Bird Community Composition and Functional Guilds Response to Vegetation Structure in Southwest Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Bird Survey
2.3. Functional Guilds
2.4. Vegetation Structure
2.5. Data Analysis
3. Results
3.1. Habitat Characteristics
3.2. Community Composition
3.3. Vegetation Structure and Relationships with Bird Community
4. Discussion
4.1. Effects of Vegetation Structure on Bird Community Composition
4.2. Functional Guild Richness and Relative Abundance in Relation to Vegetation Structure
4.3. Conservation Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giam, X.; Scheffers, B.R.; Sodhi, N.S.; Wilcove, D.S.; Ceballos, G.; Ehrlich, P.R. Reservoirs of Richness: Least Disturbed Tropical Forests Are Centres of Undescribed Species Diversity. Proc. R. Soc. B Biol. Sci. 2011, 279, 433. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, C.J.A.A.; Sodhi, N.S.; Brook, B.W. Tropical Turmoil: A Biodiversity Tragedy in Progress. Front. Ecol. Environ. 2009, 7, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Pinto, S.R.R.; Mendes, G.; Santos, A.M.M.; Dantas, M.; Tabarelli, M.; Melo, F.P.L. Landscape Attributes Drive Complex Spatial Microclimate Configuration of Brazilian Atlantic Forest Fragments. Trop. Conserv. Sci. 2010, 3, 389–402. [Google Scholar] [CrossRef]
- Wang, F.; Zou, B.; Li, H.; Li, Z. The Effect of Understory Removal on Microclimate and Soil Properties in Two Subtropical Lumber Plantations. J. For. Res. 2014, 19, 238–243. [Google Scholar] [CrossRef]
- Wilson, E.O. The Global Solution to Extinction. New York Times, 12 March 2016; p. 5. [Google Scholar]
- De Lima, R.F.; Dallimer, M.; Atkinson, P.W.; Barlow, J. Biodiversity and Land-Use Change: Understanding the Complex Responses of an Endemic-Rich Bird Assemblage. Divers. Distrib. 2013, 19, 411–422. [Google Scholar] [CrossRef]
- Seymour, C.L.; Simmons, R.E.; Joseph, G.S.; Slingsby, J.A. On Bird Functional Diversity: Species Richness and Functional Differentiation Show Contrasting Responses to Rainfall and Vegetation Structure in an Arid Landscape. Ecosystems 2015, 18, 971–984. [Google Scholar] [CrossRef]
- Knight, R.L.; Gutzwiller, K.J.; Doerr, P.D.; Knight, R.L.; Gutzwiller, K.J. Wildlife and Recreationists: Coexistence through Management and Research; Island Press: Washington, DC, USA, 1997; Volume 61, ISBN 1559632577. [Google Scholar]
- States, U.; Gallatin National Forest (N.F.). Travel Management Plan: Environmental Impact Statement; Gallatin National Forest: Helena, MN, USA, 2007.
- Lowe, A.; Rogers, A.C.; Durrant, K.L. Effect of Human Disturbance on Long-Term Habitat Use and Breeding Success of the European Nightjar, Caprimulgus Europaeus. Avian Conserv. Ecol. 2014, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Lindenmayer, D.B.; Franklin, J.F. Conserving Forest Biodiversity: A Comprehensive Multiscaled Approach; Island Press: Washington, DC, USA, 2002; ISBN 1559639350. [Google Scholar]
- Newbold, T.; Scharlemann, J.P.W.W.; Butchart, S.H.M.M.; Şekercioǧlu, Ç.H.; Alkemade, R.; Booth, H.; Purves, D.W. Ecological Traits Affect the Response of Tropical Forest Bird Species to Land-Use Intensity. Proc. R. Soc. B Biol. Sci. 2013, 280, 2131. [Google Scholar] [CrossRef] [Green Version]
- Costantini, D.; Edwards, D.P.; Simons, M.J.P. Life after Logging in Tropical Forests of Borneo: A Meta-Analysis. Biol. Conserv. 2016, 196, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Thorn, S.; Werner, S.A.B.; Wohlfahrt, J.; Bässler, C.; Seibold, S.; Quillfeldt, P.; Müller, J. Response of Bird Assemblages to Windstorm and Salvage Logging—Insights from Analyses of Functional Guild and Indicator Species. Ecol. Indic. 2016, 65, 142–148. [Google Scholar] [CrossRef]
- Mestre, L.A.M.; Cosset, C.C.P.; Nienow, S.S.; Krul, R.; Rechetelo, J.; Festti, L.; Edwards, D.P. Impacts of Selective Logging on Avian Phylogenetic and Functional Diversity in the Amazon. Anim. Conserv. 2020, 23, 725–740. [Google Scholar] [CrossRef]
- Tejeda-Cruz, C.; Sutherland, W.J. Bird Responses to Shade Coffee Production. Anim. Conserv. 2004, 7, 169–179. [Google Scholar] [CrossRef]
- Céspedes, L.N.; Bayly, N.J. Over-Winter Ecology and Relative Density of Canada Warbler Cardellina Canadensis in Colombia: The Basis for Defining Conservation Priorities for a Sharply Declining Long-Distance Migrant. Bird Conserv. Int. 2019, 29, 229. [Google Scholar] [CrossRef] [Green Version]
- Buechley, E.R.; Şekercioğlu, Ç.H.; Atickem, A.; Gebremichael, G.; Ndungu, J.K.; Mahamued, B.A.; Beyene, T.; Mekonnen, T.; Lens, L. Importance of Ethiopian Shade Coffee Farms for Forest Bird Conservation. Biol. Conserv. 2015, 188, 50–60. [Google Scholar] [CrossRef]
- Gebremichael, G.; Tsegaye, D.; Bunnefeld, N.; Zinner, D.; Atickem, A. Fluctuating Asymmetry and Feather Growth Bars as Biomarkers to Assess the Habitat Quality of Shade Coffee Farming for Avian Diversity Conservation. R. Soc. Open Sci. 2019, 6, 131395142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Beenhouwer, M.; Aerts, R.; Hundera, K.; Van Overtveld, K.; Honnay, O. Management Intensification in Ethiopian Coffee Forests Is Associated with Crown Habitat Contraction and Loss of Specialized Epiphytic Orchid Species. Basic Appl. Ecol. 2015, 16, 592–600. [Google Scholar] [CrossRef]
- Atikah, S.N.; Yahya, M.S.; Norhisham, A.R.; Kamarudin, N.; Sanusi, R.; Azhar, B. Effects of Vegetation Structure on Avian Biodiversity in a Selectively Logged Hill Dipterocarp Forest. Glob. Ecol. Conserv. 2021, 28, e01660. [Google Scholar] [CrossRef]
- Misni, A.; Rasam, A.R.A.; Buyadi, S.N.A. Spatial Analysis of Habitat Conservation for Hornbills: A Case Study of Royal Belum-Temengor Forest Complex in Perak State Park, Malaysia. Pertanika J. Soc. Sci. Humanit. 2017, 25, 11–20. [Google Scholar]
- Zellweger, F.; De Frenne, P.; Lenoir, J.; Vangansbeke, P.; Verheyen, K.; Bernhardt-Römermann, M.; Baeten, L.; Hédl, R.; Berki, I.; Brunet, J.; et al. Response to Comment on “Forest Microclimate Dynamics Drive Plant Responses to Warming”. Science 2020, 370, 772–775. [Google Scholar] [CrossRef]
- Gutzwiller, K.J.; Clements, K.L.; Marcum, H.A.; Wilkins, C.A.; Anderson, S.H. Vertical Distributions of Breeding-Season Birds: Is Human Intrusion Influential? Wilson Bull. 1998, 110, 497–503. [Google Scholar]
- Komar, O. Priority Contribution. Ecology and Conservation of Birds in Coffee Plantations: A Critical Review. Bird Conserv. Int. 2006, 16, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Sekercioglu, C.H. Increasing Awareness of Avian Ecological Function. Trends Ecol. Evol. 2006, 21, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Gove, A.D.; Hylander, K.; Nemomisa, S.; Shimelis, A. Ethiopian Coffee Cultivation—Implications for Bird Conservation and Environmental Certification. Conserv. Lett. 2008, 1, 208–216. [Google Scholar] [CrossRef]
- Shumi, G.; Rodrigues, D.; Patríciasteijn, I.; Schultner, J.; Hanspach, J.; Hylander, K.; Senbeta, F.; Fischer, J. Coffee Management and the Conservation of Forest Bird Diversity in Southwestern Ethiopia. Biol. Conserv. 2018, 217, 131–139. [Google Scholar] [CrossRef]
- Hundera, K.; Aerts, R.; Fontaine, A.; Van Mechelen, M.; Gijbels, P.; Honnay, O.; Muys, B. Effects of Coffee Management Intensity on Composition, Structure, and Regeneration Status of Ethiopian Moist Evergreen Afromontane Forests. Environ. Manag. 2013, 51, 801–809. [Google Scholar] [CrossRef]
- Pomeroy, D.; Tengecho, B. Studies of Birds in a Semi-Arid Area of Kenya. III The Use of ‘Timed Species-Counts’ for Studying Regional Avifaunas. J. Trop. Ecol. 1986, 2, 231–247. [Google Scholar] [CrossRef]
- Freeman, S.N.; Pomeroy, D.E.; Tushabe, H. On the Use of Timed Species Counts to Estimate Avian Abundance Indices in Species-Rich Communities. Afr. J. Ecol. 2003, 41, 337–348. [Google Scholar] [CrossRef]
- Bibby, C.J.; Jones, M.; Marsden, S. Bird Surveys; Expedition Advisory Centre London: London, UK, 1998; ISBN 0907649793. [Google Scholar]
- Brown, L.; Urban, E.K.; Newman, K.B. The Birds of Africa: Volume I; Bloomsbury Publishing: London, UK, 2020; ISBN 1-4081-8908-9. [Google Scholar]
- Fry, H.C.; Keith, S. The Birds of Africa; Christopher Helm: London, UK, 2004; Volume 7. [Google Scholar]
- Keith, S.; Urban, E.K.; Fry, C.H. The Birds of Africa; Academic Press: London, UK, 1992; Volume 4. [Google Scholar]
- Urban, E.K.; Fry, C.H.; Keith, S. The Birds of Africa; Academic Press: London, UK, 1986; Volume 2. [Google Scholar]
- BirdLife International. IUCN Red List for Birds. Available online: http://www.Birdlife.org (accessed on 4 December 2021).
- Gill, F.; Donsker, D.; Rasmussen, P. IOC World Bird List (V10.1). Available online: https://doi.org/10.14344/IOC.ML (accessed on 26 July 2020).
- Hill, M.O.; Gauch, H.G. Detrended Correspondence Analysis: An Improved Ordination Technique. Vegetatio 1980, 42, 47–58. [Google Scholar] [CrossRef]
- R Core Team. The R Project for Statistical Computing; R Core Team: Vienna, Austria, 2022; Available online: http//www.R-project.org (accessed on 16 July 2022).
- MacArthur, R.H.; MacArthur, J.W. On Bird Species Diversity. Ecology 1961, 42, 594–598. [Google Scholar] [CrossRef]
- Clough, Y.; Putra, D.D.; Pitopang, R.; Tscharntke, T. Local and Landscape Factors Determine Functional Bird Diversity in Indonesian Cacao Agroforestry. Biol. Conserv. 2009, 142, 1032–1041. [Google Scholar] [CrossRef]
- Helbig-Bonitz, M.; Ferger, S.W.; Böhning-Gaese, K.; Tschapka, M.; Howell, K.; Kalko, E.K. V Bats Are Not Birds–Different Responses to Human Land-use on a Tropical Mountain. Biotropica 2015, 47, 497–508. [Google Scholar] [CrossRef]
- Philpott, S.M.; Bichier, P. Effects of Shade Tree Removal on Birds in Coffee Agroecosystems in Chiapas, Mexico. Agric. Ecosyst. Environ. 2012, 149, 171–180. [Google Scholar] [CrossRef]
- Newmark, W.D.; Stanley, T.R. Habitat Fragmentation Reduces Nest Survival in an Afrotropical Bird Community in a Biodiversity Hotspot. Proc. Natl. Acad. Sci. USA 2011, 108, 11488–11493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenberg, R.; Bichier, P.; Sterling, J. Bird Populations in Rustic and Planted Shade Coffee Plantations of Eastern Chiapas, Mexico. Biotropica 1997, 29, 501–514. [Google Scholar] [CrossRef]
Variables | Number of Patches | Mean | SD |
---|---|---|---|
Mean number of trees | 15 | 208.06 | 123.80 |
Mean DBH (cm) | 15 | 50.99 | 15.02 |
Mean basal area (m2 ha−1) | 15 | 25.91 | 16.43 |
Mean crown closure (%) | 15 | 59.34 | 8.54 |
Mean crown cover (%) | 15 | 51.93 | 10.19 |
Mean tree height (m) | 15 | 11.87 | 3.44 |
Mean maximum tree height (m) | 15 | 18.14 | 3.85 |
Variables | PC 1 | PC 2 | PC 3 |
---|---|---|---|
Mean number of trees | −0.47892 | 0.35909 | 0.23284 |
Mean DBH | 0.10061 | 0.72146 | −0.03815 |
Mean basal area | 0.24164 | 0.22275 | 0.55736 |
Mean crown closure | 0.041308 | 0.010143 | 0.6977 |
Mean crown cover | 0.26944 | 0.52895 | −0.35788 |
Mean tree height | 0.56589 | −0.14172 | −0.04252 |
Mean maximum tree height | 0.55461 | −0.03097 | 0.13043 |
%variance explained | 40.79 | 23.33 | 20.29 |
Intercept [SE] | PC1 | PC2 | PC3 | Patch Area | R Square | |
---|---|---|---|---|---|---|
Richness | ||||||
High FD | 3.62 (0.76) ** | 0.15 (0.26) | 0.66 (0.18) * | 0.20 (0.32) | 0.36 (0.76) | 0.37 |
Un forager | 4.45 (0.36) *** | −0.07 (0.12) | 0.59 (0.15) ** | −0.06 (0.16) | −1.06 (0.0.49) | 0.69 |
Relative Abu | ||||||
High FD | −0.303 (0.060) *** | 0.013 (0.003) * | 0.054 | |||
Medium FD | 0.119 (0.143) | 0.161 (0.067) * | −0.035 (0.035) | 0.123 (0.035) ** | −0.264 (0.170) | 0.044 |
Low FD | 0.176 (0.135) | 0.0154 (0.064) | 0.179 (0.049) *** | 0.149 (0.083) | −0.156 (0.098) | 0.130 |
Mh forager | −0.304 (0.063) *** | 0.005 (0.021) | 0.060 (0.026) * | −0.001 (0.028) | 0.176 (0.0.081) * | 0.052 |
Mh/C forager | 0.626 (0.026) *** | 0.010 (0.008) | 0.013 (0.010) | 0.028 (0.011) * | 0.067 (0.032) | 0.610 |
Open-nester | 1.255 (0.154) *** | −0.007 (0.051) | −0.043 (0.026) | 0.074 (0.018) *** | 0.177 (0.017) ** | 0.055 |
Closed nester | 0.254 (0.105) * | −0.488 (0.122) *** | 0.065 | |||
Granivorous | 0.035 (0.135) | −0.425 (0.203) * | 0.060 | |||
C/SC nester | −0.153 (0.038) *** | −0.015 (0.015) | 0.029 (0.020) | 0.034 (0.021) | 0.008 (0.004) * | 0.027 |
Migrant | −0.333 (0.059) *** | 0.0013 (0.006) * | 0.035 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gebremichael, G.; Hundera, K.; De Decker, L.; Aerts, R.; Lens, L.; Atickem, A. Bird Community Composition and Functional Guilds Response to Vegetation Structure in Southwest Ethiopia. Forests 2022, 13, 2068. https://doi.org/10.3390/f13122068
Gebremichael G, Hundera K, De Decker L, Aerts R, Lens L, Atickem A. Bird Community Composition and Functional Guilds Response to Vegetation Structure in Southwest Ethiopia. Forests. 2022; 13(12):2068. https://doi.org/10.3390/f13122068
Chicago/Turabian StyleGebremichael, Gelaye, Kitessa Hundera, Lindsay De Decker, Raf Aerts, Luc Lens, and Anagaw Atickem. 2022. "Bird Community Composition and Functional Guilds Response to Vegetation Structure in Southwest Ethiopia" Forests 13, no. 12: 2068. https://doi.org/10.3390/f13122068
APA StyleGebremichael, G., Hundera, K., De Decker, L., Aerts, R., Lens, L., & Atickem, A. (2022). Bird Community Composition and Functional Guilds Response to Vegetation Structure in Southwest Ethiopia. Forests, 13(12), 2068. https://doi.org/10.3390/f13122068