Exploratory Pressure Impregnation Process Using Supercritical CO2, Co-Solvents, and Multi-Cycle Implementation
Abstract
:1. Introduction
2. Literature Review
2.1. Supercritical CO2 Extraction
2.2. Supercritical CO2 Impregnation
2.3. Solubility of Fatty Acids in scCO2
3. Materials and Methods
3.1. Experimental Set Up
3.2. Process Implementation
3.3. Process Conditions
3.4. Wax Characterization
3.5. Oven-Dried Tests
4. Results
4.1. Wax Chemical Composition
4.2. Wax Thermal Behaviour
4.3. Experimental Error
4.4. Single-Cycle scCO2 Tests
4.5. Multi-Cycle scCO2 Tests without Co-Solvent
4.6. Multi-Cycle scCO2 Tests with Co-Solvent
5. Discussion
5.1. Singe-Cycle scCO2 Impregnation
5.2. Multi-Cycle scCO2 Impregnation
5.3. Further Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Graça, J. Suberin: The biopolyester at the frontier of plants. Front. Chem. 2015, 3, 62. [Google Scholar] [CrossRef]
- Borgin, K.; Corbertt, K. The hydrophobic properties of bark extractives. Wood Sci. Technol. 1971, 5, 190–199. [Google Scholar] [CrossRef]
- Sin, E.H. The Extraction and Fractionation of Waxes from Biomass. Ph.D. Thesis, University of York, York, UK, 2012. [Google Scholar]
- Wang, W.; Huang, Y.; Cao, J.; Zhu, Y. Penetration and distribution of paraffin wax in wood of loblolly pine and Scots pine studied by time domain NMR spectroscopy. Holzforschung 2018, 72, 125–131. [Google Scholar] [CrossRef]
- Scholz, G.; Krause, A.; Militz, H. Exploratory study on the impregnation of Scots pine sapwood (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) with different hot melting waxes. Wood Sci. Technol. 2010, 44, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Lesar, B.; Straže, A.; Humar, M. Sorption properties of wood impregnated with aqueous solution of boric acid and montan wax emulsion. J. Appl. Polym. Sci. 2011, 120, 1337–1345. [Google Scholar] [CrossRef]
- Pendlebury, A.; Sorfa, E.; Coetzee, J.; Botha, A. A new technique to determine solvent penetration in wood. Holzforschung 1991, 45, 205–208. [Google Scholar] [CrossRef]
- Barbini, S.; Jaxel, J.; Karlström, K.; Rosenau, T.; Potthast, A. Multistage fractionation of pine bark by liquid and supercritical carbon dioxide. Bioresour. Technol. 2021, 341, 125862. [Google Scholar] [CrossRef]
- Raventós, M.; Duarte, S.; Alarcón, R. Application and possibilities of supercritical CO2 extraction in food processing industry: An overview. Food Sci. Technol. Int. 2002, 8, 269–284. [Google Scholar] [CrossRef]
- Reverchon, E.; Marrone, C. Modeling and simulation of the supercritical CO2 extraction of vegetable oils. J. Supercrit. Fluids 2001, 19, 161–175. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Singhal, R.S.; Tiwari, S.R. Supercritical carbon dioxide extraction of cottonseed oil. J. Food Eng. 2007, 79, 892–898. [Google Scholar] [CrossRef]
- Bozan, B.; Temelli, F. Supercritical CO2 extraction of flaxseed. J. Am. Oil Chem. Soc. 2002, 79, 231–235. [Google Scholar] [CrossRef]
- Özkal, S.G.; Salgın, U.; Yener, M.E. Supercritical carbon dioxide extraction of hazelnut oil. J. Food Eng. 2005, 69, 217–223. [Google Scholar] [CrossRef]
- Tonthubthimthong, P.; Chuaprasert, S.; Douglas, P.; Luewisutthichat, W. Supercritical CO2 extraction of nimbin from neem seeds–an experimental study. J. Food Eng. 2001, 47, 289–293. [Google Scholar] [CrossRef]
- Mendes, R.L.; Nobre, B.P.; Cardoso, M.T.; Pereira, A.P.; Palavra, A.F. Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorg. Chim. Acta 2003, 356, 328–334. [Google Scholar] [CrossRef]
- Baysal, T.; Ersus, S.; Starmans, D. Supercritical CO2 extraction of β-carotene and lycopene from tomato paste waste. J. Agric. Food Chem. 2000, 48, 5507–5511. [Google Scholar] [CrossRef]
- Weidner, E. Impregnation via supercritical CO2–What we know and what we need to know. J. Supercrit. Fluids 2018, 134, 220–227. [Google Scholar] [CrossRef]
- Kjellow, A.W.; Henriksen, O. Supercritical wood impregnation. J. Supercrit. Fluids 2009, 50, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Bach, E.; Cleve, E.; Schollmeyer, E. Past, present and future of supercritical fluid dyeing technology–an overview. Rev. Prog. Color. Relat. Top. 2002, 32, 88–102. [Google Scholar] [CrossRef]
- Geihsler, H.; Weidner, E. Verfahren zur Zurichtung von tierischen Häuten oder. Fellen. Patent DE19507572A1, 9 December 1996. [Google Scholar]
- Iversen, S.B.; Larsen, T.; Henriksen, O.; Felsvang, K. The world’s first commercial supercritical wood treatment plant. In Proceedings of the 6th International Symposium on Supercritical Fluids, Versailles, France, 28–30 April 2003; pp. 445–450. [Google Scholar]
- Park, M.-W.; Bae, H.-K. Dye distribution in supercritical dyeing with carbon dioxide. J. Supercrit. Fluids 2002, 22, 65–73. [Google Scholar] [CrossRef]
- Sanchez-Sanchez, J.; Fernández-Ponce, M.; Casas, L.; Mantell, C.; de la Ossa, E.M. Impregnation of mango leaf extract into a polyester textile using supercritical carbon dioxide. J. Supercrit. Fluids 2017, 128, 208–217. [Google Scholar] [CrossRef]
- Goñi, M.L.; Gañán, N.A.; Martini, R.E. Supercritical CO2-assisted dyeing and functionalization of polymeric materials: A review of recent advances (2015–2020). J. CO2 Util. 2021, 54, 101760. [Google Scholar] [CrossRef]
- Huang, F.-H.; Li, M.-H.; Lee, L.L.; Starling, K.E.; Chung, F.T. An accurate equation of state for carbon dioxide. J. Chem. Eng. Jpn. 1985, 18, 490–496. [Google Scholar] [CrossRef] [Green Version]
- Rad, H.B.; Sabet, J.K.; Varaminian, F. Study of solubility in supercritical fluids: Thermodynamic concepts and measurement methods-a review. Braz. J. Chem. Eng. 2020, 36, 1367–1392. [Google Scholar] [CrossRef] [Green Version]
- Chrastil, J. Solubility of solids and liquids in supercritical gases. J. Phys. Chem. 1982, 86, 3016–3021. [Google Scholar] [CrossRef]
- Güçlü-Üstündaǧ, Ö.; Temelli, F. Correlating the solubility behavior of fatty acids, mono-, di-, and triglycerides, and fatty acid esters in supercritical carbon dioxide. Ind. Eng. Chem. Res. 2000, 39, 4756–4766. [Google Scholar] [CrossRef]
- Foster, N.R.; Gurdial, G.S.; Yun, J.S.; Liong, K.K.; Tilly, K.D.; Ting, S.S.; Singh, H.; Lee, J.H. Significance of the crossover pressure in solid-supercritical fluid phase equilibria. Ind. Eng. Chem. Res. 1991, 30, 1955–1964. [Google Scholar] [CrossRef]
- Tochigi, K.; Namae, T.; Suga, T.; Matsuda, H.; Kurihara, K.; dos Ramos, M.C.; McCabe, C. Measurement and prediction of high-pressure vapor–liquid equilibria for binary mixtures of carbon dioxide+ n-octane, methanol, ethanol, and perfluorohexane. J. Supercrit. Fluids 2010, 55, 682–689. [Google Scholar] [CrossRef]
- Asafu-Adjaye, O.; Via, B.; Sastri, B.; Banerjee, S. Mechanism of dewatering porous structures with supercritical carbon dioxide. Case Stud. Chem. Environ. Eng. 2021, 4, 100128. [Google Scholar] [CrossRef]
- Donaldson, L. Autofluorescence in plants. Molecules 2020, 25, 2393. [Google Scholar] [CrossRef]
- Lande, S.; Westin, M.; Schneider, M. Properties of furfurylated wood. Scand. J. For. Res. 2004, 19, 22–30. [Google Scholar] [CrossRef]
Temperature | Before Expansion | After Expansion |
---|---|---|
(°C) | (MPa) | (MPa) |
40 | 12 | 9.5 |
40 | 16 | 10.1 |
60 | 12 | 10.1 |
60 | 16 | 13.0 |
Component | Relative % |
---|---|
Dehydroabietic acid | 15.83 |
Docosanoic acid | 11.78 |
Tetracosanoic acid | 9.17 |
Tetracosan-1-ol | 6.41 |
Palustric acid | 6.08 |
Abietic acid | 5.87 |
B-Sitosterol | 5.03 |
Sandaracopimaric acid | 4.68 |
1-Docosanol | 3.51 |
Eicosanoic acid | 3.46 |
Unknown 1 | 2.85 |
Isopimaric acid | 2.66 |
Neoabietic acid | 2.64 |
Stearic acid (F18:0) | 2.31 |
Unknown 2 | 2.10 |
Unknown 3 | 1.65 |
alpha-Terpineol | 1.22 |
Unknown 4 | 1.02 |
Transition 1 | Transition 2 | Transition 3 | |
---|---|---|---|
Onset (°C) | 62.4 (4.9) | 244.1 (13.7) | 357.1 (18.1) |
End of transition (°C) | 75.5 (4.8) | 304.4 (17.5) | 419.3 (16.8) |
Mass loss (%) | 2.8 (0.7) | 44.4 (1.2) | 48.8 (2.7) |
Peak 1 (°C) | Peak 2 (°C) | Peak 3 (°C) | Total Enthalpy (kJ/kg) | |
---|---|---|---|---|
Endothermic | 22.93 (0.27) | 29.59 (0.12) | 49.23 (0.34) | 70.19 (1.90) |
Exothermic | 20.41 (0.28) | 44.70 (0.38) | 52.76 (0.86) | 62.19 (3.52) |
Wood Samples | Measurement Errors | |||
---|---|---|---|---|
OD Weight (g) | SD (g) | SD (%) | Maximum (%) | Minimum (%) |
8.02 | 0.35 | 0.05 | 0.10 | −0.09 |
Test | Process Conditions | Initial Weight 1 | Weight Gain after Impregnation 1 | Weight Gain after Oven-Drying 2 |
---|---|---|---|---|
g | % | % | ||
W-1 | 40 °C/12 MPa | 8.1 (0.3) | 3.7 (1.2) | 0.06 (0.14/−0.04) |
W-2 | 40 °C/16 MPa | 8.1 (0.2) | 3.5 (0.9) | 0.09 (0.14/0.03) |
W-3 | 60 °C/16 MPa | 7.9 (0.1) | 0.7 (0.6) | 0.09 (0.12/0.04) |
Et-1 | 40 °C/12 MPa | 8.1 (0.2) | 11.1 (0.7) | −0.06 (−0.01/−0.16) |
Et-2 | 40 °C/16 MPa | 8 (0.3) | 12.9 (2.5) | −0.1 (−0.05/−0.17) |
Et-3 | 60 °C/16 MPa | 8.1 (0.2) | 8.7 (0.5) | −0.11 (−0.07/−0.14) |
Et + W-1 | 40 °C/12 MPa | 8 (0.3) | 13.2 (2.7) | 0.45 (0.67/0.25) |
Et + W-2 | 40 °C/16 MPa | 7.9 (0.7) | 16.7 (3.3) | 0.56 (0.81/0.41) |
Et + W-3 | 60 °C/16 MPa | 7.9 (0.3) | 9.9 (1.2) | 0.32 (0.51/0.22) |
Ac + W-1 | 40 °C/12 MPa | 7.8 (0.3) | 13.3 (5.5) | 0.37 (0.43/0.31) |
Ac + W-2 | 40 °C/16 MPa | 8.1 (0.6) | 11.6 (5.2) | 0.34 (0.38/0.3) |
Ac + W-3 | 60 °C/16 MPa | 8.1 (0.5) | 4.8 (1) | 0.26 (0.32/0.21) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elustondo, D.; Raymond, L.; Risani, R.; Donaldson, L.; Le Guen, M.J. Exploratory Pressure Impregnation Process Using Supercritical CO2, Co-Solvents, and Multi-Cycle Implementation. Forests 2022, 13, 2018. https://doi.org/10.3390/f13122018
Elustondo D, Raymond L, Risani R, Donaldson L, Le Guen MJ. Exploratory Pressure Impregnation Process Using Supercritical CO2, Co-Solvents, and Multi-Cycle Implementation. Forests. 2022; 13(12):2018. https://doi.org/10.3390/f13122018
Chicago/Turabian StyleElustondo, Diego, Laura Raymond, Regis Risani, Lloyd Donaldson, and Marie Joo Le Guen. 2022. "Exploratory Pressure Impregnation Process Using Supercritical CO2, Co-Solvents, and Multi-Cycle Implementation" Forests 13, no. 12: 2018. https://doi.org/10.3390/f13122018
APA StyleElustondo, D., Raymond, L., Risani, R., Donaldson, L., & Le Guen, M. J. (2022). Exploratory Pressure Impregnation Process Using Supercritical CO2, Co-Solvents, and Multi-Cycle Implementation. Forests, 13(12), 2018. https://doi.org/10.3390/f13122018