Exploring the Spatial Characteristics of Stay Areas in Walking Tours through the Lens of Volunteered GPS Trajectories: A Case Study of the Zhuhai–Macao Metropolitan Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Model
2.3.1. Identify Stay Points
2.3.2. Identify Stay Areas
2.3.3. Identify Characteristics of Stay Areas
2.3.4. Hierarchical Classification
3. Results
3.1. Distribution Characteristics of Trajectories and Photos
3.2. Spatial Distribution of Stay Areas
3.3. Spatial Characteristics of Stay Areas
4. Discussions and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gunn, G.A. Amendment to Leiper: The Framework of Tourism. Ann. Tour. Res. 1980, 7, 253–255. [Google Scholar] [CrossRef]
- Lorimer, H. Walking: New forms and spaces for studies of pedestrianism. In Geographies of Mobilities: Practices, Spaces, Subjects; Routledge: London, UK, 2016; pp. 31–46. [Google Scholar]
- Lei, M.; Li, L. On the Tourist Division of Xi’an. J. Northwest Univ. (Nat. Sci. Ed.) 1997, 6, 533–537. [Google Scholar]
- He, Y. Stimulating the City’s Vitality and Shaping the Charm of the City-An Analysis of the Negative Space Transformation Strategy of Pudong Century Square in Shanghai. Chin. Overseas Archit. 2016, 5, 86–88. [Google Scholar]
- Qiu, T. Research on the Formation and Development If Urban Tourism Service Functional Areas; Nanchang University: Nanchang, China, 2012. [Google Scholar]
- Beeco, J.A.; Huang, W.-J.; Hallo, J.C.; Norman, W.C.; McGehee, N.G.; McGee, J.; Goetcheus, C. GPS tracking of travel routes of wanderers and planners. Tour. Geogr. 2013, 15, 551–573. [Google Scholar] [CrossRef]
- Taczanowska, K.; Garcia-MassÓ, X.; Muhar, A.; Brandenburg, C.; Toca-Herrera, J.-L. Evaluating the structure and use of hiking trails in recreational areas using a mixed GPS tracking and graph theory approach. Appl. Geogr. 2014, 55, 184–192. [Google Scholar] [CrossRef]
- East, D.; Osborne, P.; Kemp, S.; Woodfine, T. Combining GPS & survey data improves understanding of visitor behaviour. Tour. Manag. 2017, 61, 307–320. [Google Scholar]
- Zhang, G.; Zhu, X. Research Progress of Tourism Regionalization in China. Geogr. Geo-Inf. Sci. 2016, 32, 89–94. [Google Scholar]
- Chen, C. Beijing tourism development strategy and zoning research. Tour. Trib. 1987, 1, 8–10. [Google Scholar]
- Liang, J.; Zhao, M.; Shen, P. Clustering of rural hiking tourism communities in the outskirts of the city based on GPS data. Tour. Trib. 2019, 8, 129–140. [Google Scholar]
- O’Connor, A.; Zerger, A.; Itami, B. Geo-temporal tracking and analysis of tourist movement. Math. Comput. Simul. 2014, 69, 135–150. [Google Scholar] [CrossRef]
- Hallo, J.C.; Beeco, J.A.; Goetcheus, C.; McGee, J.; McGehee, N.; Norman, W.C. GPS as a Method for Assessing Spatial and Temporal Use Distributions of Nature-Based Tourists. J. Travel Res. 2012, 51, 591–606. [Google Scholar] [CrossRef]
- Bernadó, O.; Bigorra, A.; Pérez, Y.; Russo, A.P.; Clave, S.A. Analysis of tourist behavior based on tracking data collected by GPS. Energy Convers. Manag. 2012, 50, 618–625. [Google Scholar]
- Orellana, D.; Bregt, A.K.; Ligtenberg, A.; Wachowicz, M. Exploring visitor movement patterns in natural recreational areas. Tour. Manag. 2012, 33, 672–682. [Google Scholar] [CrossRef]
- Korpilo, S.; Virtanen, T.; Lehvavirta, S. Smartphone GPS tracking—Inexpensive and efficient data collection on recreational movement. Landsc. Urban Plan. 2017, 157, 608–617. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Lu, H.; Liang, J.; Chan, C.S. Evaluating green resource branding using user-generated content data: The case study of a greenway in eastern Guangzhou, China. Urban For. Urban Green. 2021, 66, 127395. [Google Scholar] [CrossRef]
- Edwards, D.; Griffin, T. Understanding tourists’ spatial behaviour: GPS tracking as an aid to sustainable destination management. J. Sustain. Tour. 2013, 21, 580–595. [Google Scholar] [CrossRef]
- Thimm, T.; Seepold, R. Past, present and future of tourist tracking. J. Tour. Futures 2016, 2, 43–55. [Google Scholar] [CrossRef]
- Cessford, G.; Muhar, A. Monitoring options for visitor numbers in national parks and natural areas. J. Nat. Conserv. 2004, 11, 240–250. [Google Scholar] [CrossRef]
- Ding, M.; Toshihiro, O.; Takuya, O. Exploring the heterogeneity of Human urban Movement using geo-tagged tweets. Int. J. Geogr. Inf. Sci. 2020, 34, 2475–2496. [Google Scholar] [CrossRef]
- Liu, Y.; Bao, J.; Huang, Y.; Zhang, Z. Study on spatio-temporal behaviors of self-driving tourists based on GPS data: A case study of Tibet. World Reg. Stud. 2019, 28, 149–160. [Google Scholar]
- Chen, S. The spatial clustering on the competitive advantage of regional tourism destinations: A case study of Zhejiang Province. Areal Res. Dev. 2012, 31, 85–88. [Google Scholar]
- Wang, X.; Liu, X.; Li, T. Application of principal component and clustering methods on the planning and arrangement of tour-agriculture. J. Appl. Stat. Manag. 2005, 25, 6–13. [Google Scholar]
- Weidenfeld, A.; Butler, R.W.; Williams, A.M. Clustering and compatibility between tourism attractions. Int. J. Tour. Res. 2010, 12, 1–16. [Google Scholar] [CrossRef]
- Bierlaire, M.; Frejinger, E. Route choice modeling with network-free data. Transp. Res. Part C Emerg. Technol. 2008, 16, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ding, Y.; Wang, D. A New Approach for Designing Tourist Routes by Considering Travel Time Constraints and Spatial Behavior Characteristics of Tourists. Tour. Trib. 2016, 31, 50–60. [Google Scholar]
- Xie, X.; Zhao, J.; Gao, S. A mining algorithm on route network based on GPS data of hiking. J. Transp. Inf. Saf. 2016, 34, 83–89. [Google Scholar]
- Niu, X.; Kang, N. Spatio-temporal Characteristics and Influencing Factors of Tourist Activities in Shanghai Country Parks. Chin. Landsc. Archit. 2021, 37, 39–43. [Google Scholar] [CrossRef]
- Dangermond, J.; Goodchild, M.F. Building geospatial infrastructure. Geo-Spat. Inf. Sci. 2020, 23, 1–9. [Google Scholar] [CrossRef]
- Zheng, Y. Trajectory data mining: An overview. ACM Trans. Intell. Syst. Technol. (TIST) 2015, 6, 1–41. [Google Scholar] [CrossRef]
- Uddin, R.; Mahin, M.T.; Rajan, P.; Ravishankar, C.V.; Tsotras, V.J. Dwell Regions: Generalized Stay Regions For Streaming and Archival Trajectory Data. ACM Trans. Spat. Algorithms Syst. 2022. [Google Scholar] [CrossRef]
- Sander, J.; Ester, M.; Kriegel, H.P.; Xu, X. Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications. Data Min. Knowl. Discov. 1998, 2, 169–194. [Google Scholar] [CrossRef]
- Kurdoglu, B.C.; Karaşah, B.; Yilmaz, H. Evaluation of recreational preferences of urban residents in Artvin (Turkey) in relation to sustainable urban development. Int. J. Sustain. Dev. World Ecol. 2009, 16, 109–116. [Google Scholar] [CrossRef]
- Arnberger, A.; Eder, R. The influence of age on recreational trail preferences of urban green-space visitors: A discrete choice experiment with digitally calibrated images. J. Environ. Plan. Manag. 2011, 54, 891–908. [Google Scholar] [CrossRef]
- Gao, Z.; Zhu, G. Exploring Psychophysiological Restoration and Individual Preference in the Different Environments Based on Virtual Reality. Int. J. Environ. Res. Public Health 2019, 16, 3102. [Google Scholar] [CrossRef] [Green Version]
- Bell, S.; Tyrväinen, L.; Sievänen, T.; Pröbstl, U.; Simpson, M. Outdoor recreation and nature tourism: A European perspective. Living Rev. Landsc. Res. 2007, 1, 1–46. [Google Scholar] [CrossRef] [Green Version]
- Birant, D.; Kut, A. ST-DBSCAN: An algorithm for clustering spatial–temporal data. Data Knowl. Eng. 2007, 60, 208–221. [Google Scholar] [CrossRef]
- Cai, L.; Jiang, F.; Zhou, W.; Li, K. Design and application of an attractiveness index for urban hotspots based on GPS trajectory data. IEEE Access 2018, 6, 55976–55985. [Google Scholar] [CrossRef]
- Liu, Y.; Singleton, A.; Arribas-Bel, D.; Chen, M. Identifying and understanding road-constrained areas of interest (AOIs) through spatiotemporal taxi GPS data: A case study in New York City. Comput. Environ. 2021, 86, 101592. [Google Scholar] [CrossRef]
- Zhou, B.; Zhao, H.; Puig, X.; Fidler, S.; Barriuso, A.; Torralba, A. Scene Parsing through ADE20K Dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 633–641. [Google Scholar]
- Zhang, L.; Pei, T.; Wang, X.; Wu, M.; Song, C.; Guo, S.; Chen, Y. Quantifying the urban visual perception of Chinese tradition-al-style building with street view images. Appl. Sci. 2020, 10, 5963. [Google Scholar] [CrossRef]
- Shalizi, C. Distances between clustering, hierarchical clustering. Data Min. 2009, 9, 36–350. [Google Scholar]
- Taczanowska, K.; Muhar, A.; Brandenburg, C. Potential and limitations of GPS tracking for monitoring spatial and temporal aspects of visitor behaviour in recreational areas. In Proceedings of the Fourth International Conference on Monitoring and Management of Visitor Flows in Recreational and Protected Areas, Wageningen, The Netherlands, 14–19 October 2008; pp. 451–455. [Google Scholar]
- Li, J.; Zhong, Y.; Li, Y.; Wu, H.; Deng, J.; Pierskalla, C.; Zhang, F. Past Experience, Motivation, Attitude, and Satisfaction: A Comparison between Locals and Tourists for Taihu Lake International Cherry Blossom Festival. Forests 2022, 13, 1608. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, C.; Hao, Y. Effect of The Development Level of Facilities for Forest Tourism on Tourists’ Willingness to Visit Urban Forest Parks. Forests 2022, 13, 1005. [Google Scholar] [CrossRef]
- Xiao, G. A Research on Tourism Economy’s Space Difference and Moderate Development Strategy in the Pearl River Delta Cities. Geogr. Geo-Inf. Sci. 2009, 25, 72–77. [Google Scholar]
- Law, C.M. Urban Tourism: The Visitor Economy and the Growth of Large Cities, 2nd ed.; Continuum: New York, NY, USA, 2002; p. 4. [Google Scholar]
- Li, Z.; Liu, Y. The Significance and Strategies for Improving the Diversity of Macao’s Economy. Rev. Econ. Res. 2012, 5, 59–65. [Google Scholar]
- Li, C.; Wen, Q. (The Head of Macao Tourism Administration): Strive to Diversify Tourism Products and Keep Attracting Tourists’ Attention. Natl. Humanit. Hist. 2019, 20, 54–57. [Google Scholar]
Mean | Std | Max | Min | |
---|---|---|---|---|
Density of photos (piece/m2) | 3.325 | 7.071 | 4.768 | 0.210 |
Density of trajectories (piece/m2) | 1.840 | 3.499 | 25.778 | 0.132 |
Area of clusters (m2) | 1,693,978 | 2,910,128 | 16,623,966 | 22,499 |
Proportion of trajectories within one cluster | 14.4% | 15.0% | 53.8% | 0% |
Proportion of trajectories crossing over multiple stay areas | 46.7% | 30.5% | 100.0% | 0% |
Proportion of trajectories crossing over one stay area | 39.0% | 26.7% | 97.4% | 0% |
Altitude changes within trajectories (m) | 23.272 | 26.092 | 123.898 | 2.139 |
Average speed of trajectories (m/s) | 52.303 | 23.119 | 123.834 | 10.306 |
Photos: Proportion of waters | 2.4% | 2.3% | 10.4% | 0.02% |
Photos: Proportion of land/earth | 12.4% | 9.1% | 40.0% | 0.3% |
Photos: Proportion of plants | 30.2% | 15.3% | 57.4% | 3.2% |
Photos: Proportion of mountains | 3.3% | 3.7% | 11.5% | 0.003% |
Photos: Proportion of sea | 1.6% | 2.5% | 9.7% | 0% |
Photos: Proportion of urban structures | 2.5% | 1.7% | 7.2% | 0.2% |
Photos: Proportion of sky | 20.4% | 8.3% | 44.5% | 3.2% |
Photos: Proportion of roads/sidewalks | 7.2% | 6.3% | 33.3% | 0.04% |
Photos: Proportion of buildings | 15.3% | 15.2% | 52.9% | 0.11% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; Zhang, Q.; Shi, H.; Liu, M.; Liang, J. Exploring the Spatial Characteristics of Stay Areas in Walking Tours through the Lens of Volunteered GPS Trajectories: A Case Study of the Zhuhai–Macao Metropolitan Area. Forests 2022, 13, 1800. https://doi.org/10.3390/f13111800
Zhao M, Zhang Q, Shi H, Liu M, Liang J. Exploring the Spatial Characteristics of Stay Areas in Walking Tours through the Lens of Volunteered GPS Trajectories: A Case Study of the Zhuhai–Macao Metropolitan Area. Forests. 2022; 13(11):1800. https://doi.org/10.3390/f13111800
Chicago/Turabian StyleZhao, Miaoxi, Qiaojia Zhang, Haochen Shi, Mingxin Liu, and Jingyu Liang. 2022. "Exploring the Spatial Characteristics of Stay Areas in Walking Tours through the Lens of Volunteered GPS Trajectories: A Case Study of the Zhuhai–Macao Metropolitan Area" Forests 13, no. 11: 1800. https://doi.org/10.3390/f13111800
APA StyleZhao, M., Zhang, Q., Shi, H., Liu, M., & Liang, J. (2022). Exploring the Spatial Characteristics of Stay Areas in Walking Tours through the Lens of Volunteered GPS Trajectories: A Case Study of the Zhuhai–Macao Metropolitan Area. Forests, 13(11), 1800. https://doi.org/10.3390/f13111800