X-ray Computed Tomography (CT) Scanning Is a Non-Destructive and Modern Technique to Identify and Assess the Characteristics of Armillaria solidipes Pathogen Infections in Poplar Roots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Design of Experimental Samples
2.3. Determination of the Growth Index of Poplar
2.4. Poplar Root Infection by A. solidipes
2.5. X-ray CT Analysis of Poplar Root
2.6. 3D Reconstruction of the Root System Architecture of the Poplar
2.7. Statistical Methods and Analysis
3. Results
3.1. Effects of Different Combinations of Soil Matrices on the Growth of Poplar
3.2. Effects of Different Combinations of Soil Matrix on the Imaging Quality of X-ray CT
3.3. Internal Decay of Poplar Roots after A. solidipes Infections
3.4. Effects of A. solidipes Infection on Root Architecture of Poplar
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rizzo, D.M.; Blanchette, R.A.; Palmer, M.A. Biosorption of metal-ions by Armillaria-rhizomorphs. Can. J. Bot. 1992, 70, 1515–1520. [Google Scholar] [CrossRef]
- Cromey, M.G.; Drakulic, J.; Beal, E.J.; Waghorn, I.; Perry, J.N.; Clover, G. Susceptibility of garden trees and shrubs to Armillaria root rot. Plant. Dis. 2020, 104, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Klopfenstein, N.B.; Stewart, J.E.; Ota, Y.; Hanna, J.W.; Richardson, B.A.; Ross-Davis, A.L.; Elias-Roman, R.D.; Korhonen, K.; Keca, N.; Iturritxa, E.; et al. Insights into the phylogeny of Northern Hemisphere Armillaria: Neighbor-net and Bayesian analyses of translation elongation factor 1-alpha gene sequences. Mycologia 2017, 109, 75–91. [Google Scholar] [CrossRef] [PubMed]
- Labbe, F.; Marcais, B.; Dupouey, J.L.; Belouard, T.; Capdevielle, X.; Piou, D.; Robin, C.; Dutech, C. Pre-existing forests as sources of pathogens? The emergence of Armillaria ostoyae in a recently planted pine forest. For. Ecol. Manag. 2015, 357, 248–258. [Google Scholar] [CrossRef]
- Cleary, M.R.; van der Kamp, B.J.; Morrison, D.J. Effects of wounding and fungal infection with Armillaria ostoyae in three conifer species. II. Host response to the pathogen. Forest. Pathol. 2012, 42, 109–123. [Google Scholar] [CrossRef]
- Coetzee, M.; Bloomer, P.; Wingfield, M.J.; Wingfield, B.D. Paleogene radiation of a plant pathogenic mushroom. PLoS ONE 2011, 6, e28545. [Google Scholar] [CrossRef]
- Warwell, M.V.; McDonald, G.I.; Hanna, J.W.; Kim, M.S.; Lalande, B.M.; Stewart, J.E.; Hudak, A.T.; Klopfenstein, N.B. Armillaria altimontana is associated with healthy western white pine (Pinus monticola): Potential in situ biological control of the Armillaria root disease pathogen, A. solidipes. Forests 2019, 10, 294. [Google Scholar] [CrossRef] [Green Version]
- Kranz, J.; Rotem, J. Experimental Techniques in Plant Disease Epidemiology; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar] [CrossRef]
- Topp, C.N.; Bray, A.L.; Ellis, N.A.; Liu, Z.B. How can we harness quantitative genetic variation in crop root systems for agricultural improvement? J. Integr. Plant. Biol. 2016, 58, 213–225. [Google Scholar] [CrossRef]
- Han, L.; Dutilleul, P.; Prasher, S.O.; Beaulieu, C.; Smith, D.L. Assessment of common scab-inducing pathogen effects on potato underground organs via computed tomography scanning. Phytopathology 2008, 98, 1118–1125. [Google Scholar] [CrossRef]
- Han, L.; Dutilleul, P.; Prasher, S.O.; Beaulieu, C.; Smith, D.L. Assessment of density effects of the common scab-inducing pathogen on the seed and peripheral organs of potato during growth using computed tomography scanning data. Trans. ASABE 2009, 52, 305–311. [Google Scholar] [CrossRef]
- Peters, J.; Gauthey, A.; Lopez, R.; Carins-Murphy, M.R.; Brodribb, T.J.; Choat, B. Non-invasive imaging reveals convergence in root and stem vulnerability to cavitation across five tree species. J. Exp. Bot. 2020, 71, 6623–6637. [Google Scholar] [CrossRef] [PubMed]
- Chigwaya, K.; du Plessis, A.; Viljoen, D.W.; Crouch, I.J.; Crouch, E.M. Use of X-ray computed tomography and 3D image analysis to characterize internal browning in ‘Fuji’ apples after exposure to CO2 stress. Sci. Hortic. 2021, 277, 109840. [Google Scholar] [CrossRef]
- Ma, T.M.; Gafita, A.; Shabsovich, D.; Juarez, J.; Grogan, T.R.; Thin, P.; Armstrong, W.; Sonni, I.; Nguyen, K.; Lok, V.; et al. Identifying the best candidates for prostate-specific membrane antigen positron emission tomography/computed tomography as the primary staging approach among men with high-risk prostate cancer and negative conventional imaging. Eur. Urol. Oncol. 2022, 5, 100–103. [Google Scholar] [CrossRef]
- Fedewa, S.A.; Kazerooni, E.A.; Studts, J.L.; Smith, R.A.; Bandi, P.; Sauer, A.G.; Cotter, M.; Sineshaw, H.M.; Jemal, A.; Silvestri, G.A. State variation in low-dose computed tomography scanning for lung cancer screening in the United States. JNCI J. Natl. Cancer Inst. 2021, 113, 1044–1052. [Google Scholar] [CrossRef]
- Atkinson, J.A.; Pound, M.P.; Bennett, M.J.; Wells, D.M. Uncovering the hidden half of plants using new advances in root phenotyping. Curr. Opin. Biotech. 2019, 55, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cochard, H.; Herbette, S.; Barigah, T.; Badel, E.; Ennajeh, M.; Vilagrosa, A. Does sample length influence the shape of xylem embolism vulnerability curves? A test with the cavitron spinning technique. Plant Cell Environ. 2010, 33, 1543–1552. [Google Scholar] [CrossRef] [PubMed]
- Moradi, A.B.; Conesa, H.M.; Robinson, B.; Lehmann, E.; Kuehne, G.; Kaestner, A.; Oswald, S.; Schulin, R. Neutron radiography as a tool for revealing root development in soil: Capabilities and limitations. Plant Soil 2009, 318, 243–255. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Valdes, C.; Clarke, J. Existing and potential statistical and computational approaches for the analysis of 3D CT images of plant roots. Agronomy 2018, 8, 71. [Google Scholar] [CrossRef] [Green Version]
- Wolfgang, B. Methods of Studying Root Systems; Springer: Berlin/Heidelberg, Germany, 1979. [Google Scholar] [CrossRef]
- van der Weele, C.M.; Jiang, H.S.; Palaniappan, K.K.; Ivanov, V.B.; Palaniappan, K.; Baskin, T.I. A new algorithm for computational image analysis of deformable motion at high spatial and temporal resolution applied to root growth. Roughly uniform elongation in the meristem and also, after an abrupt acceleration, in the elongation zone. Plant Physiol. 2003, 132, 1138–1148. [Google Scholar] [CrossRef] [Green Version]
- van Veelen, A.; Tourell, M.C.; Koebernick, N.; Pileio, G.; Roose, T. Correlative visualization of root mucilage degradation using X-ray CT and MRI. Front. Environ. Sci. 2018, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Indore, N.S.; Karunakaran, C.; Jayas, D.S. Synchrotron tomography applications in agriculture and food sciences research: A review. Plant Methods 2022, 18, 1–26. [Google Scholar] [CrossRef]
- Dhaliwal, J.K.; Kumar, S. 3D-visualization and quantification of soil porous structure using X-ray micro-tomography scanning under native pasture and crop-livestock systems. Soil Tillage Res. 2022, 218, 105305. [Google Scholar] [CrossRef]
- Cardoso, D.; Martinez, H.; Pereira, A.M.; Kasuya, M.; Cecon, P.R. Potassium and growth-promoting fungi improve the postharvest quality of grape tomato. Semin. Ciências Agrárias 2022, 43, 675–692. [Google Scholar] [CrossRef]
- Donnelly, D.; Sanada, S.; Oreilly, J.; Polonsky, J.; Prange, T.; Pascard, C. Isolation and structure (X-ray-analysis) of the Orsellinate of Armillol, a new antibacterial metabolite from Armillaria-mellea. J. Chem. Soc. Chem. Commun. 1982, 2, 135–137. [Google Scholar] [CrossRef]
- Birnbacher, L.; Braig, E.M.; Pfeiffer, D.; Pfeiffer, F.; Herzen, J. Quantitative X-ray phase contrast computed tomography with grating interferometry biomedical applications of quantitative X-ray grating-based phase contrast computed tomography. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 4171–4188. [Google Scholar] [CrossRef]
- Schmidt, B.; Flohr, T. Principles and applications of dual source CT. Phys. Med. 2020, 79, 36–46. [Google Scholar] [CrossRef]
- Gong, H.; Ren, L.Q.; Hsieh, S.S.; McCollough, C.H.; Yu, L.F. Deep learning enabled ultra-fast-pitch acquisition in clinical X-ray computed tomography. Med. Phys. 2021, 48, 5712–5726. [Google Scholar] [CrossRef]
- Verma, P.R. Biology and control of Rhizoctonia solani on rapeseed: A review. Phytoprotection 1996, 77, 99–111. [Google Scholar] [CrossRef]
- Devkota, P.; Hammerschmidt, R. The infection process of Armillaria mellea and Armillaria solidipes. Physiol. Mol. Plant Pathol. 2020, 112, 101543. [Google Scholar] [CrossRef]
- Baumgartner, K.; Coetzee, M.; Hoffmeister, D. Secrets of the subterranean pathosystem of Armillaria. Mol. Plant Pathol. 2011, 12, 515–534. [Google Scholar] [CrossRef]
Root Architecture Index | Manual | Soft | ||
---|---|---|---|---|
Control | Treatment | Control | Treatment | |
Total root length (cm) Total root volume (cm3) Root forks Number of root tip Root average diameter (mm) Root surface area (cm2) | 273 ± 1.23 a 0.83 ± 0.04 a 8.86 ± 0.12 a 85.56 ± 1.03 a 6.01 ± 0.87 a 14.47 ± 0.67 a | 135 ± 1.34 b 0.52 ± 0.04 b 5.45 ± 0.59 b 51.79 ± 1.43 b 5.31 ± 0.45 a 7.34 ± 1.01 b | 260 ± 6.52 a 0.87 ± 0.16 a 8.31 ± 1.45 a 84.00 ± 2.59 a 5.59 ± 1.59 a 15.47 ± 1.59 a | 132 ± 9.23 b 0.51 ± 0.18 b 5.50 ± 1.97 b 51.00 ± 4.11 b 5.38 ± 1.12 a 7.10 ± 2.59 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Kong, M.; Xie, G.; van der Lee, T.; Wang, L.; Xing, Y. X-ray Computed Tomography (CT) Scanning Is a Non-Destructive and Modern Technique to Identify and Assess the Characteristics of Armillaria solidipes Pathogen Infections in Poplar Roots. Forests 2022, 13, 1963. https://doi.org/10.3390/f13111963
Zhang P, Kong M, Xie G, van der Lee T, Wang L, Xing Y. X-ray Computed Tomography (CT) Scanning Is a Non-Destructive and Modern Technique to Identify and Assess the Characteristics of Armillaria solidipes Pathogen Infections in Poplar Roots. Forests. 2022; 13(11):1963. https://doi.org/10.3390/f13111963
Chicago/Turabian StyleZhang, Ping, Mingru Kong, Guangqiang Xie, Theo van der Lee, Lihai Wang, and Yanqiu Xing. 2022. "X-ray Computed Tomography (CT) Scanning Is a Non-Destructive and Modern Technique to Identify and Assess the Characteristics of Armillaria solidipes Pathogen Infections in Poplar Roots" Forests 13, no. 11: 1963. https://doi.org/10.3390/f13111963
APA StyleZhang, P., Kong, M., Xie, G., van der Lee, T., Wang, L., & Xing, Y. (2022). X-ray Computed Tomography (CT) Scanning Is a Non-Destructive and Modern Technique to Identify and Assess the Characteristics of Armillaria solidipes Pathogen Infections in Poplar Roots. Forests, 13(11), 1963. https://doi.org/10.3390/f13111963