Study on the Moisture Content Diagnosis Method of Living Trees Based on WASN and CTWGAN-GP-L
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Architecture Framework
2.2. Wireless Acoustic Emission Sensing Node Design
2.3. AE Data Acquisition
2.4. Framework of WASN Moisture Content Diagnosis Method
2.5. Generative Adversarial Networks
Algorithm 1: Proposed CTWGAN-GP-L |
Input: Table training dataset Ttrain, the parameter penalty coefficient λ = 10, the number of discriminator iterations per generator iteration ndiscriminator = 4, the batch size m = 8, the number of training iterations epoch = 50000. Adam hyperparameters α = 0.0001, β1 = 0, β2 = 0.9. The initial discriminator parameter is w0, and the initial generator parameter is θ0. Output: Generate false AE feature data. 1:While θ has not yet converged do 2: for t = 0, …, ndiscriminator do; 3: for i = 1, …, m do; 4: Sample the real data x ~ Pr,y conditions, the implicit variable z ~ p(z), and a random number t ~ U [0, 1]. 5:; 6: Calculate the linear interpolation by Equation(5); 7: Calculate L by Equation(6); 8: ; 9: end for 10:; 11: end for 12: sample a batch of latent variables . 13: ; 14: ; 15: end while |
2.5.1. GAN Model Generates Data Quality Assessment Metrics
2.5.2. CTWGAN-GP-L Algorithm Construction
2.5.3. Synthetic Minority Oversampling Technique (SMOTE) Algorithm
2.5.4. Datasets
2.5.5. Model Training
2.5.6. Generating Data Quality Assessment
2.6. Diagnostic Accuracy Assessment of Living Tree Moisture Content
2.7. Random Forest (RF) Algorithm
2.8. Light Gradient Boosting Machine (LightGBM) Algorithm
2.9. Design of WASN Moisture Content Diagnosis Method
2.9.1. Acquisition Data and Feature Selection
2.9.2. GSCV-LGB Diagnostic Algorithm
3. Results
3.1. Experiment and Analysis of Standing Wood Moisture Content Measurement System
3.2. Algorithm Validation
3.3. Feature Selection Performance Analysis
3.4. Comparison of the Effects of Different Intelligent Diagnostic Methods
4. Discussion
4.1. Analysis of Live Trees
4.2. System Energy Consumption Exploration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Y.; Anderson, M.C.; Gao, F.; Wood, J.D.; Gu, L.; Hain, C. Studying drought-induced forest mortality using high spatiotemporal resolution evapotranspiration data from thermal satellite imaging. Remote Sens. Environ. 2021, 265, 112640. [Google Scholar] [CrossRef]
- O’Kelly, B.C. Accurate Determination of Moisture Content of Organic Soils Using the Oven Drying Method. Dry. Technol. 2004, 22, 1767–1776. [Google Scholar] [CrossRef]
- Fredriksson, M.; Wadsö, L.; Johansson, P. Small resistive wood moisture sensors: A method for moisture content determination in wood structures. Eur. J. Wood Wood Prod. 2013, 71, 515–524. [Google Scholar] [CrossRef]
- Xu, K.; Lu, J.; Gao, Y.; Wu, Y.; Li, X. Determination of moisture content and moisture content profiles in wood during drying by low-field nuclear magnetic resonance. Dry. Technol. 2017, 35, 1909–1918. [Google Scholar] [CrossRef]
- Dahlen, J.; Schimleck, L.; Schilling, E. Modeling and Monitoring of Wood Moisture Content Using Time-Domain Reflectometry. Forests 2020, 11, 479. [Google Scholar] [CrossRef]
- Tham, V.T.H.; Inagaki, T.; Tsuchikawa, S. A new approach based on a combination of capacitance and near-infrared spectroscopy for estimating the moisture content of timber. Wood Sci. Technol. 2019, 53, 579–599. [Google Scholar] [CrossRef]
- Dos Santos, L.M.; Amaral, E.A.; Nieri, E.M.; Costa, E.V.S.; Trugilho, P.F.; Calegário, N.; Hein, P.R.G. Estimating wood moisture by near infrared spectroscopy: Testing acquisition methods and wood surfaces qualities. Wood Mater. Sci. Eng. 2020, 16, 336–343. [Google Scholar] [CrossRef]
- Li, X.; Ju, S.; Luo, T.; Li, M. Effect of moisture content on propagation characteristics of acoustic emission signal of Pinus massoniana Lamb. Eur. J. Wood Wood Prod. 2019, 78, 185–191. [Google Scholar] [CrossRef]
- Nasir, V.; Nourian, S.; Avramidis, S.; Cool, J. Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling. Holzforschung 2019, 73, 827–838. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Gao, R.; Jin, Z.; Wang, X. Recent advances in the application of deep learning methods to forestry. Wood Sci. Technol. 2021, 55, 1171–1202. [Google Scholar] [CrossRef]
- Hazra, D.; Byun, Y.C.; Kim, W.J.; Kang, C.U. Synthesis of Microscopic Cell Images Obtained from Bone Marrow Aspirate Smears through Generative Adversarial Networks. Biology 2022, 11, 276. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Ma, J.; Zhang, X.; Xue, C.; Yan, Y.; Ma, N. Intelligent data expansion approach of vibration gray texture images of rolling bearing based on improved WGAN-GP. Adv. Mech. Eng. 2022, 14, 16878132221086132. [Google Scholar] [CrossRef]
- Liang, Y.; Huan, J.J.; Li, J.D.; Jiang, C.H.; Fang, C.Y.; Liu, Y.G. Use of artificial intelligence to recover mandibular morphology after disease. Sci. Rep. 2020, 10, 16431. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wu, Y.; Jia, C.; Zheng, H.; Huang, G. Customizable text generation via conditional text generative adversarial network. Neurocomputing 2020, 416, 125–135. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems 27, Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680. [Google Scholar]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein Generative Adversarial Networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney, NSW, Australia, 6–11 August 2017; pp. 214–223. [Google Scholar]
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved training of Wasserstein GANs. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Xu, L.; Skoularidou, M.; Cuesta-Infante, A.; Veeramachaneni, K. Modeling Tabular data using Conditional GAN. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Xu, L.; Veeramachaneni, K. Synthesizing Tabular Data using Generative Adversarial Networks. In Proceedings of the 44th International Conference on Very Large Databases, Rio de Janeiro, Brazil, 27–31 August 2018. [Google Scholar]
- Luo, J.; Huang, J.; Ma, J.; Li, H. An evaluation method of conditional deep convolutional generative adversarial networks for mechanical fault diagnosis. J. Vib. Control 2021, 28, 1379–1389. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Engelmann, J.; Lessmann, S. Conditional Wasserstein GAN-based oversampling of tabular data for imbalanced learning. Expert Syst. Appl. 2021, 174, 114582. [Google Scholar] [CrossRef]
- Bourou, S.; El Saer, A.; Velivassaki, T.-H.; Voulkidis, A.; Zahariadis, T. A Review of Tabular Data Synthesis Using GANs on an IDS Dataset. Information 2021, 12, 375. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Ke, G.; Meng, Q.; Finely, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the 31st Annual Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st Annual Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
Network Layer | Output Shape | Parameter Value |
---|---|---|
Fully connected layer | (None, 32) | 512 |
LeakyReLU | (None, 32) | 0 |
BN layer | (None, 32) | 128 |
Fully connected layer | (None, 64) | 2112 |
LeakyReLU | (None, 64) | 0 |
BN layer | (None, 64) | 256 |
Fully connected layer | (None, 128) | 8320 |
LeakyReLU | (None, 128) | 0 |
BN layer | (None, 128) | 512 |
Fully connected layer | (None, 15) | 1935 |
Network Layer | Output shape | Parameter Value |
---|---|---|
Fully connected layer | (None, 32) | 512 |
LeakyReLU | (None, 32) | 0 |
Dropout | (None, 32) | 0 |
Fully connected layer | (None, 64) | 2112 |
LeakyReLU | (None, 64) | 0 |
Dropout | (None, 64) | 0 |
Fully connected layer | (None, 128) | 16,512 |
LeakyReLU | (None, 128) | 0 |
Dropout | (None, 128) | 0 |
Fully connected layer | (None, 1) | 129 |
Category | Number of Each Category | Category Description |
---|---|---|
0 | 1528 | Males |
1 | 1307 | Female |
2 | 1342 | Juvenile |
Category | Number of Each Category | Category Description |
---|---|---|
1 | 330 | Face tiles |
2 | 330 | Sky |
3 | 330 | Leaves |
4 | 330 | Cement |
5 | 330 | Window |
6 | 330 | Road |
7 | 330 | Grass |
Experimental Tools | Version Number |
---|---|
Computer system | Windows 10 X64 |
GPU | NVIDIA GeForce RTX 3090 |
Python (DE, USA) | 3.8.3 |
TensorFlow (San Francisco, CA, USA) | 2.8.0 |
numpy (DE, USA) | 1.18.5 |
pandas (DE, USA) | 1.2.4 |
matplotlib (DE, USA) | 3.4.3 |
Dataset | Algorithm Model | MMD | 1-NN |
---|---|---|---|
Generate 1× Data | Generate 1× Data | ||
Abalone | SMOTE | 0.0009 | 0.7269 |
TGAN | 0.0014 | 0.6613 | |
CTGAN | 0.0012 | 0.6219 | |
CTWGAN-GP-L | 0.0007 | 0.5234 | |
Image Segmentation | SMOTE | 0.0121 | 0.9394 |
TGAN | 0.0132 | 0.6989 | |
CTGAN | 0.0130 | 0.6382 | |
CTWGAN-GP-L | 0.0119 | 0.5465 | |
AE characteristic parameters | SMOTE | 0.0393 | 0.8000 |
TGAN | 0.0416 | 0.7382 | |
CTGAN | 0.0413 | 0.6954 | |
CTWGAN-GP-L | 0.0171 | 0.5108 |
Filtering Algorithm | AE Feature Quantity Merit Ranking |
---|---|
Random Forests (RF) | ①proximal/distal energy difference; ②proximal/distal amplitude difference; ③proximal amplitude; ④proximal energy; ⑤proximal/distal duration difference; ⑥proximal rise time; ⑦distal amplitude; ⑧distal rise time; ⑨distal ringing count; ⑩distal energy; ⑪proximal duration; ⑫ proximal ringing count; ⑬distal duration; ⑭proximal/distal rise time difference; ⑮proximal/distal ringing count difference. |
Feature Selection Method | Test Results |
---|---|
Accuracy Rate (%) | |
XGBoost | 85.5 |
RF | 96.2 |
Algorithm Model | Test Results | |
---|---|---|
Accuracy Rate (%) | Weighted Average | |
DT | 92.8 | 0.93 |
GSCV-DT | 93.9 | 0.94 |
RF | 93.5 | 0.94 |
GSCV-RF | 94.4 | 0.94 |
LightGBM | 96.2 | 0.96 |
GSCV-LGB | 97.9 | 0.98 |
Name | Initial Value | Tuning Value |
---|---|---|
max_depth | 0 | 8 |
min_impurity_decrease | 0 | 0 |
min_samples_leaf | 1 | 1 |
Name | Initial Value | Tuning Value |
---|---|---|
n_estimators | 5 | 11 |
max_features | 2 | 8 |
Name | Initial Value | Tuning Value |
---|---|---|
max_depth | 3 | 5 |
num_leaves | 8 | 6 |
subsample | 1 | 0.75 |
cosample_bytree | 0.8 | 0.65 |
reg_alpha | 5 | 1 |
reg_lambda | 10 | 1 |
Diagnosis Accuracy | Magnolia | Zelkova | Triangle Maple | Zhejiang Nan | Ginkgo | Yunnan Pine |
---|---|---|---|---|---|---|
Magnolia | 98.8% | |||||
Zelkova | 98.7% | |||||
Triangle Maple | 99.1% | |||||
Zhejiang Nan | 97.5% | |||||
Ginkgo | 98.2% | |||||
Yunnan Pine | 97.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Yang, N.; Liu, Y. Study on the Moisture Content Diagnosis Method of Living Trees Based on WASN and CTWGAN-GP-L. Forests 2022, 13, 1879. https://doi.org/10.3390/f13111879
Wu Y, Yang N, Liu Y. Study on the Moisture Content Diagnosis Method of Living Trees Based on WASN and CTWGAN-GP-L. Forests. 2022; 13(11):1879. https://doi.org/10.3390/f13111879
Chicago/Turabian StyleWu, Yin, Nengfei Yang, and Yanyi Liu. 2022. "Study on the Moisture Content Diagnosis Method of Living Trees Based on WASN and CTWGAN-GP-L" Forests 13, no. 11: 1879. https://doi.org/10.3390/f13111879
APA StyleWu, Y., Yang, N., & Liu, Y. (2022). Study on the Moisture Content Diagnosis Method of Living Trees Based on WASN and CTWGAN-GP-L. Forests, 13(11), 1879. https://doi.org/10.3390/f13111879