006 *** | |
Mc Fadden Pseudo R2 | 0.310 | |
Adj. Mc Fadden R2 | 0.308 | |
AIC | 1443.5 | |
n | 312 |
Variables | Coefficients | St. Error |
---|---|---|
Constant | −1.0056 ** | 0.396 |
Expected consumer surplus | 0.0142 *** | 0.001 |
Individual income | 0.2533 ** | 0.119 |
Sex | −0.3279 * | 0.179 |
Education | 0.0379 ** | 0.016 |
Under 18 | 0.3406 *** | 0.104 |
Weekday visitor | 0.1902 * | 0.103 |
Activity number | −0.5198 *** | 0.198 |
Alpha | 0.4243 *** | 0.065 |
Log-L | −670.609 | |
Restricted Log-L | −849.292 | |
χ2 | 357.365 *** | |
Mc Fadden Pseudo R2 | 0.210 | |
AIC | 1359.2 | |
n | 312 |
Estimate | Per-Trip Expected Consumer Surplus (TL) | Annual Aggregate Consumer Surplus per Capita (TL) |
---|---|---|
Mean | 140.14 | 232.07 |
Median | 137.34 | 156.59 |
Median’s 95% con. interval | 128.54–147.47 | 138.15–171.79 |
Standard deviation | 51.90 | 217.60 |
Minimum | 12.88 | 9.51 |
Maximum | 277.18 | 1612.49 |
Scenarios | Per-Trip Expected Consumer Surplus (TL) | Annual Aggregate Consumer Surplus per Capita (TL) | Annual Aggregate Value for Target Population (million TL) |
---|---|---|---|
Status quo | 137.34 | 156.59 | 13.51 |
I | 146.49 | 181.80 | 15.68 |
II | 142.81 | 164.36 | 14.18 |
III | 149.46 | 189.25 | 16.32 |
I + II + III | 159.14 | 224.81 | 19.39 |
IV | 143.64 | 167.01 | 14.40 |
I + II + III + IV | 166.06 | 257.67 | 22.22 |
Variables | ME (%) |
---|---|
Expected consumer surplus | 1.43 |
Individual income | 28.83 |
Sex | −27.96 |
Education | 3.87 |
Children | 40.57 |
Weekday visitor | 20.95 |
Activity number | −40.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaya, G. Estimating Regional Aggregate Economic Value of Forest Recreation Services with Linked Travel Cost Model. Forests 2022, 13, 1561. https://doi.org/10.3390/f13101561
Kaya G. Estimating Regional Aggregate Economic Value of Forest Recreation Services with Linked Travel Cost Model. Forests. 2022; 13(10):1561. https://doi.org/10.3390/f13101561
Chicago/Turabian StyleKaya, Güven. 2022. "Estimating Regional Aggregate Economic Value of Forest Recreation Services with Linked Travel Cost Model" Forests 13, no. 10: 1561. https://doi.org/10.3390/f13101561
APA StyleKaya, G. (2022). Estimating Regional Aggregate Economic Value of Forest Recreation Services with Linked Travel Cost Model. Forests, 13(10), 1561. https://doi.org/10.3390/f13101561