Application of BLUP-GGE in Growth Variation Analysis in Southern-Type Populus deltoides Seedlings in Different Climatic Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Sites and Design
2.2. Test Method and Analysis
3. Results
3.1. Survival Rate
3.2. Growth Variation
3.3. G × E and Its Visualization
3.3.1. G × E
3.3.2. Ground Diameter and Height Visualization
3.4. Genotype Selection
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, J.J.; Jiao, W.X.; Wang, Q.; Wang, T.L.; Yang, H.Q.; Jin, J.X.; Feng, H.L.; Guo, J.H.; Feng, L.; Xu, X.; et al. Potential habitat and productivity loss of Populus deltoides industrial forest plantations due to global warming. For. Ecol. Manag. 2021, 496, 119474. [Google Scholar] [CrossRef]
- Chen, C.; Ding, C.J.; Huang, Q.J.; Li, Z.H.; Zhang, J.; Liu, N.; Li, B.; Su, X.H. Construction of phenotypic core collection of Populus deltoides. For. Resh. 2021, 34, 1–11. (In Chinese) [Google Scholar]
- Atabani, A.E.; Silitonga, A.S.; Badruddin, I.A.; Mahlia, T.M.I.; Masjuki, H.H.; Mekhilef, S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sust. Energ. Rev. 2012, 16, 2070–2093. [Google Scholar] [CrossRef]
- Norby, R.J.; DeLucia, E.H.; Gielen, B.; Calfapietra, C.; Giardina, C.P.; King, J.S.; Ledford, J.; McCarthy, H.R.; Moore, D.J.P.; Ceulemans, R.; et al. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc. Natl. Acad. Sci. USA 2005, 102, 18052–18056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.P.; Pei, X.N.; Hu, Y.B.; Chiang, V.L.; Zhao, X.Y. Effects of environment and genotype on growth traits in poplar clones in Northeast China. Euphytica 2021, 217, 169. [Google Scholar] [CrossRef]
- Yan, W.K.; Kang, M.S.; Ma, B.L.; Woods, S.; Cornelius, P.L. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci. 2007, 47, 643–655. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Hu, D.; Zheng, H.; Shu, Y. Genotype × environmental interaction by AMMI and GGE biplot analysis for the provenances of Michelia chapensis in South China. J. For. Res. 2016, 27, 659–664. [Google Scholar] [CrossRef]
- Liu, N.; Ding, C.J.; Li, B.; Ding, M.; Su, X.H.; Huang, Q.J. Analysis of the Genotype Interaction of Four-Year-Old Populus euramericana Using the BLUP-GGE Technique. Forests 2021, 12, 1759. [Google Scholar] [CrossRef]
- Yan, W.K. Analysis and Handling of G x E in a Practical Breeding Program. Crop Sci. 2016, 56, 2106–2118. [Google Scholar] [CrossRef]
- Yan, W.K.; Holland, J.B. A heritability-adjusted GGE biplot for test environment evaluation. Euphytica 2010, 171, 355–369. [Google Scholar] [CrossRef] [Green Version]
- Gilmour, A.R. Average information residual maximum likelihood in practice. J. Anim. Breed. Genet. 2019, 136, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Tinker, N.A. Biplot analysis of multi-environment trial data: Principles and applications. Can. J. Plant Sci. 2006, 86, 623–645. [Google Scholar] [CrossRef] [Green Version]
- Giri, K.; Chia, K.; Chandra, S.; Smith, K.F.; Leddin, C.M.; Ho, C.K.M.; Jacobs, J.L. Modelling and prediction of dry matter yield of perennial ryegrass cultivars sown in multi-environment multi-harvest trials in south-eastern Australia. Field Crops Res. 2019, 243, 107614. [Google Scholar] [CrossRef]
- Zhang, W.H.; Hu, J.L.; Yang, Y.M.; Lin, Y.Z. One compound approach combining factor-analytic model with AMMI and GGE biplot to improve multi-environment trials analysis. J. For. Res. 2020, 31, 123–130. [Google Scholar] [CrossRef]
- Uriarte, M.; Muscarella, R.; Zimmerman, J.K. Environmental heterogeneity and biotic interactions mediate climate impacts on tropical forest regeneration. Glob. Change Biol. 2018, 24, e692–e704. [Google Scholar] [CrossRef]
- Huang, W.; Ding, Y.; Wang, S.; Song, C.; Wang, F. Growth and development responses of the rhizome-root system in Pleioblastus pygmaeus to light intensity. Plants 2022, 11, 2204. [Google Scholar] [CrossRef]
- Lett, S.; Dorrepaal, E. Global drivers of tree seedling establishment at alpine treelines in a changing climate. Funct. Ecol. 2018, 32, 1666–1680. [Google Scholar] [CrossRef] [Green Version]
- Gibson, A.; Bachelard, E.P.; Hubick, K.T. Relationship Between Climate and Provenance Variation in Eucalyptus Camaldulensis Dehnh. Funct. Plant Biol. 1995, 22, 453–460. [Google Scholar] [CrossRef]
- Lu, P.X.; Parker, W.H.; Cherry, M.; Colombo, S.; Parker, W.C.; Man, R.Z.; Roubal, N. Survival and growth patterns of white spruce (Picea glauca [Moench] Voss) rangewide provenances and their implications for climate change adaptation. Ecol. Evol. 2014, 4, 2360–2374. [Google Scholar] [CrossRef]
- Yan, W.K.; Fregeau-Reid, J.; Martin, R.; Pageau, D.; Mitchell-Fetch, J. How many test locations and replications are needed in crop variety trials for a target region? Euphytica 2015, 202, 361–372. [Google Scholar] [CrossRef]
- Liu, X.T.; Zhao, Q.S.; Yin, P.; Li, H.X.; Li, X.S.; Wu, L.G.; Li, Y.J.; Hu, Y.B.; Zhao, X.Y. Variation and stability analysis of growth traits of poplar clones in the seedling stage in northeast China. J. For. Res. 2022. [Google Scholar] [CrossRef]
- Sixto, H.; Gil, P.M.; Ciria, P.; Camps, F.; Canellas, I.; Voltas, J. Interpreting genotype-by-environment interaction for biomass production in hybrid poplars under short-rotation coppice in Mediterranean environments. Glob. Change Biol. Bioenergy 2016, 8, 1124–1135. [Google Scholar] [CrossRef] [Green Version]
- Viana, J.M.S.; de Almeida, I.F.; de Resende, M.D.V.; Faria, V.R.; Silva, F.F.E. BLUP for genetic evaluation of plants in non-inbred families of annual crops. Euphytica 2010, 174, 31–39. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Ai, F.D.; Zhang, J.L.; Ma, X.Z.; Yang, W.L.; Wang, W.W.; Su, Y.T.; Wang, M.C.; Yang, Y.Z.; Mao, K.S.; et al. Survival in the Tropics despite isolation, inbreeding and asexual reproduction: Insights from the genome of the world’s southernmost poplar (Populus ilicifolia). Plant J. 2020, 103, 430–442. [Google Scholar] [CrossRef] [PubMed]
Environmental Factors | HN | NY |
---|---|---|
Longitude | E: 110°32 | E: 116°80 |
Latitude | N: 19°69 | N: 35°76 |
Annual temperature range (°C) | 11.4~38.9 | −18.1~38.1 |
Annual average temperature (°C) | 25.9 | 15.8 |
Annual average minimum temperature (°C) | 23.1 | 11.6 |
Annual daily precipitation ≥ 0.1 mm days | 124 | 106 |
Annual daily precipitation ≥ 10.0 mm days | 39 | 21 |
Number of days with a daily minimum temperature ≤ 2.0 °C | 0 | 146 |
Average number of days with an annual maximum temperature ≥ 30.0 °C | 202 | 102 |
Average monthly daylight duration (h) | 166.6 | 202.1 |
Average annual daylight duration (h) | 1999.2 | 2424.8 |
Introduction Site | Genotype Number | Amount | Introduction Site | Genotype Number | Amount |
---|---|---|---|---|---|
LA01 | 1–5 | 5 | TN01 | 51–67 | 17 |
LA04 | 6–10 | 5 | TN02 | 68–76 | 9 |
LA05 | 11–22 | 12 | TN03 | 77–90 | 14 |
LA06 | 23–27 | 5 | TN04 | 91–103 | 13 |
LA07 | 28–33 | 6 | TN05 | 104–119 | 16 |
LA08 | 34–39 | 6 | |||
LA09 | 40–50 | 11 |
Provenance | HN | NY | ||
---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | |
LA01 | 97.78% | 20.00% | 89.74% | 76.92% |
LA04 | 90.74% | 27.78% | 83.78% | 75.68% |
LA05 | 92.47% | 19.35% | 85.59% | 84.68% |
LA06 | 95.92% | 30.61% | 89.13% | 82.61% |
LA07 | 96.61% | 30.51% | 80.49% | 75.61% |
LA08 | 89.55% | 23.88% | 81.36% | 72.88% |
LA09 | 96.61% | 16.95% | 90.14% | 88.73% |
LA | 93.90% | 23.71% | 85.89% | 80.94% |
TN01 | 96.70% | 9.89% | 90.06% | 88.82% |
TN02 | 95.45% | 6.06% | 96.34% | 95.12% |
TN03 | 83.87% | 6.45% | 97.25% | 95.41% |
TN04 | 89.71% | 20.59% | 93.70% | 92.13% |
TN05 | 93.51% | 10.39% | 97.48% | 96.86% |
TN | 93.09% | 11.11% | 94.67% | 93.42% |
Total | 88.58% | 91.27% | 93.54% | 18.18% |
Sites | Traits (cm) | Mean ± SD | CV(%) |
---|---|---|---|
HN | H | 46.01 ± 30.21 | 65.61 |
GD | 0.51 ± 0.31 | 47.91 | |
NY | H | 148.41 ± 72.01 | 48.51 |
GD | 1.21 ± 0.51 | 43.71 | |
Total | H | 97.21 ± 75.31 | 77.41 |
GD | 0.91 ± 0.61 | 62.61 |
Trait | Source | Degree of Freedom | Sum of Squares | F Value | Significance |
---|---|---|---|---|---|
Ground Diameter | Block | 2 | 3.1197 | 75.41 | <0.001 *** |
Site | 1 | 3.9201 | 189.51 | <0.001 *** | |
Residual | - | 0.0207 | |||
Height | Block | 2 | 56235 | 178.21 | <0.001 *** |
Site | 1 | 36836 | 233.47 | <0.001 *** | |
Residual | - | 158 |
Source | GD | Height | ||||
---|---|---|---|---|---|---|
Variance Components | % Variance Components | Significance | Variance Components | % Variance Components | Significance | |
Genotype | 0.0018 | 1% | 0.45 | 207.6891 | 7% | 0.22 |
G × E | 0.1554 | 87% | 0.00 *** | 2620.8155 | 88% | 0.00 *** |
Error | 0.0207 | 12% | - | 157.7734 | 5% | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Liu, N.; Zhang, W.; Dong, Y.; Ding, M.; Huang, Q.; Ding, C.; Su, X. Application of BLUP-GGE in Growth Variation Analysis in Southern-Type Populus deltoides Seedlings in Different Climatic Regions. Forests 2022, 13, 2120. https://doi.org/10.3390/f13122120
Li Z, Liu N, Zhang W, Dong Y, Ding M, Huang Q, Ding C, Su X. Application of BLUP-GGE in Growth Variation Analysis in Southern-Type Populus deltoides Seedlings in Different Climatic Regions. Forests. 2022; 13(12):2120. https://doi.org/10.3390/f13122120
Chicago/Turabian StyleLi, Zhenghong, Ning Liu, Weixi Zhang, Yufeng Dong, Mi Ding, Qinjun Huang, Changjun Ding, and Xiaohua Su. 2022. "Application of BLUP-GGE in Growth Variation Analysis in Southern-Type Populus deltoides Seedlings in Different Climatic Regions" Forests 13, no. 12: 2120. https://doi.org/10.3390/f13122120
APA StyleLi, Z., Liu, N., Zhang, W., Dong, Y., Ding, M., Huang, Q., Ding, C., & Su, X. (2022). Application of BLUP-GGE in Growth Variation Analysis in Southern-Type Populus deltoides Seedlings in Different Climatic Regions. Forests, 13(12), 2120. https://doi.org/10.3390/f13122120