Investigating the Relation between Visitor Attention and Visual Quality of Forest Landscape: A Mobile EEG Study
Abstract
:1. Introduction
- (1)
- Is the EEG test adequately stable for measuring visitors’ attentional changes to forest landscapes across time and space in specific outdoor settings?
- (2)
- Does the EEG test of visitors’ attentional changes produce results consistent with expert evaluations and visitors’ self-reports of the visual quality of forest landscapes?
- (3)
- Do visitors’ attentional changes vary systematically with the visual quality of the forest landscape?
2. Materials and Methods
2.1. EEG Method
2.1.1. Experimental Devices
2.1.2. Pre-Test
2.1.3. Study Area
2.1.4. Participants
2.1.5. Experimental Procedure
2.1.6. Data Processing
2.2. Self-Report Assessment
2.3. Expert Assessment
3. Results
3.1. Reliability Testing
3.2. Validity Testing
4. Discussion
4.1. EEG-Based Methodology in Visual Quality Assessment of Forest Landscape
4.2. Implications
4.3. Limitations
4.4. Further Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eggers, J.; Lindhagen, A.; Lind, T.; Lämås, T.; Öhman, K. Balancing landscape-level forest management between recreation and wood production. Urban For. Urban Green. 2018, 33, 1–11. [Google Scholar] [CrossRef]
- Gobster, P.H.; Ribe, R.G.; Palmer, J.F. Themes and trends in visual assessment research: Introduction to the Landscape and Urban Planning special collection on the visual assessment of landscapes. Landsc. Urban Plan. 2019, 191, 103635. [Google Scholar] [CrossRef]
- Cheng, A.S.; Mattor, K.M. Place-based planning as a platform for social learning: Insights from a national forest landscape assessment process in Western Colorado. Soc. Nat. Resour. 2010, 23, 385–400. [Google Scholar] [CrossRef]
- Kangas, J.; Store, R.; Leskinen, P.; MehtaÈtalo, L. Improving the quality of landscape ecological forest planning by utilising advanced decision-support tools. For. Ecol. Manag. 2000, 132, 157–171. [Google Scholar] [CrossRef]
- Geneletti, D. Expert panel-based assessment of forest landscapes for land use planning. Mt. Res. Dev. 2007, 27, 220–223. [Google Scholar] [CrossRef] [Green Version]
- Zube, E.H.; Sell, J.L.; Taylor, J.G. Landscape perception: Research, application and theory. Landsc. Plan. 1982, 9, 1–33. [Google Scholar] [CrossRef]
- Daniel, T.C.; Vining, J. Methodological issues in the assessment of landscape quality. In Behavior and the Natural Environment; Irwin, A., Wohlwill, J.F., Eds.; Springer: Boston, MA, USA, 1983; pp. 39–84. [Google Scholar]
- Gobster, P.H.; Chenoweth, R.E. The dimensions of aesthetic preference: A quantitative analysis. J. Environ. Manag. 1989, 29, 47–72. [Google Scholar]
- Lothian, A. Landscape and the philosophy of aesthetics: Is landscape quality inherent in the landscape or in the eye of the beholder? Landsc. Urban Plan. 1999, 44, 177–198. [Google Scholar] [CrossRef]
- Frank, S.; Fürst, C.; Koschke, L.; Witt, A.; Makeschin, F. Assessment of landscape aesthetics—Validation of a landscape metrics-based assessment by visual estimation of the scenic beauty. Ecol Indic. 2013, 32, 222–231. [Google Scholar] [CrossRef]
- Zellweger, F.; Morsdorf, F.; Purves, R.S.; Braunisch, V.; Bollmann, K. Improved methods for measuring forest landscape structure: LiDAR complements field-based habitat assessment. Biodivers. Conserv. 2014, 23, 289–307. [Google Scholar] [CrossRef] [Green Version]
- Xiaofeng, L.; Chunyang, Z. Forest landscape quality evaluation in Maoer Mountain. J. Northeast. For. Univ. 1991, 35, 91–95. [Google Scholar]
- Wang, C.; Zhai, M.; Jin, Y.; Ma, R. Current research and prospects on forest landscape quality assessment. World For. Res. 2006, 19, 18–22. [Google Scholar]
- Daniel, T.C. Whither scenic beauty? Visual landscape quality assessment in the 21st century. Landsc. Urban Plan. 2001, 54, 267–281. [Google Scholar] [CrossRef]
- Notaro, S.; Grilli, G.; Paletto, A. The role of emotions on tourists’ willingness to pay for the Alpine landscape: A latent class approach. Landsc. Res. 2018, 43, 1–14. [Google Scholar] [CrossRef]
- Moyle, B.D.; Moyle, C.-l.; Bec, A.; Scott, N. The next frontier in tourism emotion research. Curr. Issues Tour. 2019, 22, 1393–1399. [Google Scholar] [CrossRef]
- Spinney, J. Close encounters? Mobile methods,(post) phenomenology and affect. Cult. Geogr. 2015, 22, 231–246. [Google Scholar] [CrossRef]
- Ohme, R.; Reykowska, D.; Wiener, D.; Choromanska, A. Analysis of neurophysiological reactions to advertising stimuli by means of EEG and galvanic skin response measures. J. Neurosci. Psychol. Econ. 2009, 2, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.-H.J.; Cross, S.N.; Jones, W.J.; Childers, T.L. Applying EEG in consumer neuroscience. Eur. J. Mark. 2018, 52, 66–91. [Google Scholar] [CrossRef]
- Khushaba, R.N.; Wise, C.; Kodagoda, S.; Louviere, J.; Kahn, B.E.; Townsend, C. Consumer neuroscience: Assessing the brain response to marketing stimuli using electroencephalogram (EEG) and eye tracking. Expert Syst. Appl. 2013, 40, 3803–3812. [Google Scholar] [CrossRef]
- Babiloni, F.; Cincotti, F.; Mattia, D.; Mattiocco, M.; Bufalari, S.; Fallani, F.D.V.; Tocci, A.; Bianchi, L.; Marciani, M.G.; Meroni, V. Neural basis for the brain responses to the marketing messages: An high resolution EEG study. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006. [Google Scholar]
- Vecchiato, G.; Astolfi, L.; De Vico Fallani, F.; Toppi, J.; Aloise, F.; Bez, F.; Wei, D.; Kong, W.; Dai, J.; Cincotti, F. On the use of EEG or MEG brain imaging tools in neuromarketing research. Comput. Intell. Neurosci. 2011, 2011, 643489. [Google Scholar] [CrossRef] [Green Version]
- Atik, M.; Işıklı, R.C.; Ortaçeşme, V.; Yıldırım, E. Exploring a combination of objective and subjective assessment in landscape classification: Side case from Turkey. Appl. Geogr. 2017, 83, 130–140. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, J. Effects of evergreen trees on landscape preference and perceived restorativeness across seasons. Landsc. Res. 2020, 45, 649–661. [Google Scholar] [CrossRef]
- Arriaza, M.; Cañas-Ortega, J.F.; Cañas-Madueño, J.A.; Ruiz-Aviles, P. Assessing the visual quality of rural landscapes. Landsc. Urban Plan. 2004, 69, 115–125. [Google Scholar] [CrossRef]
- Tang, I.-C.; Tsai, Y.-P.; Lin, Y.-J.; Chen, J.-H.; Hsieh, C.-H.; Hung, S.-H.; Sullivan, W.C.; Tang, H.-F.; Chang, C.-Y. Using functional Magnetic Resonance Imaging (fMRI) to analyze brain region activity when viewing landscapes. Landsc. Urban Plan. 2017, 162, 137–144. [Google Scholar] [CrossRef]
- Herbert, B.M.; Pollatos, O.; Schandry, R. Interoceptive sensitivity and emotion processing: An EEG study. Inter. J. Psychol. 2007, 65, 214–227. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, T.; Esslen, M.; Jäncke, L. From emotion perception to emotion experience: Emotions evoked by pictures and classical music. Inter. J. Psychol. 2006, 60, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Gerger, G.; Leder, H.; Kremer, A. Context effects on emotional and aesthetic evaluations of artworks and IAPS pictures. Acta Psychol. 2014, 151, 174–183. [Google Scholar] [CrossRef]
- Ulrich, R.S. Natural versus urban scenes: Some psychophysiological effects. Environ. Behav. 1981, 13, 523–556. [Google Scholar] [CrossRef]
- Acedo, J.; Soria-Frisch, A.; Ibáñez, D.; Castellano, M.; Dunne, S. Affective BCI for characterizing museum visitors response. In Proceedings of the 49th Asilomar Conference on Signals, Systems and Computers, Asiloma, Pacific Grove, CA, USA, 8–11 November 2015. [Google Scholar]
- Cruz-Garza, J.G.; Brantley, J.A.; Nakagome, S.; Kontson, K.; Megjhani, M.; Robleto, D.; Contreras-Vidal, J.L. Deployment of mobile EEG technology in an art museum setting: Evaluation of signal quality and usability. Front. Hum. Neurosci. 2017, 11, 527. [Google Scholar] [CrossRef]
- Banzi, A.; Folgieri, R. EEG-based BCI data analysis on visual-priming In the context of a museum of fine arts. In Proceedings of the International Conference on Distributed Multimedia Systems, Miami Beach, FL, USA, 9–11 August 2012; Knowledge Systems Institute: Skokie, IL, USA, 2012; pp. 75–78. [Google Scholar]
- Lengen, C. The effects of colours, shapes and boundaries of landscapes on perception, emotion and mentalising processes promoting health and well-being. Health Place 2015, 35, 166–177. [Google Scholar] [CrossRef]
- Aspinall, P.; Mavros, P.; Coyne, R.; Roe, J. The urban brain: Analysing outdoor physical activity with mobile EEG. Br. J. Sports Med. 2015, 49, 272–276. [Google Scholar] [CrossRef] [Green Version]
- Khushaba, R.N.; Greenacre, L.; Kodagoda, S.; Louviere, J.; Burke, S.; Dissanayake, G. Choice modeling and the brain: A study on the Electroencephalogram (EEG) of preferences. Expert Syst. Appl. 2012, 39, 12378–12388. [Google Scholar] [CrossRef]
- Crowley, K.; Sliney, A.; Pitt, I.; Murphy, D. Evaluating a brain-computer interface to categorise human emotional response. In Proceedings of the 10th IEEE International Conference on Advanced Learning Technologies, Sousse, Tunisia, 5–7 July 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 276–278. [Google Scholar]
- Katona, J.; Ujbanyi, T.; Sziladi, G.; Kovari, A. Speed control of Festo Robotino mobile robot using NeuroSky MindWave EEG headset based brain-computer interface. In Proceedings of the 7th IEEE International Conference on Cognitive Infocommunications, Wroclaw, Poland, 16–18 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 000251–000256. [Google Scholar]
- Suprihadi, T.; Karyono, K. DROWTION: Driver drowsiness detection software using MINDWAVE. In Proceedings of the 2014 International Conference on Industrial Automation, Information and Communications Technology, Bali, Indonesia, 28–30 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 141–144. [Google Scholar]
- Zhang, Q.; Wu, J.; Wang, M.; Chen, L. Visitor Survey Report of Zhangjiajie National Forest Park; Central South University of Forestry and Technology: Changsha, China, 2015; in press. [Google Scholar]
- Hull IV, R.B.; Buhyoff, G.J.; Daniel, T.C. Measurement of scenic beauty: The law of comparative judgment and scenic beauty estimation procedures. For. Sci. 1984, 30, 1084–1096. [Google Scholar]
- Holmefur, M.; Aarts, P.; Hoare, B.; Krumlinde-Sundholm, L. Test-retest and alternate forms reliability of the assisting hand assessment. J. Rehabil. Med. 2009, 41, 886–891. [Google Scholar] [CrossRef]
- Saa, J.P.; Doherty, M.; Young, A.; Spiers, M.; Leary, E.; Wolf, T.J. Development and Alternate Form Reliability of the Complex Task Performance Assessment (CTPA) for People With Mild Stroke. Am. J. Occup. Ther. 2017, 71, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Funnell, B.; Bryer, F.; Grimbeek, P.; Davies, M. Demographic profiling for educational researchers: Using SPSS optimal scaling to identify distinct groups of participants. Educ. Wea. Res. Prac. 2004, 2, 94–103. [Google Scholar]
- Yim, O.; Ramdeen, K.T. Hierarchical cluster analysis: Comparison of three linkage measures and application to psychological data. Quant. Method Psychol. 2015, 11, 8–21. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Cheng, Y.; Yuan, Y. Research on the application of virtual reality technology in landscape design teaching. Edu. Sci. 2018, 18, 1400–1410. [Google Scholar]
- Goto, S.; Park, B.-J.; Tsunetsugu, Y.; Herrup, K.; Miyazaki, Y. The effect of garden designs on mood and heart output in older adults residing in an assisted living facility. Health Environ. Res. Design J. 2013, 6, 27–42. [Google Scholar] [CrossRef]
- Lundqvist, D.; Ohman, A. Emotion regulates attention: The relation between facial configurations, facial emotion, and visual attention. Vis. Cogn. 2005, 12, 51–84. [Google Scholar] [CrossRef]
- Bradley, M.M. Natural selective attention: Orienting and emotion. Psychophysiology 2009, 46, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacKay, D.G.; Shafto, M.; Taylor, J.K.; Marian, D.E.; Abrams, L.; Dyer, J.R. Relations between emotion, memory, and attention: Evidence from taboo Stroop, lexical decision, and immediate memory tasks. Mem. Cogn. 2004, 32, 474–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yiend, J. The effects of emotion on attention: A review of attentional processing of emotional information. Cogn. Emot. 2010, 24, 3–47. [Google Scholar] [CrossRef]
- Shoval, N.; Schvimer, Y.; Tamir, M. Real-time measurement of tourists’ objective and subjective emotions in time and space. J. Travel Res. 2018, 57, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Ravaja, N. Contributions of psychophysiology to media research: Review and recommendations. Media Psychol. 2004, 6, 193–235. [Google Scholar] [CrossRef]
Value (Level) | Mental State |
---|---|
1–20 (Strongly lowered) | Distraction, agitation, or abnormality |
20–40 (Reduced) | Low attention |
40–60 (Neutral) | Normal mental focus |
60–80 (Slightly elevated) | Heightened attention |
80–100 (Elevated) | Intense concentration |
Factors | Sub-Factors | Weight |
---|---|---|
Value of resource Attributes (0–85) | Usage value of sightseeing and recreation | 0–30 |
Value of history, culture, science and art | 0–25 | |
Rarity and uniqueness | 0–15 | |
Scale, abundance and probability | 0–10 | |
Integrity | 0–5 | |
Influence of resource (0–15) | Popularity and influence | 0–15 |
Participant Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Pearson correlation ** | 0.802 | 0.644 | 0.757 | 0.626 | 0.687 | 0.635 | 0.631 | 0.676 | 0.662 | 0.656 |
Significance (bilateral) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
N | 502 | 521 | 496 | 511 | 488 | 516 | 507 | 491 | 508 | 497 |
Number of Scenic Spot | Expert Score | Expert Ranking | EEG Value | EEG Ranking | Self-Report Score | Self-Report Ranking |
---|---|---|---|---|---|---|
C9 | 98.2 | 1 | 65.6 | 1 | 92.4 | 1 |
B7 | 93.1 | 2 | 62.3 | 3 | 91.2 | 2 |
A15 | 91.7 | 3 | 62.2 | 4 | 68.2 | 25 |
B18 | 91.4 | 4 | 62.8 | 2 | 66 | 32 |
A8 | 90.0 | 5 | 62.1 | 5 | 87.6 | 3 |
A5 | 89.6 | 6 | 59.9 | 8 | 70 | 18 |
A18 | 89.1 | 7 | 61.9 | 6 | 68.8 | 22 |
A19 | 88.5 | 8 | 61.2 | 7 | 74 | 9 |
B17 | 88.3 | 9 | 59.1 | 10 | 68.6 | 23 |
A17 | 83.8 | 10 | 56.1 | 15 | 68.4 | 24 |
C1 | 82.0 | 11 | 59.7 | 9 | 70.2 | 17 |
C7 | 78.1 | 12 | 58.3 | 11 | 61.8 | 45 |
A14 | 74.7 | 13 | 55.6 | 17 | 65.6 | 33 |
B12 | 74.3 | 14 | 54.8 | 19 | 66 | 31 |
A1 | 73.8 | 15 | 54.9 | 18 | 61 | 47 |
A7 | 73.5 | 16 | 53.1 | 30 | 60.4 | 48 |
B8 | 73.4 | 17 | 54.0 | 23 | 73.4 | 11 |
B9 | 73.4 | 18 | 55.9 | 16 | 69.6 | 19 |
B16 | 73.2 | 19 | 57.5 | 13 | 65.2 | 35 |
C10 | 73.2 | 20 | 56.8 | 14 | 78.6 | 6 |
B5 | 72.0 | 21 | 58.0 | 12 | 65.2 | 34 |
A10 | 67.2 | 22 | 52.8 | 36 | 72.2 | 13 |
B1 | 60.4 | 23 | 54.3 | 20 | 62 | 43 |
A13 | 59.7 | 24 | 54.2 | 22 | 60.2 | 49 |
A20 | 59.5 | 25 | 53.9 | 25 | 62.8 | 41 |
B11 | 59.3 | 26 | 53.0 | 31 | 83.6 | 4 |
B14 | 59.2 | 27 | 54.2 | 21 | 67.6 | 26 |
A3 | 58.6 | 28 | 52.5 | 37 | 73.4 | 10 |
A12 | 58.5 | 29 | 52.5 | 38 | 72.6 | 12 |
C2 | 58.5 | 30 | 53.9 | 24 | 69.2 | 21 |
C8 | 58.3 | 31 | 53.4 | 28 | 72.2 | 14 |
C11 | 58.1 | 32 | 53.6 | 26 | 66.8 | 28 |
C3 | 57.6 | 33 | 52.8 | 35 | 62.5 | 42 |
A4 | 57.2 | 34 | 52.3 | 40 | 71.6 | 16 |
C5 | 56.4 | 35 | 52.8 | 32 | 63.7 | 38 |
B13 | 55.7 | 36 | 52.3 | 41 | 64 | 37 |
C4 | 55.3 | 37 | 53.2 | 29 | 81.4 | 5 |
C6 | 55.2 | 38 | 53.5 | 27 | 74.2 | 8 |
A9 | 54.5 | 39 | 52.4 | 39 | 69.4 | 20 |
C12 | 54.1 | 40 | 52.8 | 34 | 63.7 | 39 |
B4 | 48.2 | 41 | 52.8 | 33 | 66.6 | 29 |
B3 | 46.6 | 42 | 49.6 | 47 | 71.8 | 15 |
A2 | 43.7 | 43 | 48.9 | 48 | 61.6 | 46 |
A6 | 43.3 | 44 | 50.5 | 43 | 76.4 | 7 |
B10 | 43.2 | 45 | 49.8 | 45 | 66.2 | 30 |
A11 | 42.8 | 46 | 50.2 | 44 | 65 | 36 |
A16 | 40.9 | 47 | 48.9 | 49 | 57.8 | 50 |
B2 | 40.3 | 48 | 49.7 | 46 | 61.8 | 44 |
B15 | 39.7 | 49 | 48.6 | 50 | 63.2 | 40 |
B6 | 37.6 | 50 | 50.5 | 42 | 67.2 | 27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Zhong, Y.; Wang, Y.; Gong, C. Investigating the Relation between Visitor Attention and Visual Quality of Forest Landscape: A Mobile EEG Study. Forests 2022, 13, 1668. https://doi.org/10.3390/f13101668
Wu J, Zhong Y, Wang Y, Gong C. Investigating the Relation between Visitor Attention and Visual Quality of Forest Landscape: A Mobile EEG Study. Forests. 2022; 13(10):1668. https://doi.org/10.3390/f13101668
Chicago/Turabian StyleWu, Jiangzhou, Yongde Zhong, Ying Wang, and Chen Gong. 2022. "Investigating the Relation between Visitor Attention and Visual Quality of Forest Landscape: A Mobile EEG Study" Forests 13, no. 10: 1668. https://doi.org/10.3390/f13101668
APA StyleWu, J., Zhong, Y., Wang, Y., & Gong, C. (2022). Investigating the Relation between Visitor Attention and Visual Quality of Forest Landscape: A Mobile EEG Study. Forests, 13(10), 1668. https://doi.org/10.3390/f13101668