The Adaptive Capacity of Alien and Rare Species in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Characteristics of Alien and Rare Plants
2.2. Habitat Characteristics of Alien and Rare Plants
2.3. Assessment of the Adaptive Capacities of Alien and Rare Plants in Disturbed and Stressful Environments
2.4. Data Analysis
3. Results
3.1. Biological Characteristics of Alien and Rare Plants
3.2. Habitat Characteristics of Alien and Rare Plants
3.3. Assessment of Adaptive Capacity of Alien and Rare Plants to Low and Highly Disturbed Environments
4. Discussion
4.1. Effect of Biological Characteristics on Adaptive Capacity of Alien and Rare Plants
4.2. Effect of Habitat Characteristics on Adaptive Capacity of Alien and Rare Plants
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bartz, R.; Kowarik, I. Assessing the environmental impacts of invasive alien plants: A review of assessment approaches. Neobiota 2019, 43, 69–99. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Wang, Q.H.; Wu, J.Y.; Huang, D.; Zhang, W.H.; Zhao, N.; Li, X.F.; Wang, L.X. Historical introduction, geographical distribution, and biological characteristics of alien plants in China. Biodivers. Conserv. 2017, 26, 353–381. [Google Scholar] [CrossRef]
- Feng, J.; Zhu, Y. Alien invasive plants in China: Risk assessment and spatial patterns. Biodivers. Conserv. 2010, 19, 3489–3497. [Google Scholar] [CrossRef]
- Garcia-Serrana, H.; Sans, F.X.; Escarre, J. Interspecific competition between alien and native congeneric species. Acta Oecol.-Int. J. Ecol. 2007, 31, 69–78. [Google Scholar] [CrossRef]
- Daco, L.; Maurice, T.; Muller, S.; Rossa, J.; Colling, G. Genetic status of the endangered plant species Gladiolus palustris in the western part of its distribution area. Conserv. Genet. 2019, 20, 1339–1354. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.J.; Zhou, Y.; Cai, Y.P.; Yang, W.; Li, Z.W.; Zhao, X. The influence of climate change on an endangered riparian plant species: The root of riparian Homonoia. Ecol. Indic. 2018, 92, 40–50. [Google Scholar] [CrossRef]
- Aronne, G. Identification of bottlenecks in the plant life cycle for sustainable conservation of rare and endangered species. Front. Ecol. Evol. 2017, 5, 76. [Google Scholar] [CrossRef] [Green Version]
- Garza, G.; Rivera, A.; Barrera, C.S.V.; Martinez-Avalos, J.G.; Dale, J.; Arroyo, T.P.F. Potential effects of climate change on the geographic distribution of the endangered plant species Manihot walkerae. Forests 2020, 11, 689. [Google Scholar] [CrossRef]
- Bradshaw, C.J.A.; Giam, X.L.; Tan, H.T.W.; Brook, B.W.; Sodhi, N.S. Threat or invasive status in legumes is related to opposite extremes of the same ecological and life-history attributes. J. Ecol. 2008, 96, 869–883. [Google Scholar] [CrossRef]
- Lannes, L.S.; Bustamante, M.M.C.; Edwards, P.J.; Venterink, H.O. Alien and endangered plants in the Brazilian Cerrado exhibit contrasting relationships with vegetation biomass and N:P stoichiometry. New Phytol. 2012, 196, 816–823. [Google Scholar] [CrossRef]
- Gallagher, R.V.; Allen, S.; Wright, I.J. Safety margins and adaptive capacity of vegetation to climate change. Sci. Rep. 2019, 9, 8241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bussotti, F.; Pollastrini, M.; Holland, V.; Brueggemann, W. Functional traits and adaptive capacity of European forests to climate change. Environ. Exp. Bot. 2015, 111, 91–113. [Google Scholar] [CrossRef]
- Li, Y.; Huang, H.; Ju, H.; Lin, E.; Xiong, W.; Han, X.; Wang, H.; Peng, Z.; Wang, Y.; Xu, J.; et al. Assessing vulnerability and adaptive capacity to potential drought for winter-wheat under the RCP 8.5 scenario in the Huang-Huai-Hai Plain. Agric. Ecosyst. Environ. 2015, 209, 125–131. [Google Scholar] [CrossRef]
- Yohannes, Z.; Teshome, M.; Belay, M. Adaptive capacity of mountain community to climate change: Case study in the Semien Mountains of Ethiopia. Environ. Dev. Sustain. 2020, 22, 3051–3077. [Google Scholar] [CrossRef]
- Jara-Guerrero, A.; De la Cruz, M.; Mendez, M. Seed dispersal spectrum of woody species in South Ecuadorian dry forests: Environmental correlates and the effect of considering species abundance. Biotropica 2011, 43, 722–730. [Google Scholar] [CrossRef] [Green Version]
- van Oudtshoorn, K.R.; Rooyen, M.W. Dispersal Biology of Desert Plants; Adaptations of Desert Organisms; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Liu, J.; Liang, S.C.; Liu, F.H.; Wang, R.Q.; Dong, M. Invasive alien plant species in China: Regional distribution patterns. Divers. Distrib. 2005, 11, 341–347. [Google Scholar] [CrossRef]
- Caughlin, T.T.; Ferguson, J.M.; Lichstein, J.W.; Bunyavejchewin, S.; Levey, D.J. The importance of long-distance seed dispersal for the demography and distribution of a canopy tree species. Ecology 2014, 95, 952–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nathan, R.; Schurr, F.M.; Spiegel, O.; Steinitz, O.; Trakhtenbrot, A.; Tsoar, A. Mechanisms of long-distance seed dispersal. Trends Ecol. Evol. 2008, 23, 638–647. [Google Scholar] [CrossRef]
- Wang, R.; Wang, J.F.; Qiu, Z.J.; Meng, B.; Wan, F.H.; Wang, Y.Z. Multiple mechanisms underlie rapid expansion of an invasive alien plant. New Phytol. 2011, 191, 828–839. [Google Scholar] [CrossRef]
- Zhou, Q.; Wu, J.; Cui, X.; Li, X.; Liu, Z.; Musa, A.; Ma, Q.; Yu, H.; Liang, W.; Jiang, S.; et al. Geographical distribution of the dispersal ability of alien plant species in China and its socio-climatic control factors. Sci. Rep. 2021, 11, 7187. [Google Scholar] [CrossRef]
- Wilk, J.A.; Kramer, A.T.; Ashley, M.V. High variation in clonal vs. sexual reproduction in populations of the wild strawberry, Fragaria virginiana (Rosaceae). Ann. Bot. 2009, 104, 1413–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bills, J.W.; Roalson, E.H.; Busch, J.W.; Eidesen, P.B. Environmental and genetic correlates of allocation to sexual reproduction in the circumpolar plant Bistorta vivipara. Am. J. Bot. 2015, 102, 1174–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Xie, L.; Prather, C.M.; Guo, H.; Han, G.; Ma, C. What drives the shift between sexual and clonal reproduction of Caragana stenophylla along a climatic aridity gradient? BMC Plant Biol. 2018, 18, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batalha, M.A.; Martins, F.R. Life-form spectra of Brazilian cerrado sites. Flora 2002, 197, 452–460. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Zhang, H.; Xie, T.; Yue, J.; Zhao, L.; Tian, Y. Geographical patterns of Raunkiaerian life-form spectra in China. Pak. J. Bot. 2018, 50, 1509–1516. [Google Scholar]
- Raghubanshi, A.S.; Tripathi, A. Effect of disturbance, habitat fragmentation and alien invasive plants on floral diversity in dry tropical forests of Vindhyan highland: A review. Trop. Ecol. 2009, 50, 57–69. [Google Scholar]
- Kriticos, D.J.; Sutherst, R.W.; Brown, J.R.; Adkins, S.W.; Maywald, G.F. Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. J. Appl. Ecol. 2003, 40, 111–124. [Google Scholar] [CrossRef]
- Vila, M.; Pino, J.; Font, X. Regional assessment of plant invasions across different habitat types. J. Veg. Sci. 2007, 18, 35–42. [Google Scholar] [CrossRef]
- Fukano, Y.; Tachiki, Y.; Yahara, T.; Iwasa, Y. Soil disturbances can suppress the invasion of alien plants under plant-soil feedback. Ecol. Model. 2013, 260, 42–49. [Google Scholar] [CrossRef]
- Larson, D.L.; Anderson, P.J.; Newton, W. Alien plant invasion in mixed-grass prairie: Effects of vegetation type and anthropogenic disturbance. Ecol. Appl. 2001, 11, 128–141. [Google Scholar] [CrossRef]
- Leinaas, H.P.; Bengtsson, J.; Janion-Scheepers, C.; Chown, S.L. Indirect effects of habitat disturbance on invasion: Nutritious litter from a grazing resistant plant favors alien over native Collembola. Ecol. Evol. 2015, 5, 3462–3471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stapanian, M.A.; Sundberg, S.D.; Baumgardner, G.A.; Liston, A. Alien plant species composition and associations with anthropogenic disturbance in North American forests. Plant Ecol. 1998, 139, 49–62. [Google Scholar] [CrossRef]
- Wang, C.J.; Wan, J.Z.; Mu, X.Y.; Zhang, Z.X. Management planning for endangered plant species in priority protected areas. Biodivers. Conserv. 2015, 24, 2383–2397. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, J.; Lu, X.; Ding, Y.; Zang, R. Priorities and conservation gaps across three biodiversity dimensions of rare and endangered plant species in China. Biol. Conserv. 2019, 229, 30–37. [Google Scholar] [CrossRef]
- Gilliard, G.; Huby, E.; Cordelier, S.; Ongena, M.; Dhondt-Cordelier, S.; Deleu, M. Protoplast: A valuable toolbox to investigate plant stress perception and response. Front. Plant Sci. 2021, 12, 749581. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Jiang, L.; Chen, Y.; Tian, X.; Lv, G. Abiotic stress-by-competition interactions drive hormone and nutrient changes to regulate Suaeda salsa growth. Glob. Ecol. Conserv. 2021, 31, e01845. [Google Scholar] [CrossRef]
- Fazlioglu, F.; Bonser, S.P. Phenotypic plasticity and specialization in clonal versus non-clonal plants: A data synthesis. Acta Oecol.-Int. J. Ecol. 2016, 77, 193–200. [Google Scholar] [CrossRef]
- Sultan, S.E. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci. 2000, 5, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Wang, Y.; Li, X.; Liu, Z.; Wu, J.; Musa, A.; Ma, Q.; Yu, H.; Cui, X.; Wang, L. Geographical distribution and determining factors of different invasive ranks of alien species across China. Sci. Total Environ. 2020, 722, 137929. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, C.; Brown, R.L.; Jansson, R.; Merritt, D.M. The role of hydrochory in structuring riparian and wetland vegetation. Biol. Rev. 2010, 85, 837–858. [Google Scholar] [CrossRef]
- Vittoz, P.; Engler, R. Seed dispersal distances: A typology based on dispersal modes and plant traits. Bot. Helv. 2007, 117, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.Q.; Wu, J.M.; Bai, Y.Y.; Zhou, L.; Wang, G.X. Identifying the most noxious invasive plants in China: Role of geographical origin, life form and means of introduction. Biodivers. Conserv. 2009, 18, 305–316. [Google Scholar] [CrossRef]
- Jiang, H.; Fan, Q.; Li, J.T.; Shi, S.; Li, S.P.; Liao, W.B.; Shu, W.S. Naturalization of alien plants in China. Biodivers. Conserv. 2011, 20, 1545–1556. [Google Scholar] [CrossRef] [Green Version]
- Weber, E.; Li, B. Plant invasions in China: What is to be expected in the wake of economic development? Bioscience 2008, 58, 437–444. [Google Scholar] [CrossRef] [Green Version]
- Ou, H.; Lu, C.O.; Toole, D.K. A risk assessment system for alien plant bio-invasion in Xiamen, China. J. Environ. Sci. 2008, 20, 989–997. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, L.; Jiang, Z.; Wu, J.; Cui, X.; Li, X.; Liu, Z.; Musa, A.; Ma, Q.; Yu, H.; et al. Effects of climatic and social factors on dispersal strategies of alien species across China. Sci. Total Environ. 2020, 749, 141443. [Google Scholar] [CrossRef]
- Molina-Pardo, J.L.; Rodriguez-Caballero, E.; Cueto, M.; Barranco, P.; Sanchez-Robles, M.; Laguia-Allue, A.; Gimenez-Luque, E. Effects of agricultural use on endangered plant taxa in Spain. Agriculture 2021, 11, 1097. [Google Scholar] [CrossRef]
- Mandujano, M.D.; Montana, C.; Mendez, I.; Golubov, J. The relative contributions of sexual reproduction and clonal propagation in Opuntia rastrera from two habitats in the Chihuahuan Desert. J. Ecol. 1998, 86, 911–921. [Google Scholar] [CrossRef]
- Evette, A.; Bedecarrats, A.; Bornette, G. Environmental constraints influence clonal traits of Herbaceous plant communities in an Alpine Massif. Folia Geobot. 2009, 44, 95–108. [Google Scholar] [CrossRef]
- Liu, J.; Dong, M.; Miao, S.L.; Li, Z.; Song, M.H.; Wang, R.Q. Invasive alien plants in China: Role of clonality and geographical origin. Biol. Invasions 2006, 8, 1461–1470. [Google Scholar] [CrossRef]
- Marini, L.; Battisti, A.; Bona, E.; Federici, G.; Martini, F.; Pautasso, M.; Hulme, P.E. Alien and native plant life-forms respond differently to human and climate pressures. Glob. Ecol. Biogeogr. 2012, 21, 534–544. [Google Scholar] [CrossRef]
- Rejmanek, M.; Richardson, D.M. What attributes make some plant species more invasive? Ecology 1996, 77, 1655–1661. [Google Scholar] [CrossRef]
- Naqinezhad, A.; Ramezani, E.; Khalili, A.H.; Joosten, H. Habitat and floristic peculiarities of an isolated mountain mire in the Hyrcanian region of northern Iran: A harbour for rare and endangered plant species. Mires Peat 2019, 24, 21. [Google Scholar] [CrossRef]
- Gao, R.R.; Hou, J.; Zhao, R.H.; Yang, X.J.; Hou, X.Y.; Huo, L.P.; Hidayati, S.N.; Walck, J.L. Seed dormancy and germination of a critically endangered plant, Elaeagnus mollis, on the Loess Plateau of China. Eur. J. For. Res. 2021, 140, 451–461. [Google Scholar] [CrossRef]
- Purohit, S.; Nandi, S.K.; Palni, L.M.S.; Giri, L.; Bhatt, A. Effect of Sulfuric Acid Treatment on Breaking of Seed Dormancy and Subsequent Seedling Establishment in Zanthoxylum armatum DC: An Endangered Medicinal Plant of the Himalayan Region. Natl. Acad. Sci. Lett.-India 2015, 38, 301–304. [Google Scholar] [CrossRef]
- Manole, A.; Banciu, C. Seed dormancy and germination requirements in Angelica palustris (besser) Hofm., a critically endangered plant. Bangladesh J. Bot. 2015, 44, 605–611. [Google Scholar] [CrossRef]
- Ding, Y.; Zang, R.G.; Huang, J.H.; Xu, Y.; Lu, X.H.; Guo, Z.J.; Ren, W. Intraspecific trait variation and neighborhood competition drive community dynamics in an old-growth spruce forest in northwest China. Sci. Total Environ. 2019, 678, 525–532. [Google Scholar] [CrossRef]
- Grossiord, C.; Gessler, A.; Granier, A.; Berger, S.; Brechet, C.; Hentschel, R.; Hommel, R.; Scherer-Lorenzen, M.; Bonal, D. Impact of interspecific interactions on the soil water uptake depth in a young temperate mixed species plantation. J. Hydrol. 2014, 519, 3511–3519. [Google Scholar] [CrossRef]
- Suarez-Seoane, S.; Jimenez-Alfaro, B.; Obeso, J.R. Habitat-partitioning improves regional distribution models in multi-habitat species: A case study with the European bilberry. Biodivers. Conserv. 2020, 29, 987–1008. [Google Scholar] [CrossRef]
- Ren, H.; Jian, S.; Liu, H.; Zhang, Q.; Lu, H. Advances in the reintroduction of rare and endangered wild plant species. Sci. China-Life Sci. 2014, 57, 603–609. [Google Scholar] [CrossRef]
- Ren, H.; Zhang, Q.; Lu, H.; Liu, H.; Guo, Q.; Wang, J.; Jian, S.; Bao, H.O. Wild plant species with extremely small populations require conservation and reintroduction in China. Ambio 2012, 41, 913–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, D.M.; Pyek, P.; Rejmánek, M.; Barbour, M.G.; West, C.J. Naturalization and invasion of alien plants: Concepts and definitions. Divers. Distrib. 2000, 6, 93–107. [Google Scholar] [CrossRef]
- Dark, S.J. The biogeography of invasive alien plants in California: An application of GIS and spatial regression analysis. Divers. Distrib. 2004, 10, 1–9. [Google Scholar] [CrossRef]
- Hultine, K.R.; Allan, G.J.; Blasini, D.; Bothwell, H.M.; Cadmus, A.; Cooper, H.F.; Doughty, C.E.; Gehring, C.A.; Gitlin, A.R.; Grady, K.C.; et al. Adaptive capacity in the foundation tree species Populus fremontii: Implications for resilience to climate change and non-native species invasion in the American Southwest. Conserv. Physiol. 2020, 8, coaa061. [Google Scholar] [CrossRef] [PubMed]
- Roiloa, S.R.; Rodriguez-Echeverria, S.; Lopez-Otero, A.; Retuerto, R.; Freitas, H. Adaptive plasticity to heterogeneous environments increases capacity for division of labor in the clonal invader Carpobrotus edulis (Aizoaceae). Am. J. Bot. 2014, 101, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Radersma, R.; Noble, D.W.A.; Uller, T. Plasticity leaves a phenotypic signature during local adaptation. Evol. Lett. 2020, 4, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Soliani, C.; Mattera, M.G.; Marchelli, P.; Azpilicueta, M.M.; Dalla-Salda, G. Different drought-adaptive capacity of a native Patagonian tree species (Nothofagus pumilio) resulting from local adaptation. Eur. J. For. Res. 2021, 140, 1147–1161. [Google Scholar] [CrossRef]
- Pritzkow, C.; Szota, C.; Williamson, V.G.; Arndt, S.K. Phenotypic plasticity of drought tolerance traits in a widespread Eucalypt (Eucalyptus obliqua). Forests 2020, 11, 1371. [Google Scholar] [CrossRef]
- Nicotra, A.B.; Atkin, O.K.; Bonser, S.P.; Davidson, A.M.; Finnegan, E.J.; Mathesius, U.; Poot, P.; Purugganan, M.D.; Richards, C.L.; Valladares, F.; et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 2010, 15, 684–692. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Q.; Xin, Z.; Wang, Y.; Miao, R.; Liu, Z.; Zong, L.; Li, X.; Ma, Q.; Liang, W.; Yu, H.; et al. The Adaptive Capacity of Alien and Rare Species in China. Forests 2022, 13, 2005. https://doi.org/10.3390/f13122005
Zhou Q, Xin Z, Wang Y, Miao R, Liu Z, Zong L, Li X, Ma Q, Liang W, Yu H, et al. The Adaptive Capacity of Alien and Rare Species in China. Forests. 2022; 13(12):2005. https://doi.org/10.3390/f13122005
Chicago/Turabian StyleZhou, Quanlai, Zhiming Xin, Yongcui Wang, Renhui Miao, Zhimin Liu, Lu Zong, Xuehua Li, Qun Ma, Wei Liang, Haibin Yu, and et al. 2022. "The Adaptive Capacity of Alien and Rare Species in China" Forests 13, no. 12: 2005. https://doi.org/10.3390/f13122005
APA StyleZhou, Q., Xin, Z., Wang, Y., Miao, R., Liu, Z., Zong, L., Li, X., Ma, Q., Liang, W., Yu, H., & Wang, L. (2022). The Adaptive Capacity of Alien and Rare Species in China. Forests, 13(12), 2005. https://doi.org/10.3390/f13122005