Volatiles from Eucalyptus Trunks and Forest Floor Humus Influence the Habitat Transfer, Host Selection, and Aggregation of Endoclita signifer Larvae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. Volatile Collections from Eucalyptus and Forest Floor Humus
2.3. Chemical Identification
2.4. Chemicals
2.5. GC-EAD Electroantennal Detection of Volatile Compounds
2.6. Behavioral Experiments
2.7. Expression of Olfactory Proteins from Exposure to Volatiles
2.8. Statistical Analysis
3. Results
3.1. Constitutive VOCs of Non-Infested Eucalyptus Trunks and Forest Floor Humus
3.2. Herbivore-Induced Plant Volatiles (HIPVs) of Eucalyptus Trunk
3.3. Principal Component Analysis (PCA) of Volatile Treatments
3.4. Gas Chromatography-Electroantennographic Detection (GC-EAD)
3.5. Olfactometer Assay
3.6. Expression of Olfactory Proteins from Exposure to Important Volatile
4. Discussion
4.1. Main VOCs and the Movement of third Instar E. signifer Larvae
4.2. Volatiles from Non-Infested and Infested Eucalyptus Trunks
4.3. HIPVs from Single and Multiple Infestation Trunks
4.4. Response of Olfactory Proteins to Exposure to Volatiles
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Yang, X.; Luo, Y.; Wu, Y.; Zou, D.; Hu, P.; Wang, J. Distribution and Damage of Endoclita signifer Walker, as an important wood borer pest insect on forest. For. Pest Dis. 2021, 43, 34–40. [Google Scholar]
- Yang, X.H. Studies on the Biological and Ecological Characteristics of Endoclita Signifie; Beijing Forestry University: Beijing, China, 2013. [Google Scholar]
- Yang, X.; Yang, X.; Xue, D.; Han, H. The complete mitochondrial genome of Endoclita signifer (Lepidoptera, Hepialidae). Mitochondrial DNA Part A 2016, 27, 4620–4621. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.; Clarke, A.R. The “sequential cues hypothesis”: A conceptual model to explain host location and ranking by polyphagous herbivores. Insect Sci. 2020, 27, 1136–1147. [Google Scholar] [CrossRef] [PubMed]
- Depetris-Chauvin, A.; Galagovsky, D.; Grosjean, Y. Chemicals and chemoreceptors: Ecologically relevant signals driving behavior in Drosophila. Front. Ecol. Evol. 2015, 3, 41. [Google Scholar] [CrossRef] [Green Version]
- Beyaert, I.; Hilker, M. Plant odour plumes as mediators of plant–insect interactions. Biol. Rev. 2014, 89, 68–81. [Google Scholar] [CrossRef]
- Nunes, T.; Pio, C. Emission of volatile organic compounds from Portuguese eucalyptus forests. Chemosphere 2001, 3, 239–248. [Google Scholar] [CrossRef]
- Zini, C.A.; Augusto, F.; Christensen, E.; Smith, B.P.; Caramão, E.B.; Pawliszyn, J. Monitoring biogenic volatile compounds emitted by Eucalyptus citriodora using SPME. Anal. Chem. 2001, 73, 4729–4735. [Google Scholar] [CrossRef]
- Reyes-García, L.; Lizama, F.; Roldan, V.; Troncoso, C.; Flores, M. Coupled gas chromatographic-electroantennographic responses of Xanthogaleruca luteola (Müller)(Coleoptera: Chrysomelidae) to volatile organic compounds from Eucalyptus globulus extract. Chil. J. Agric. Res. 2021, 81, 119–125. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, X.; Li, X.; Dou, Y.; Dong, W. Eucalyptus globulus on oviposition choices of the cotton bollworm Helicoverpa armigera. J. Plant Prot. 2018, 45, 576–584. [Google Scholar]
- Coutinho-Abreu, I.V.; Forster, L.; Guda, T.; Ray, A. Odorants for surveillance and control of the Asian citrus psyllid (Diaphorina citri). PLoS ONE 2014, 9, e109236. [Google Scholar] [CrossRef]
- Liu, X.Q.; Jiang, H.B.; Fan, J.Y.; Liu, T.Y.; Meng, L.W.; Liu, Y.; Yu, H.Z.; Dou, W.; Wang, J.J. An odorant-binding protein of Asian citrus psyllid, Diaphorina citri, participates in the response of host plant volatiles. Pest Manag. Sci. 2021, 77, 3068–3079. [Google Scholar] [CrossRef] [PubMed]
- Dweck, H.K.; Ebrahim, S.A.; Retzke, T.; Grabe, V.; Weißflog, J.; Svatoš, A.; Hansson, B.S.; Knaden, M. The olfactory logic behind fruit odor preferences in larval and adult Drosophila. Cell Rep. 2018, 23, 2524–2531. [Google Scholar] [CrossRef] [PubMed]
- Yactayo-Chang, J.P.; Mendoza, J.; Willms, S.D.; Rering, C.C.; Beck, J.J.; Block, A.K. Zea mays Volatiles that Influence Oviposition and Feeding Behaviors of Spodoptera frugiperda. J. Chem. Ecol. 2021, 47, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Turlings, T.C.; Erb, M. Tritrophic interactions mediated by herbivore-induced plant volatiles: Mechanisms, ecological relevance, and application potential. Annu. Rev. Entomol. 2018, 63, 433–452. [Google Scholar] [CrossRef]
- Pirk, C.W. Exploring the kairomone-based foraging behaviour of natural enemies to enhance biological control: A Review. Front. Ecol. Evol. 2021, 9, 143. [Google Scholar]
- Danner, H.; Desurmont, G.A.; Cristescu, S.M.; van Dam, N.M. Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores. New Phytol. 2018, 220, 726–738. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Chen, W.; Gu, S.; Wang, Y.; Wang, J. Evaluation of trunk borer infestation duration using MOS E-nose combined with different feature extraction methods and GS-SVM. Comput. Electron. Agric. 2020, 170, 105293. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, Z.; Zhang, J.; Wang, J.; Zhong, J.; Wang, Y. Discrimination of wood-boring beetles infested Platycladus orientalis plants by using gas chromatography-ion mobility spectrometry. Comput. Electron. Agric. 2021, 180, 105896. [Google Scholar] [CrossRef]
- Takabayashi, J.; Shiojiri, K. Multifunctionality of herbivory-induced plant volatiles in chemical communication in tritrophic interactions. Curr. Opin. Insect Sci. 2019, 32, 110–117. [Google Scholar] [CrossRef]
- El-Sayed, A.; Knight, A.; Basoalto, E.; Suckling, D. Caterpillar-induced plant volatiles attract conspecific herbivores and a generalist predator. J. Appl. Entomol. 2018, 142, 495–503. [Google Scholar] [CrossRef]
- Huang, C.H.; Yan, F.M.; Byers, J.A.; Wang, R.J.; Xu, C.R. Volatiles induced by the larvae of the Asian corn borer (Ostrinia furnacalis) in maize plants affect behavior of conspecific larvae and female adults. Insect Sci. 2009, 16, 311–320. [Google Scholar] [CrossRef]
- Landolt, P.J.; Brumley, J.A.; Smithhisler, C.L.; Biddick, L.L.; Hofstetter, R.W. Apple fruit infested with codling moth are more attractive to neonate codling moth larvae and possess increased amounts of (E, E)-α-farnesene. J. Chem. Ecol. 2000, 26, 1685–1699. [Google Scholar] [CrossRef]
- Carroll, M.J.; Schmelz, E.A.; Teal, P.E. The attraction of Spodoptera frugiperda neonates to cowpea seedlings is mediated by volatiles induced by conspecific herbivory and the elicitor inceptin. J. Chem. Ecol. 2008, 34, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Bisch-Knaden, S.; Fandino, R.A.; Yan, S.; Obiero, G.F.; Grosse-Wilde, E.; Hansson, B.S.; Knaden, M. The olfactory coreceptor IR8a governs larval feces-mediated competition avoidance in a hawkmoth. Proc. Natl. Acad. Sci. USA 2019, 116, 21828–21833. [Google Scholar] [CrossRef] [Green Version]
- Revadi, S.V.; Giannuzzi, V.A.; Vetukuri, R.R.; Walker, W.B.; Becher, P.G. Larval response to frass and guaiacol: Detection of an attractant produced by bacteria from Spodoptera littoralis frass. J. Pest Sci. 2021, 94, 1105–1118. [Google Scholar] [CrossRef]
- Brito, N.F.; Moreira, M.F.; Melo, A.C. A look inside odorant-binding proteins in insect chemoreception. J. Insect Physiol. 2016, 95, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, Z.; Yang, X.; Ma, H.; Liu, X.; Hu, P. Olfactory proteins and their expression profiles in the Eucalyptus pest Endoclita signifier larvae. Front. Physiol. 2021, 12, 682537. [Google Scholar] [CrossRef] [PubMed]
- Scherer, S.; Stocker, R.F.; Gerber, B. Olfactory learning in individually assayed Drosophila larvae. Learn. Mem. 2003, 10, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Chen, H.; Ma, C.; Tian, Z. Electrophysiological responses of Dendroctonus armandi (Coleoptera: Curculionidae: Scolytinae) to volatiles of Chinese white pine as well as to pure enantiomers and racemates of some monoterpenes. Chemoecology 2010, 20, 265–275. [Google Scholar] [CrossRef]
- Yoneya, K.; Ozawa, R.; Takabayashi, J. Specialist leaf beetle larvae use volatiles from willow leaves infested by conspecifics for reaggregation in a tree. J. Chem. Ecol. 2010, 36, 671–679. [Google Scholar] [CrossRef]
- Shiojiri, K.; Ozawa, R.; Takabayashi, J. Plant volatiles, rather than light, determine the nocturnal behavior of a caterpillar. PLoS Biol. 2006, 4, e164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCormick, A.C.; Reinecke, A.; Gershenzon, J.; Unsicker, S.B. Feeding experience affects the behavioral response of polyphagous gypsy moth caterpillars to herbivore-induced poplar volatiles. J. Chem. Ecol. 2016, 42, 382–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llopis-Gimenez, A.; Carrasco-Oltra, T.; Jacquin-Joly, E.; Herrero, S.; Crava, C.M. Coupling Transcriptomics and Behaviour to Unveil the Olfactory System of Spodoptera exigua Larvae. J. Chem. Ecol. 2020, 46, 1017–1031. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Dinno, A. Nonparametric pairwise multiple comparisons in independent groups using Dunn’s test. Stata J. 2015, 15, 292–300. [Google Scholar] [CrossRef] [Green Version]
- Metsalu, T.; Vilo, J. Clustvis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015, 43, 566–570. [Google Scholar] [CrossRef]
- Avellaneda, J.; Díaz, M.; Coy-Barrera, E.; Rodríguez, D.; Osorio, C. Rose volatile compounds allow the design of new control strategies for the western flower thrips (Frankliniella occidentalis). J. Pest. Sci. 2019, 94, 129–142. [Google Scholar] [CrossRef]
- Mitra, S.; Firake, D.M.; Umesh, K.P.; Pandey, P.P.; Pandit, S. Polyphagous caterpillars of Spodoptera litura switch from a trap crop to the main crop, improve fitness, and shorten generation time. J. Pest. Sci. 2021, 94, 1091–1103. [Google Scholar] [CrossRef]
- Gómez Jiménez, M.I.; Sarmiento, C.E.; Díaz, M.F.; Chautá, A.; Peraza, A.; Ramírez, A.; Poveda, K. Oviposition, larval preference, and larval performance in two polyphagous species: Does the larva know best? Entomol. Exp. Appl. 2014, 153, 24–33. [Google Scholar] [CrossRef]
- Munro, H.L.; Gandhi, K.J.; Barnes, B.F.; Montes, C.R.; Nowak, J.T.; Shepherd, W.P.; Villari, C.; Sullivan, B.T. Electrophysiological and behavioral responses Dendroctonus frontalis and D. terebrans (Coleoptera: Curculionidae) to resin odors of host pines (Pinus spp.). Chemoecology 2020, 30, 215–231. [Google Scholar] [CrossRef]
- Paripoorani, S.; Elaiyabharathi, T.; Srinivasan Tand Paramasivam, M. Volatile profiling of food baits targeting female melon fruit fly, Zeugodacus cucurbitae (Coq.)(Tephritidae: Diptera) in gourds. Pharma Innov. J. 2021, 10, 1021–1026. [Google Scholar]
- Mohammed, K.; Agarwal, M.; Li, B.; Newman, J.; Liu, T.; Ren, Y. Evaluation of d-Limonene and beta-Ocimene as Attractants of Aphytis melinus (Hymenoptera: Aphelinidae), a Parasitoid of Aonidiella aurantii (Hemiptera: Diaspididae) on Citrus spp. Insects 2020, 11, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiu, C.-L.; Pan, H.-S.; Liu, B.; Luo, Z.-X.; Williams, L.; Yang, Y.-Z.; Lu, Y.-H. Perception of and behavioral responses to host plant volatiles for three Adelphocoris species. J. Chem. Ecol. 2019, 45, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Qiao, H.; Lu, P.; Liu, S.; Xu, C.; Guo, K.; Xu, R.; Chen, J. Volatiles from Aquilaria sinensis damaged by Heortia vitessoides larvae deter the conspecific gravid adults and attract its predator Cantheconidea concinna. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.S.; Xiu, C.L.; Williams, L., 3rd; Lu, Y.H. Plant Volatiles Modulate Seasonal Dynamics between Hosts of the Polyphagous Mirid Bug Apolygus lucorum. J. Chem. Ecol. 2021, 47, 87–98. [Google Scholar] [CrossRef]
- Xiu, C.; Zhang, W.; Xu, B.; Wyckhuys, K.A.G.; Cai, X.; Su, H.; Lu, Y. Volatiles from aphid-infested plants attract adults of the multicolored Asian lady beetle Harmonia axyridis. Biol. Control 2019, 129, 1–11. [Google Scholar] [CrossRef]
- Andersson, M.N.; Larsson, M.C.; Blaženec, M.; Jakuš, R.; Zhang, Q.-H.; Schlyter, F. Peripheral modulation of pheromone response by inhibitory host compound in a beetle. J. Exp. Biol. 2010, 213, 3332–3339. [Google Scholar] [CrossRef] [Green Version]
- Wen, C.; Chen, J.; He, Y.; Wang, F.; Qian, C.; Wen, J.; Wen, X.; Wang, C. Electrophysiological and behavioral responses of red imported fire ants (Hymenoptera: Formicidae) to an essential balm and its components. Pest Manag. Sci. 2021, 77, 1971–1980. [Google Scholar] [CrossRef]
- Ling, J.; Li, X.; Yang, G.; Yin, T. Volatile metabolites of willows determining host discrimination by adult Plagiodera versicolora. J. For. Res. 2022, 33, 679–687. [Google Scholar] [CrossRef]
- Maneesha, A.; Rao, S.K.; Bakthavatsalam, N.; Padmodhya, B.; Sudhakar, P. Behavioural mechanism of Tuta absoluta towards conspecific-heterospecific infested tomato plants in response to leaf volatiles. J. Entomol. Zool. Stud. 2021, 9, 2053–2058. [Google Scholar]
- Njuguna, P.K.; Murungi, L.K.; Fombong, A.; Teal, P.E.A.; Beck, J.J.; Torto, B. Cucumber and Tomato Volatiles: Influence on Attraction in the Melon Fly Zeugodacus cucurbitate (Diptera: Tephritidae). J. Agric. Food Chem. 2018, 66, 8504–8513. [Google Scholar] [CrossRef] [PubMed]
- Bleeker, P.M.; Diergaarde, P.J.; Ament, K.; Guerra, J.; Weidner, M.; Schutz, S.; de Both, M.T.J.; Haring, M.A.; Schuurink, R.C. The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physoil 2009, 151, 925–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmud, S.; Saleem, M.; Siddique, S.; Ahmed, R.; Khanum, R.; Perveen, Z. Volatile components, antioxidant and antimicrobial activity of Citrus acida var. sour lime peel oil. J. Saudi Chem. Soc. 2009, 13, 195–198. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.B.; Liu, Y.; Yan, S.C.; Wang, G.R. Identification and functional characterization of an odorant receptor in pea aphid, Acyrthosiphon pisum. Insect Sci. 2019, 26, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Xiu, C.; Dai, W.; Pan, H.; Zhang, W.; Luo, S.; Wyckhuys, K.A.; Yang, Y.; Lu, Y. Herbivore-induced plant volatiles enhance field-level parasitism of the mirid bug Apolygus lucorum. Biol. Control 2019, 135, 41–47. [Google Scholar] [CrossRef]
- Khashaveh, A.; An, X.; Shan, S.; Xiao, Y.; Wang, Q.; Wang, S.; Li, Z.; Geng, T.; Gu, S.; Zhang, Y. Deorphanization of an odorant receptor revealed new bioactive components for green mirid bug Apolygus lucorum (Hemiptera: Miridae). Pest Manag. Sci. 2020, 76, 1626–1638. [Google Scholar] [CrossRef] [PubMed]
- Cancer IAfRo. Some chemicals present in industrial and consumer products, food and drinking-water. IARC Monogr. Eval. Carcinog. Risks Hum. 2012, 101, 9–549. [Google Scholar]
- Shiojiri, K.; Ozawa, R.; Kugimiya, S.; Uefune, M.; van Wijk, M.; Sabelis, M.W.; Takabayashi, J. Herbivore-specific, density-dependent induction of plant volatiles: Honest or “cry wolf” signals? PLoS ONE 2010, 5, e12161. [Google Scholar] [CrossRef]
- Subaharan, K.; Mccormick, A.C.; Shameer, K.S.; Nasser, M. Volatile organic compounds in healthy and Opisina arenosella Walker (Lepidoptera: Oecophoridae)infested leaves of coconut palms. Entomon 2017, 42, 121–132. [Google Scholar]
- Yin, J.; Wang, C.; Fang, C.; Zhang, S.; Cao, Y.; Li, K.; Leal, W.S. Functional characterization of odorant-binding proteins from the scarab beetle Holotrichia oblita based on semiochemical-induced expression alteration and gene silencing. Insect Biochem. Mol. Biol. 2019, 104, 11–19. [Google Scholar] [CrossRef]
- Guerrieri, F.; Gemeno, C.; Monsempes, C.; Anton, S.; Jacquin-Joly, E.; Lucas, P.; Devaud, J.M. Experience-dependent modulation of antennal sensitivity and input to antennal lobes in male moths (Spodoptera littoralis) pre-exposed to sex pheromone. J. Exp. Biol. 2012, 215 Pt 13, 2334–2341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, P.; Sadek, M.; Larsson, M.; Hansson, B.; Thöming, G. Larval host plant experience modulates both mate finding and oviposition choice in a moth. Anim. Behav. 2013, 85, 1169–1175. [Google Scholar] [CrossRef]
- Von der Weid, B.; Rossier, D.; Lindup, M.; Tuberosa, J.; Widmer, A.; Col, J.D.; Kan, C.; Carleton, A.; Rodriguez, I. Large-scale transcriptional profiling of chemosensory neurons identifies receptor-ligand pairs in vivo. Nat. Neurosci 2015, 18, 1455–1463. [Google Scholar] [CrossRef] [PubMed]
- Koerte, S.; Keesey, I.W.; Khallaf, M.A.; Cortes Llorca, L.; Grosse-Wilde, E.; Hansson, B.S.; Knaden, M. Evaluation of the DREAM Technique for a High-Throughput Deorphanization of Chemosensory Receptors in Drosophila. Front. Mol. Neurosci. 2018, 11, 366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revadi, S.V.; Giannuzzi, V.A.; Rossi, V.; Hunger, G.M.; Conchou, L.; Rondoni, G.; Conti, E.; Anderson, P.; Walker, W.B.; Jacquin-Joly, E.; et al. Stage-specific expression of an odorant receptor underlies olfactory behavioral plasticity in Spodoptera littoralis larvae. BMC Biol. 2021, 19, 231. [Google Scholar] [CrossRef]
Compound Types | Name | CAS | Retention Time | NO. of PCA and GC-EAD | Volatile Abundance (%) | |||
---|---|---|---|---|---|---|---|---|
Multi-Packets | Single-Packet | Non-Infested Eucalyptus | Forest Floor Humus | |||||
Olefin | 3,3-Dimethyl-6-methylenecyclohexene | 20185-16-4 | 5.432 | 1 | 0.042 ± 0.016 | 0.046 ± 0.005 | 0.107 ± 0.031 | _ |
Esters | Isobutyl acetate | 110-19-0 | 3.517 | 2 | 0.022 ± 0.022 | _ | _ | _ |
Butyl acrylate | 141-32-2 | 5.978 | 3 | 0.025 ± 0.015 | 0.053 ± 0.008 | 0.061 ± 0.044 | 0.203 ± 0.072 | |
Ethers | n-Butyl ether | 142-96-1 | 5.703 | 4 | 0.046 ± 0.024 | 0.011 ± 0.011 | 0.118 ± 0.052 | _ |
Terpene | β-Thujene | 28634-89-1 | 6.718 | 5 | 0.022 ± 0.011 | 0.019 ± 0.111 | 0.008 ± 0.008 | _ |
alpha-Pinene | 7785-70-8 | 6.873 | 6 | 0.155 ± 0.023 b | 0.196 ± 0.029 b | 0.325 ± 0.053 | 0.355 ± 0.05 a | |
β-Pinene | 18172-67-3 | 7.857 | 7 | 0.016 ± 0.004 b | 0.021 ± 0.006 b | 0.044 ± 0.008 a | _ | |
Myrcene | 123-35-3 | 8.222 | 8 | 0.002 ± 0.002 | _ | _ | _ | |
.alpha.-Phellandrene | 99-83-2 | 8.529 | 9 | 0.385 ± 0.082 a | 0.238 ± 0.029 | 0.133 ± 0.037 b | _ | |
Terpilene | 99-86-5 | 8.833 | 10 | 0.001 ± 0.001 | _ | _ | ||
D-Limonene | 5989-27-5 | 9.115 | 11 | _ | 0.030 ± 0.03 b | 0.023 ± 0.023 b | 0.132 ± 0.03 a | |
3-Carene | 13466-78-9 | 9.551 | 12 | _ | 0.005 ± 0.005 | _ | _ | |
γ-Pyronene | 514-95-4 | 10.462 | 13 | 0.002 ± 0.002 | _ | _ | ||
camphor | 464-49-3 | 11.746 | 14 | 0.028 ± 0.024 | 0.027 ± 0.011 | _ | _ | |
Phenolic compound | Benzene, 1-ethyl-2-methyl- | 611-14-3 | 7.544 | 15 | 0.006 ± 0.006 | 0.020 ± 0.011 | _ | 0.022 ± 0.002 |
1,3,5-trimethyl-benzen | 108-67-8 | 8.274 | 16 | 0.005 ± 0.005 | 0.023 ± 0.012 | _ | 0.027 ± 0.003 | |
o-cymene | 527-84-4 | 9.005 | 17 | 0.131 ± 0.061 | 0.089 ± 0.055 | 0.041 ± 0.022 | 0.038 ± 0.001 | |
Benzene, 1,2-diethyl- | 135-01-3 | 9.596 | 18 | _ | 0.039 ± 0.039 | _ | _ | |
Naphthalene | 91-20-3 | 12.587 | 19 | 0.001 ± 0.001 | 0.002 ± 0.002 | _ | 0.011 ± 0.007 | |
Toluene | 108-88-3 | 3.443 | 20 | _ | _ | _ | 0.013 ± 0.005 | |
1,4-Xylene | 106-42-3 | 5.41 | 21 | _ | _ | _ | 0.096 ± 0.09 | |
carvacrol | 499-75-2 | 14.049 | 22 | _ | 0.021 ± 0.021 | _ | _ | |
Alkane | 2,3-dimethyl-Pentane | 565-59-3 | 3.136 | 23 | 0.019 ± 0.012 | 0.006 ± 0.003 | 0.030 ± 0.015 | 0.027 ± 0.009 |
2,4-Dimethylhexane | 589-43-5 | 3.998 | 24 | _ | _ | 0.042 ± 0.025 | 0.032 ± 0.007 | |
Heptane, 2,2,4,6,6-pentamethyl- | 13475-82-6 | 8.505 | 25 | 0.007 ± 0.007 | _ | _ | _ | |
Ketone | Acetophenone | 98-86-2 | 10.025 | 26 | 0.002 ± 0.002 | 0.002 ± 0.002 | _ | _ |
4-Ethylacetophenone | 937-30-4 | 14.23 | 27 | 0.024 ± 0.013 | 0.069 ± 0.069 | 0.024 ± 0.013 | _ | |
Alcohol | 5-methyl-5-hexen-3-ol | 19780-40-6 | 3.944 | 28 | _ | 0.021 ± 0.015 | _ | _ |
Eucalyptol | 470-82-6 | 9.136 | 29 | 0.034 ± 0.034 | 0.008 ± 0.008 | 0.027 ± 0.014 | 0.041 ± 0.035 | |
2-Phenyl-2-propanol | 617-94-7 | 10.418 | 30 | 0.012 ± 0.012 | 0.017 ± 0.017 | _ | _ | |
4-Isopropylbenzyl Alcohol | 536-60-7 | 13.873 | 31 | _ | 0.014 ± 0.014 | _ | _ | |
Aldehyde | Nonanal | 124-19-6 | 10.832 | 32 | 0.013 ± 0.009 | 0.019 ± 0.006 | 0.013 ± 0.006 | 0.003 ± 0.003 |
Benzaldehyde, 4-ethyl- | 4748-78-1 | 12.159 | 33 | _ | 0.006 ± 0.006 | _ | _ | |
Decanal | 112-31-2 | 13.016 | 34 | _ | _ | 0.004 ± 0.004 | _ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Qiu, Z.; Zhang, Y.; Zheng, X.; Lu, W.; Hu, P. Volatiles from Eucalyptus Trunks and Forest Floor Humus Influence the Habitat Transfer, Host Selection, and Aggregation of Endoclita signifer Larvae. Forests 2022, 13, 2058. https://doi.org/10.3390/f13122058
Xu Y, Qiu Z, Zhang Y, Zheng X, Lu W, Hu P. Volatiles from Eucalyptus Trunks and Forest Floor Humus Influence the Habitat Transfer, Host Selection, and Aggregation of Endoclita signifer Larvae. Forests. 2022; 13(12):2058. https://doi.org/10.3390/f13122058
Chicago/Turabian StyleXu, Yuan, Zhisong Qiu, Yujing Zhang, Xialin Zheng, Wen Lu, and Ping Hu. 2022. "Volatiles from Eucalyptus Trunks and Forest Floor Humus Influence the Habitat Transfer, Host Selection, and Aggregation of Endoclita signifer Larvae" Forests 13, no. 12: 2058. https://doi.org/10.3390/f13122058