Isotopic Composition (δ15N and δ18O) of Urban Forests in Different Climate Types Indicates the Potential Influences of Traffic Exhaust and Relative Humidity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design
2.3. Stable Isotope and Total Nitrogen Content
2.4. Estimating ea/ei
2.5. Statistical Analysis
3. Results
3.1. Isotopic Composition and Total Nitrogen Content
3.2. Effect of the Vehicular Fleet on the Isotopic Composition and TN Content
3.3. ea/ei of Trees in Two Cities
4. Discussion
4.1. Variation of Foliar δ15N Values in Two Cities
4.2. Influences of Green Land Type and Vehicular Fleet
4.3. Influence of Relative Humidity
4.4. Limitations and Future Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, L.; Zhou, W.; Li, W.; Qian, Y. Urbanization strategy and environmental changes: An insight with relationship between population change and fine particulate pollution. Sci. Total Environ. 2018, 642, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Han, X.L.; Naeher, L.P. A review of traffic-related air pollution exposure assessment studies in the developing world. Environ. Int. 2006, 32, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.K.; Yao, X. Air pollution in mega cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Fang, M.; Chan, C.K.; Yao, X.H. Managing air quality in a rapidly developing nation: China. Atmos. Environ. 2016, 43, 79–86. [Google Scholar] [CrossRef]
- Marlier, M.E.; Jina, A.S.; Kinney, P.L.; DeFries, R.S. Extreme air pollution in global megacities. Current Climate Change Reports 2016, 2, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Xian, C.; Zhang, X.; Zhang, J.; Fan, Y.; Zheng, H.; Salzman, J.; Ouyang, Z. Recent patterns of anthropogenic reactive nitrogen emissions with urbanization in China: Dynamics, major problems, and potential solutions. Sci. Total Environ. 2019, 656, 1071–1081. [Google Scholar] [CrossRef]
- Xu, M.; Sbihi, H.; Pan, X.; Brauer, M. Local variation of PM2.5 and NO2 concentrations within metropolitan Beijing. Atmos. Environ. 2019, 200, 254–263. [Google Scholar] [CrossRef]
- Yli-Pelkonen, V.; Viippola, V.; Kotze, D.J.; Setala, H. Impacts of urban roadside forest patches on NO2 concentrations. Atmos. Environ. 2020, 232, 117584. [Google Scholar] [CrossRef]
- Zong, Z.; Tan, Y.; Wang, X.; Tian, C.; Li, J.; Fang, Y.; Chen, Y.; Cui, S.; Zhang, G. Dual-modelling-based source apportionment of NOx in five Chinese megacities: Providing the isotopic footprint from 2013 to 2014. Environ. Int. 2020, 137, 105592. [Google Scholar] [CrossRef]
- Sayegh, A.; Tate, J.E.; Ropkins, K. Understanding how roadside concentrations of NOx are influenced by the background levels, traffic density, and meteorological conditions using Boosted Regression Trees. Atmos. Environ. 2016, 127, 163–175. [Google Scholar] [CrossRef]
- Selmi, W.; Weber, C.; Rivière, E.; Blond, N.; Mehdi, L.; Nowak, D. Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban For. Urban Green. 2016, 17, 192–201. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Chaparro-Suarez, I.G.; Meixner, F.X.; Kesselmeier, J. Nitrogen dioxide (NO2) uptake by vegetation controlled by atmospheric concentrations and plant stomatal aperture. Atmos. Environ. 2011, 45, 5742–5750. [Google Scholar] [CrossRef]
- Ferraretto, D.; Nair, R.; Shah, N.W.; Reay, D.; Mencuccini, M.; Spencer, M.; Heal, K.V. Forest canopy nitrogen uptake can supply entire foliar demand. Funct. Ecol. 2022, 36, 933–949. [Google Scholar] [CrossRef]
- Cobley, L.A.E. Pataki, D.E. Vehicle emissions and fertilizer impact the leaf chemistry of urban trees in Salt Lake Valley, UT. Environ. Pollut. 2019, 254, 112984. [Google Scholar] [CrossRef]
- Pereira, M.A.G.; Domingos, M.; da Silva, E.A.; Aragaki, S.; Ramon, M.; Camargo, P.D.B.; Ferreira, M.L. Isotopic composition (d(13)C and d(15)N) in the soil-plant system of subtropical urban forests. Sci. Total Environ. 2022, 851, 158052. [Google Scholar] [CrossRef]
- Evans, R.D. Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci. 2001, 6, 121–126. [Google Scholar] [CrossRef]
- Werner, R.A.; Schmidt, H.L. The in vivo nitrogen isotope discrimination among organic plant compounds. Phytochemistry 2002, 61, 465–484. [Google Scholar] [CrossRef]
- Seidel, F.; Lopez, M.L.L.; Celi, L.; Bonifacio, E.; Oikawa, A.; Yamanaka, T. N isotope fractionation in tree tissues during N reabsorption and remobilization in Fagus crenata Blume. Forests 2019, 10, 330. [Google Scholar] [CrossRef] [Green Version]
- Gong, C.; Xian, C.; Cui, B.; He, G.; Wei, M.; Zhang, Z.; Ouyang, Z. Estimating NOx removal capacity of urban trees using stable isotope method: A case study of Beijing, China. Environ. Pollut. 2021, 290, 118004. [Google Scholar] [CrossRef]
- Xu, Y.; Xiao, H.; Wu, D. Traffic-related dustfall and NOx, but not NH3, seriously affect nitrogen isotopic compositions in soil and plant tissues near the roadside. Environ. Pollut. 2019, 249, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Felix, J.D.; Elliott, E.M. Isotopic composition of passively collected nitrogen dioxide emissions: Vehicle, soil and livestock source signatures. Atmos. Environ. 2014, 92, 359–366. [Google Scholar] [CrossRef]
- Redling, K.; Elliott, E.; Bain, D.; Sherwell, J. Highway contributions to reactive nitrogen deposition: Tracing the fate of vehicular NOx using stable isotopes and plant biomonitors. Biogeochemistry 2013, 116, 261–274. [Google Scholar] [CrossRef]
- Walters, W.W.; Goodwin, S.R.; Michalski, G. Nitrogen stable isotope composition (delta15N) of vehicle-emitted NOx. Environ. Sci. Technol. 2015, 49, 2278–2285. [Google Scholar] [CrossRef] [PubMed]
- Laffray, X.; Rose, C.; Garrec, J.-P. Biomonitoring of traffic-related nitrogen oxides in the Maurienne valley (Savoie, France), using purple moor grass growth parameters and leaf N-15/N-14 ratio. Environ. Pollut. 2010, 158, 1652–1660. [Google Scholar] [CrossRef]
- Guerrieri, M.; Siegwolf, R.; Saurer, M.; Jäggi, M.; Cherubini, P.; Ripullone, F.; Borghetti, M. Impact of different nitrogen emission sources on tree physiology as assessed by a triple stable isotope approach. Atmos. Environ. 2009, 43, 410–418. [Google Scholar] [CrossRef]
- Gong, C.; Xian, C.; Su, Y.; Ouyang, Z. Estimating the nitrogen source apportionment of Sophora japonica in roadside green spaces using stable isotope. Sci. Total Environ. 2019, 689, 1348–1357. [Google Scholar] [CrossRef]
- Liu, X.; Wang, T.; Su, Q. Relative importance of climatic and edaphic factors as drivers of plant delta N-15 along a longitudinal transect. Ecosyst. Health Sustain. 2022, 8, 2071766. [Google Scholar] [CrossRef]
- Zong, Z.; Tan, Y.; Wang, X.; Tian, C.; Fang, Y.; Chen, Y.; Fang, Y.; Han, G.; Li, J.; Zhang, G. Assessment and quantification of NOx sources at a regional background site in North China: Comparative results from a Bayesian isotopic mixing model and a positive matrix factorization model. Environ. Pollut. 2018, 242, 1379–1386. [Google Scholar] [CrossRef]
- Wuytack, T.; Samson, R.; Wuyts, K.; Adriaenssens, S.; Kardel, F.; Verheyen, K. Do leaf characteristics of White Willow (Salix alba L.), Northern Red Oak (Quercus rubra L.), and Scots Pine (Pinus sylvestris L.) respond differently to ambient air pollution and other environmental stressors? Water Air Soil Pollut. 2013, 224, 1635. [Google Scholar] [CrossRef]
- Veselkin, D.; Kuyantseva, N.; Mumber, A.; Molchanova, D.; Kiseleva, D. delta N-15 in birch and pine leaves in the vicinity of a large copper smelter indicating a change in the conditions of their soil nutrition. Forests 2022, 13, 1299. [Google Scholar] [CrossRef]
- Wang, K.; Liu, X.; Zeng, X.; Xu, G.; Zhang, L.; Li, C. Stable nitrogen isotope in tree rings: Progresses, problems and prospects. Acta Geogr. Sin. 2021, 76, 1193–1205. [Google Scholar]
- Sidorova, O.V.; Siegwolf, R.T.W.; Myglan, V.; Ovchinnikov, D.V.; Shishov, V.V.; Helle, G.; Loader, N.J.; Saurer, M. The application of tree-rings and stable isotopes for reconstructions of climate conditions in the Russian Altai. Clim. Chang. 2013, 120, 153–167. [Google Scholar] [CrossRef]
- Churakova, O.V.; Fonti, M.V.; Barinov, V.V.; Zharkov, M.S.; Taynik, A.V.; Trushkina, T.V.; Kirdyanov, A.V.; Arzac, A.; Saurer, M. Towards the third millennium changes in Siberian triple tree-ring stable isotopes. Forests 2022, 13, 934. [Google Scholar] [CrossRef]
- Barbour, M.M.; Farquhar, G.D. Relative humidity- and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves. Plant Cell Environ. 2000, 23, 473–485. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Cernusak, L.A.; Barnes, B. Heavy water fractionation during transpiration. Plant Physiol. 2007, 143, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Horita, J.; Rozanski, K.; Cohen, S. Isotope effects in the evaporation of water: A status report of the Craig–Gordon model. Isot. Environ. Health Stud. 2008, 44, 23–49. [Google Scholar] [CrossRef]
- Lorrey, A.M.; Brookman, T.H.; Evans, M.N.; Fauchereau, N.C.; Macinnis-Ng, C.; Barbour, M.M.; Criscitiello, A.; Eischeid, G.; Fowler, A.M.; Horton, T.W.; et al. Stable oxygen isotope signatures of early season wood in New Zealand kauri (Agathis australis) tree rings: Prospects for palaeoclimate reconstruction. Dendrochronologia 2016, 40, 50–63. [Google Scholar] [CrossRef]
- Gong, C.; Xian, C.; Ouyang, Z. Assessment of NO2 Purification by Urban Forests Based on the i-Tree Eco Model: Case Study in Beijing, China. Forests 2022, 13, 369. [Google Scholar] [CrossRef]
- Xian, C.; Ouyang, Z.; Lu, F.; Xiao, Y.; Li, Y. Quantitative evaluation of reactive nitrogen emissions with urbanization: A case study in Beijing megacity, China. Environ. Sci. Pollut. Res. 2016, 23, 17689–17701. [Google Scholar] [CrossRef]
- Xian, C.; Wu, T.; Lu, F.; Zhang, J.; Gong, C.; Ouyang, Z. The nitrogen footprints of China’s major urban agglomerations: Understanding regional challenges to advance sustainable development. Environ. Res. Lett. 2022, 17, 045020. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Guan, H.; Xiao, H.; Liang, Y.; Zheng, N.; Luo, L.; Liu, C.; Fang, X.; Xiao, H. Oxidation and sources of atmospheric NOx during winter in Beijing based on delta O-18-delta N-15 space of particulate nitrate. Environ. Pollut. 2021, 276, 116708. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Tang, L.; Hou, H.; Wang, Y.; Mai, Y.; He, W.; Wang, W.; Su, H. The spatial-temporal distribution of air pollution and its relationship with landscape pattern in Shenzhen. Acta Ecol. Sin. 2021, 41, 8758–8770. [Google Scholar]
- Yang, J.; McBride, J.; Zhou, J.; Sun, Z. The urban forest in Beijing and its role in air pollution reduction. Urban For. Urban Green. 2005, 3, 65–78. [Google Scholar] [CrossRef]
- Su, C.; Cai, W.; Han, B.; Li, X.; Jiang, N.; Ouyang, Z. A study on the characteristics of the dominant vegetation species in Shenzhen based on a rapid-census method. Acta Ecol. Sin. 2020, 40, 8516–8527. [Google Scholar]
- Saurer, M.; Aellen, K.; Siegwolf, R. Correlating delta C-13 and delta O-18 in cellulose of trees. Plant Cell Environ. 1997, 20, 1543–1550. [Google Scholar] [CrossRef]
- Liu, Z.; Jia, G.; Yu, X.; Lu, W.; Zhang, J. Water use by broadleaved tree species in response to changes in precipitation in a mountainous area of Beijing. Agric. Ecosyst. Environ. 2018, 251, 132–140. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, X.; Pang, Y.; Li, S.; Long, Y.; Gao, L.; Zhang, K.; Chen, J.; Ji, Z. Spatial and seasonal geochemical and stable isotopic characteristics of groundwater associated with flow system and source identification in Liuxi River catchment. Environ. Chem. 2017, 36, 2701–2710. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://cran.r-project.org/ (accessed on 30 November 2022).
- Bates, D.; Maechler, M.; Bolker, B.M.; Walker, S.C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 48. [Google Scholar] [CrossRef]
- Performance: Assessment of Regression Models Performance. Available online: https://cran.r-project.org/web/packages/performance/index.html (accessed on 30 November 2022).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. Available online: https://cran.r-project.org/web/packages/cowplot/index.html (accessed on 30 November 2022).
- Dettenmaier, E.M.; Doucette, W.J.; Bugbee, B. Chemical hydrophobicity and uptake by plant roots. Environ. Sci. Technol. 2008, 43, 324–329. [Google Scholar] [CrossRef]
- Liu, X.; Wang, G. Measurements of nitrogen isotope composition of plants and surface soils along the altitudinal transect of the eastern slope of Mount Gongga in southwest China. Rapid Commun. Mass Spectrom. 2010, 24, 3063–3071. [Google Scholar] [CrossRef]
- Kahmen, A.; Wanek, W.; Buchmann, N. Foliar delta(15)N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient. Oecologia 2008, 156, 861–870. [Google Scholar] [CrossRef] [Green Version]
- Bermejo-Orduna, R.; McBride, J.R.; Shiraishi, K.; Elustondo, D.; Lasheras, E.; Santamaría, J.M. Biomonitoring of traffic-related nitrogen pollution using Letharia vulpina (L.) Hue in the Sierra Nevada, California. Sci. Total Environ. 2014, 490, 205–212. [Google Scholar] [CrossRef]
- Nanus, L.; Campbell, D.H.; Lehmann, C.M.B.; Mast, M.A. Spatial and temporal variation in sources of atmospheric nitrogen deposition in the Rocky Mountains using nitrogen isotopes. Atmos. Environ. 2018, 176, 110–119. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Nowak, D.J. Spatial heterogeneity and air pollution removal by an urban forest. Landsc. Urban Plan. 2009, 90, 102–110. [Google Scholar] [CrossRef]
- Jeanjean, A.P.R.; Hinchliffe, G.; McMullan, W.A.; Monks, P.S.; Leigh, R.J. A CFD study on the effectiveness of trees to disperse road traffic emissions at a city scale. Atmos. Environ. 2015, 120, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Elliott, E.M.; Kendall, C.; Boyer, E.W.; Burns, D.A.; Lear, G.G.; Golden, H.E.; Harlin, K.; Bytnerowicz, A.; Butler, T.J.; Glatz, R. Dual nitrate isotopes in dry deposition: Utility for partitioning NOx source contributions to landscape nitrogen deposition. J. Geophys. Res. Biogeosci. 2009, 114, G04020. [Google Scholar] [CrossRef] [Green Version]
- Elliott, E.M.; Yu, Z.; Cole, A.S.; Coughlin, J.G. Isotopic advances in understanding reactive nitrogen deposition and atmospheric processing. Sci. Total Environ. 2019, 662, 393–403. [Google Scholar] [CrossRef]
- Kalcsits, L.A.; Guy, R.D. Whole-plant and organ-level nitrogen isotope discrimination indicates modification of partitioning of assimilation, fluxes and allocation of nitrogen in knockout lines of Arabidopsis thaliana. Physiol. Plant. 2013, 149, 249–259. [Google Scholar] [CrossRef]
- Hu, Y.T.; Zhao, P.; Niu, J.; Sun, Z.; Zhu, L.; Ni, G. Canopy stomatal uptake of NOX, SO2 and O3 by mature urban plantations based on sap flow measurement. Atmos. Environ. 2016, 125, 165–177. [Google Scholar] [CrossRef]
- Manninen, S.; Sassi, M.K.; Loven, K. Effects of nitrogen oxides on ground vegetation, Pleurozium schreberi and the soil beneath it in urban forests. Ecol. Indic. 2013, 24, 485–493. [Google Scholar] [CrossRef]
- Song, X.; Barbour, M.M.; Saurer, M.; Helliker, B.R. Examining the large-scale convergence of photosynthesis-weighted tree leaf temperatures through stable oxygen isotope analysis of multiple data sets. New Phytol. 2011, 192, 912–924. [Google Scholar] [CrossRef] [PubMed]
- Cheesman, A.W.; Cernusak, L.A. Infidelity in the outback: Climate signal recorded in Delta O-18 of leaf but not branch cellulose of eucalypts across an Australian aridity gradient. Tree Physiol. 2017, 37, 554–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladvocat Cintra, B.B.; Gloor, M.; Boom, A.; Schöngart, J.; Locosselli, G.M.; Brienen, R. Contrasting controls on tree ring isotope variation for Amazon floodplain and terra firme trees. Tree Physiol. 2019, 39, 845–860. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, X.J.; Fangmeier, A.; Goulding, K.T.W.; Zhang, F.S. Nitrogen inputs and isotopes in precipitation in the North China Plain. Atmos. Environ. 2008, 42, 1436–1448. [Google Scholar] [CrossRef]
- Jia, G.; Chen, F. Monthly variations in nitrogen isotopes of ammonium and nitrate in wet deposition at Guangzhou, south China. Atmos. Environ. 2010, 44, 2309–2315. [Google Scholar] [CrossRef]
- Xie, L.; Wei, G.; Deng, W.; Zhao, X. Daily delta O-18 and delta D of precipitations from 2007 to 2009 in Guangzhou, South China: Implications for changes of moisture sources. J. Hydrol. 2011, 400, 477–489. [Google Scholar] [CrossRef]
- Liu, W.H.; Zhao, J.Z.; Ouyang, Z.Y.; Soderlund, L.; Liu, G.H. Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environ. Int. 2005, 31, 805–812. [Google Scholar] [CrossRef]
- Xu, C.; Lu, C.; Sun, Q. Impact of climate change on irrigation water requirement of wheat growth-A case study of the Beijing-Tianjin-Hebei region in China. Urban Clim. 2021, 39. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Qiu, S.; Peng, J. Using the modified i-Tree Eco model to quantify air pollution removal by urban vegetation. Sci. Total Environ. 2019, 688, 673–683. [Google Scholar] [CrossRef]
City | Relative Humidity (%) | Forest Coverage (%) | PM10 (μg/m3) | PM2.5 (μg/m3) | NO2 (μg/m3) | O3 (μg/m3) |
---|---|---|---|---|---|---|
Beijing | 51 | 44.4 | 56 | 38 | 29 | 149 |
Shenzhen | 76 | 39.1 | 37 | 18 | 23 | 130 |
City | Type of Green Land | Number of Sites | Mean Distance to Highway (m) | Soil Samples | Leaf Samples |
---|---|---|---|---|---|
Beijing | urban park | 4 | 41 | 17 | 12 |
green belt | 3 | 28 | 15 | 9 | |
Shenzhen | urban park | 2 | 430 | 14 | 10 |
green belt | 2 | 140 | 8 | 6 | |
Total | All sites | 11 | 122 | 54 | 37 |
Parameter | Description | Value | Sources |
---|---|---|---|
εe | Equilibrium fractionation factor, change of phase from liquid water to vapor at 20 °C | 9.8‰ | [46] |
εk | Kinetic fractionation factor, diffusion of vapor into unsaturated air | 26.5‰ | [46] |
εc | Biochemical fractionation factor, discrimination effect between water and the biosynthesis of cellulose | 27‰ | [46] |
εcp | The difference in enrichment between whole plant tissue and its cellulose | –8‰ | [35] |
δ18Osw | The δ18O value of soil water, extracted from local studies | −5.9‰ −6.0‰ | [47,48] |
δ18Ov | The δ18O value of atmospheric vapor, under the assumption of isotopic equilibrium with soil water, δ18Ov − δ18Osw = −εe | −15.7‰ a −15.8‰ b | Calculated based on equilibrium assumption |
δ18Olb | The δ18O value of whole leaf tissue determined in this study | 30.5~36.5‰ a 21.2~28.6‰ b | A range of values based on samples |
f | Correction factor summarize the dampening effect of leaf water δ18O signal | 0.4~1 | A range of values between 0.4 and 1 |
ea/ei | The ratio of atmospheric and intercellular vapor pressure | – | Unknown value that need to solve the equation |
P. Tomentosa a (n = 21) | Soil a (n = 32) | F. virens b (n = 16) | Soil b (n = 22) | ||
---|---|---|---|---|---|
δ15N (‰) | All | 3.05 ± 2.22 | 7.75 ± 1.72 | 4.34 ± 4.40 | 4.06 ± 2.26 |
Park | 3.57 ± 2.12 | 7.37 ± 1.42 | 1.64 ± 2.05 | 2.88 ± 1.77 | |
Road | 2.35 ± 2.27 | 8.42 ± 2.03 | 8.84 ± 3.41 | 6.12 ± 1.36 | |
δ18O (‰) | All | 33.75 ± 1.45 | 20.43 ± 1.55 | 24.95 ± 2.09 | 12.08 ± 1.28 |
Park | 33.36 ± 1.02 | 20.2 ± 1.60 | 25.36 ± 2.20 | 11.70 ± 1.10 | |
Road | 34.27 ± 1.82 | 20.8 ± 1.44 | 24.27 ± 1.89 | 12.70 ± 1.41 | |
TN (%) | All | 1.66 ± 0.15 | 0.12 ± 0.05 | 2.01 ± 0.70 | 0.14 ± 0.10 |
Park | 1.63 ± 0.16 | 0.11 ± 0.05 | 1.69 ± 0.32 | 0.11 ± 0.08 | |
Road | 1.71 ± 0.14 | 0.13 ± 0.06 | 2.52 ± 0.89 | 0.20 ± 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, C.; Xian, C.; Ouyang, Z. Isotopic Composition (δ15N and δ18O) of Urban Forests in Different Climate Types Indicates the Potential Influences of Traffic Exhaust and Relative Humidity. Forests 2022, 13, 2060. https://doi.org/10.3390/f13122060
Gong C, Xian C, Ouyang Z. Isotopic Composition (δ15N and δ18O) of Urban Forests in Different Climate Types Indicates the Potential Influences of Traffic Exhaust and Relative Humidity. Forests. 2022; 13(12):2060. https://doi.org/10.3390/f13122060
Chicago/Turabian StyleGong, Cheng, Chaofan Xian, and Zhiyun Ouyang. 2022. "Isotopic Composition (δ15N and δ18O) of Urban Forests in Different Climate Types Indicates the Potential Influences of Traffic Exhaust and Relative Humidity" Forests 13, no. 12: 2060. https://doi.org/10.3390/f13122060
APA StyleGong, C., Xian, C., & Ouyang, Z. (2022). Isotopic Composition (δ15N and δ18O) of Urban Forests in Different Climate Types Indicates the Potential Influences of Traffic Exhaust and Relative Humidity. Forests, 13(12), 2060. https://doi.org/10.3390/f13122060