Generalization of U-Net Semantic Segmentation for Forest Change Detection in South Korea Using Airborne Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Study Area
2.3. Airborne and Tree Annotation Data Acquisition
2.4. Image Data Preprocessing
2.5. Deep Learning for Change Detection of Forest Region
2.5.1. U-Net
2.5.2. Forest Change Detection of U-Net
2.6. Performance Evaluation
3. Results and Discussions
3.1. Open Data Source for the Semantic Segmentation of Forest Region
3.2. Forest and Non-Forest Region Segmentation of U-Net
3.3. U-Net Test Performance Evaluation for Forest Change Detection
3.4. Feasibility Implication of Using Open Source Data and Deep Learning for Change Detection
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allen, J.C.; Barnes, D.F. The causes of deforestation in developing countries. Ann. Assoc. Am. Geogr. 1985, 75, 163–184. [Google Scholar] [CrossRef]
- Brovelli, M.A.; Sun, Y.; Yordanov, V. Monitoring forest change in the amazon using multi-temporal remote sensing data and machine learning classification on Google Earth Engine. ISPRS Int. J. Geo-Inf. 2020, 9, 580. [Google Scholar] [CrossRef]
- Pretzsch, H.; Hilmers, T.; Uhl, E.; Río, M.D.; Avdagić, A.; Bielak, K.; Bončina, A.; Coll, L.; Giammarch, F.; Stimm, K.; et al. Efficacy of trans-geographic observational network design for revelation of growth pattern in mountain forests across Europe. In Climate-Smart Forestry in Mountain Regions; Springer: Cham, Switzerland, 2022; pp. 141–187. [Google Scholar]
- Scheidl, C.; Heiser, M.; Kamper, S.; Thaler, T.; Klebinder, K.; Nagl, F.; Lechner, V.; Markart, G.; Rammer, W.; Seidl, R. The influence of climate change and canopy disturbances on landslide susceptibility in headwater catchments. Sci. Total Environ. 2020, 742, 140588. [Google Scholar] [CrossRef] [PubMed]
- Sidle, R.C.; Dhakal, A.S. Change on Landslide Hazards in Forest. Environ. Chang. Geomorphic Hazards For. 2002, 9, 123. [Google Scholar]
- Pappas, C.; Bélanger, N.; Bergeron, Y.; Blarquez, O.; Chen, H.Y.; Comeau, P.G.; Grandpré, L.D.; Delagrange, S.; DesRochers, A.; Diochon, A.; et al. Smartforests Canada: A Network of Monitoring Plots for Forest Management under Environmental Change. In Climate-Smart Forestry in Mountain Regions; Springer: Cham, Switzerland, 2022; pp. 521–543. [Google Scholar]
- Wulder, M.A.; Franklin, S.E. Remote Sensing of Forest Environments: Concepts and Case Studies; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Huete, A.R. Vegetation indices, remote sensing and forest monitoring. Geogr. Compass 2012, 6, 513–532. [Google Scholar] [CrossRef]
- Onishi, M.; Ise, T. Explainable identification and mapping of trees using UAV RGB image and deep learning. Sci. Rep. 2021, 11, 903. [Google Scholar] [CrossRef]
- Mäyrä, J.; Keski-Saari, S.; Kivinen, S.; Tanhuanpää, T.; Hurskainen, P.; Kullberg, P.; Poikolainen, L.; Viinikka, A.; Tuominen, S.; Kumpula, T.; et al. Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural networks. Remote Sens. Environ. 2021, 256, 112322. [Google Scholar] [CrossRef]
- Adjognon, G.S.; Rivera-Ballesteros, A.; van Soest, D. Satellite-based tree cover mapping for forest conservation in the drylands of Sub Saharan Africa (SSA): Application to Burkina Faso gazetted forests. Dev. Eng. 2019, 4, 100039. [Google Scholar] [CrossRef]
- Vu, T.T.; Vu, N.V.A.; Phung, H.P.; Nguyen, L.D. Enhanced urban functional land use map with free and open-source data. Int. J. Digit. Earth 2021, 14, 1744–1757. [Google Scholar] [CrossRef]
- Long, Y.; Xia, G.S.; Yang, W.; Zhang, L.; Li, D. Toward Dataset Construction for Remote Sensing Image Interpretation. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, IEEE, Brussels, Belgium, 11–16 July 2021; pp. 1210–1213. [Google Scholar]
- Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2094–2107. [Google Scholar] [CrossRef]
- Kalchbrenner, N.; Grefenstette, E.; Blunsom, P. A convolutional neural network for modelling sentences. arXiv 2014, arXiv:1404.2188. [Google Scholar]
- Sainath, T.N.; Kingsbury, B.; Sindhwani, V.; Arisoy, E.; Ramabhadran, B. Low-rank matrix factorization for deep neural network training with high-dimensional output targets. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, Vancouver, BC, Canada, 26–31 May 2013; pp. 6655–6659. [Google Scholar]
- Khan, M.J.; Yousaf, A.; Javed, N.; Nadeem, S.; Khurshid, K. Automatic target detection in satellite images using deep learning. J. Space Technol. 2017, 7, 44–49. [Google Scholar]
- Sun, C.; Huang, C.; Zhang, H.; Chen, B.; An, F.; Wang, L.; Yun, T. Individual tree crown segmentation and crown width extraction from a heightmap derived from aerial laser scanning data using a deep learning framework. Front. Plant Sci. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, T.; Futakami, N.; Yagi, M.; Kumabe, A.; Takeda, A.; Kunieda, E.; Shigematsu, N. Efficacy evaluation of 2D, 3D U-Net semantic segmentation and atlas-based segmentation of normal lungs excluding the trachea and main bronchi. J. Radiat. Res. 2020, 61, 257–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Zhou, X.Y.; Yang, G.Z. Normalization in training U-Net for 2-D biomedical semantic segmentation. IEEE Robot. Autom. Lett. 2019, 4, 1792–1799. [Google Scholar] [CrossRef] [Green Version]
- Fan, R.; Wang, H.; Cai, P.; Liu, M. Sne-roadseg: Incorporating surface normal information into semantic segmentation for accurate freespace detection. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland, 2020; pp. 340–356. [Google Scholar]
- Tran, L.A.; Le, M.H. Robust U-Net-based road lane markings detection for autonomous driving. In Proceedings of the 2019 International Conference on System Science and Engineering (ICSSE), IEEE, Dong Hoi, Vietnam, 20–21 July 2019; pp. 62–66. [Google Scholar]
- Zhou, Q.; Wang, Y.; Fan, Y.; Wu, X.; Zhang, S.; Kang, B.; Latecki, L.J. AGLNet: Towards real-time semantic segmentation of self-driving images via attention-guided lightweight network. Appl. Soft Comput. 2020, 96, 106682. [Google Scholar] [CrossRef]
- Chen, Z.; Li, D.; Fan, W.; Guan, H.; Wang, C.; Li, J. Self-attention in reconstruction bias U-Net for semantic segmentation of building rooftops in optical remote sensing images. Remote Sens. 2021, 13, 2524. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, Z.; Zhang, W.; Zhang, C.; Li, W.; Zhao, T. Semantic segmentation of urban buildings from VHR remote sensing imagery using a deep convolutional neural network. Remote Sens. 2019, 11, 1774. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liu, Q.; Wang, Y. Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. [Google Scholar] [CrossRef] [Green Version]
- Wagner, F.H.; Sanchez, A.; Tarabalka, Y.; Lotte, R.G.; Ferreira, M.P.; Aidar, M.P.; Gloor, E.; Phillips, O.L.; Aragao, L.E. Using the U-net convolutional network to map forest types and disturbance in the Atlantic rainforest with very high resolution images. Remote. Sens. Ecol. Conserv. 2019, 5, 360–375. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Ban, Y.; Nascetti, A. Learning U-Net without forgetting for near real-time wildfire monitoring by the fusion of SAR and optical time series. Remote Sens. Environ. 2021, 261, 112467. [Google Scholar] [CrossRef]
- Zhong, Y.; Su, Y.; Wu, S.; Zheng, Z.; Zhao, J.; Ma, A.; Zhu, Q.; Ye, R.; Li, X.; Pellikka, P.; et al. Open-source data-driven urban land-use mapping integrating point-line-polygon semantic objects: A case study of Chinese cities. Remote Sens. Environ. 2020, 247, 111838. [Google Scholar] [CrossRef]
- Chen, B.; Tu, Y.; Song, Y.; Theobald, D.M.; Zhang, T.; Ren, Z.; Li, X.; Yang, J.; Wang, J.; Wang, X.; et al. Mapping essential urban land use categories with open big data: Results for five metropolitan areas in the United States of America. ISPRS J. Photogramm. Remote Sens. 2021, 178, 203–218. [Google Scholar] [CrossRef]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C. Land cover classification in an era of big and open data: Optimizing localized implementation and training data selection to improve mapping outcomes. Remote Sens. Environ. 2022, 268, 112780. [Google Scholar] [CrossRef]
- Otálora, S.; Atzori, M.; Andrearczyk, V.; Khan, A.; Müller, H. Staining invariant features for improving generalization of deep convolutional neural networks in computational pathology. Front. Bioeng. Biotechnol. 2019, 7, 198. [Google Scholar] [CrossRef] [PubMed]
- Vetrò, A.; Canova, L.; Torchiano, M.; Minotas, C.O.; Iemma, R.; Morando, F. Open data quality measurement framework: Definition and application to Open Government Data. Gov. Inf. Q. 2016, 33, 325–337. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Choi, G. Urban sprawl in the Seoul Metropolitan Region, Korea Since the 1980s observed in satellite imagery. J. Korean Geogr. Soc. 2016, 5, 331–343. [Google Scholar]
- Jung, E.; Yoon, H. The impact of landslide disaster on housing prices—A case study of the landslide of mt. Umyeon in Seoul, Korea. J. Korea Plan. Assoc 2017, 52, 153–170. [Google Scholar] [CrossRef]
- Kim, D.; Yoo, J.; Son, H.J.; Kim, T.W. Evaluating meteorological and hydrological impacts on forest fire occurrences using partial least squares-structural equation modeling: A case of Gyeonggi-do. J. Korea Water Resour. Assoc. 2021, 54, 145–156. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 675–678. [Google Scholar]
- Soh, J.W.; Cho, S.; Cho, N.I. Meta-transfer learning for zero-shot super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 3516–3525. [Google Scholar]
- Fu, M.; Zhu, M.; Yang, Y.; Song, W.; Wang, M. LiDAR-based vehicle localization on the satellite image via a neural network. Robot. Auton. Syst. 2020, 129, 103519. [Google Scholar] [CrossRef]
- Pham, T.D. Classification of COVID-19 chest X-rays with deep learning: New models or fine tuning? Health Inf. Sci. Syst. 2021, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.D.; Lee, D.K.; Kim, D.Y.; Kim, D.Y. Nutrient dynamics in the throughfall, stemflow, and soil solution of Korean pine, Japanese larch, and hardwood stands at Kwangju-Gun, Kyonggi-Do. J. Korean Soc. For. Sci. 1999, 88, 541–554. [Google Scholar]
- Ahmed, I.; Ahmad, M.; Jeon, G. A real-time efficient object segmentation system based on U-Net using aerial drone images. J. Real-Time Image Process. 2021, 18, 1745–1758. [Google Scholar] [CrossRef]
- Hacıefendioğlu, K.; Başağa, H.B.; Yavuz, Z.; Karimi, M.T. Intelligent ice detection on wind turbine blades using semantic segmentation and class activation map approaches based on deep learning method. Renew. Energy 2022, 182, 1–16. [Google Scholar] [CrossRef]
- Xiao, B.; Xu, B.; Bi, X.; Li, W. Global-feature encoding U-Net (GEU-Net) for multi-focus image fusion. IEEE Trans. Image Process. 2020, 30, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, V.A.; Kumar, M.S.; Patan, R.; Kallam, S.; Mohamed, M.Y.N. Segmentation of nuclei in histopathology images using fully convolutional deep neural architecture. In Proceedings of the 2020 International Conference on Computing and Information Technology (ICCIT-1441), Tabuk, Saudi Arabia, 9–10 September 2020; pp. 1–7. [Google Scholar]
- Tusa, E.; Monnet, J.M.; Barré, J.B.; Dalla Mura, M.; Chanussot, J. Fusion of lidar and hyperspectral data for semantic segmentation of frest tree species. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 487–494. [Google Scholar]
- Ayhan, B.; Kwan, C. Tree, shrub, and grass classification using only RGB images. Remote Sens. 2020, 12, 1333. [Google Scholar] [CrossRef]
- Dong, R.; Pan, X.; Li, F. DenseU-net-based semantic segmentation of small objects in urban remote sensing images. IEEE Access 2019, 7, 65347–65356. [Google Scholar] [CrossRef]
- Mi, L.; Chen, Z. Superpixel-enhanced deep neural forest for remote sensing image semantic segmentation. ISPRS J. Photogramm. Remote Sens. 2020, 159, 140–152. [Google Scholar] [CrossRef]
- Li, Z.; He, Y.; Keel, S.; Meng, W.; Chang, R.T.; He, M. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology 2018, 125, 1199–1206. [Google Scholar] [CrossRef] [Green Version]
- Toh, C.; Brody, J.P. Analysis of copy number variation from germline DNA can predict individual cancer risk. bioRxiv 2018, 303339. [Google Scholar]
- Lee, M.; Han, K.Y.; Yu, J.; Lee, Y.S. A new lane following method based on deep learning for automated vehicles using surround view images. J. Ambient Intell. Humaniz. Comput. 2019, 1–14. [Google Scholar] [CrossRef]
- Choi, K.; Kim, M.; Lee, W.K.; Gang, H.U.; Chung, D.J.; Ko, E.J.; Yun, B.H.; Kim, C.H. Estimating radial growth response of major tree species using climatic and topographic condition in South Korea. J. Clim. Chang. Res. 2014, 5, 127–137. [Google Scholar] [CrossRef]
- Choi, J.; Myung, H. BRM Localization: UAV Localization in GNSS-Denied Environments Based on Matching of Numerical Map and UAV Images. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Las Vegas, NV, USA, 25–29 October 2020; pp. 4537–4544. [Google Scholar]
- Bian, J.-W.; Zhan, H.; Wang, N.; Li, Z.; Zhang, L.; Shen, C.; Cheng, M.-M.; Reid, I. Unsupervised Scale-consistent Depth Learning from Video. Int. J. Comput. Vis. 2021, 129, 2548–2564. [Google Scholar] [CrossRef]
- Quoc, T.T.P.; Linh, T.T.; Minh, T.N.T. Comparing U-Net Convolutional Network with Mask R-CNN in Agricultural Area Segmentation on Satellite Images. In Proceedings of the 2020 7th NAFOSTED Conference on Information and Computer Science (NICS), IEEE, Ho Chi Minh City, Vietnam, 26–27 November 2020; pp. 124–129. [Google Scholar]
- Ishibashi, K.; Ariji, Y.; Kuwada, C.; Kimura, M.; Hashimoto, K.; Umemura, M.; Nagao, T.; Ariji, E. Efficacy of a deep leaning model created with the transfer learning method in detecting sialoliths of the submandibular gland on panoramic radiography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2021, 133, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Mo, J.; Jiang, H.; Li, Z.; Hu, W.; Zhang, C.; Wang, Y.; Wang, X.; Liu, C.; Zhao, B.; et al. Deep learning model for the automated detection and histopathological prediction of meningioma. Neuroinformatics 2021, 19, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Faes, L.; Kale, A.U.; Wagner, S.K.; Fu, D.J.; Bruynseels, A.; Mahendiran, T.; Moraes, G.; Shamdas, M.; Kern, C.; et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: A systematic review and meta-analysis. Lancet Dig. Health 2019, 1, e271–e297. [Google Scholar] [CrossRef]
- Logan, T.M.; Williams, T.G.; Nisbet, A.J.; Liberman, K.D.; Zuo, C.T.; Guikema, S.D. Evaluating urban accessibility: Leveraging open-source data and analytics to overcome existing limitations. Environ. Plan B Urban Anal. City Sci. 2019, 46, 897–913. [Google Scholar] [CrossRef]
- Chen, X.; Ye, Y.; Williams, G.; Xu, X. A survey of open source data mining systems. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Nanjing, China, 22–25 May 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 3–14. [Google Scholar]
- Stoch, B.; Basson, I.J.; Miller, J.A. Implicit Geomodelling of the Merensky and UG2 Reefs of the Bushveld Complex from Open-Source Data: Implications for the Complex’s Structural History. Minerals 2020, 10, 975. [Google Scholar] [CrossRef]
- Lock, O.; Pinnegar, S.; Leao, S.Z.; Pettit, C. The making of a mega-region: Evaluating and proposing long-term transport planning strategies with open-source data and transport accessibility tools. In Handbook of Planning Support Science; Edward Elgar Publishing: Cheltenham, UK, 2020. [Google Scholar]
- Mostafi, S.; Elgazzar, K. An open source tool to extract traffic data from google maps: Limitations and challenges. In Proceedings of the 2021 International Symposium on Networks, Computers and Communications (ISNCC), IEEE, Dubai, United Arab Emirates, 1–3 June 2021; pp. 1–8. [Google Scholar]
- Islind, A.S.; Óskarsdóttir, M.; Steingrímsdóttir, H. Changes in mobility patterns in Europe during the COVID-19 pandemic: Novel insights using open source data. arXiv 2020, arXiv:2008.10505. [Google Scholar]
- Zhou, Z.; Xu, Z. Detecting the pedestrian shed and walking route environment of urban parks with open-source data: A case study in Nanjing, China. Int. J. Environ. Health Res. 2020, 17, 4826. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Rao, J.; Wang, W.; Peng, B.; Gao, S.; Zhang, F. Towards cartographic knowledge encoding with deep learning: A case study of building generalization. In Proceedings of the AutoCarto 2020, 23rd International Research Symposium on Cartography and GIScience, Kansas City, MI, USA, 18 November 2020. [Google Scholar]
- Wang, X.; Fan, X.; Xu, Q.; Du, P. Change detection-based co-seismic landslide mapping through extended morphological profiles and ensemble strategy. ISPRS J. Photogramm. Remote Sens. 2022, 187, 225–239. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; Tu, L.; Zhang, T.; Wang, L. A review of building detection from very high resolution optical remote sensing images. GIsci Remote Sens 2022, 59, 1199–1225. [Google Scholar] [CrossRef]
- Min, S.; Seo, M.; Hajishirzi, H. Question answering through transfer learning from large fine-grained supervision data. arXiv 2017, arXiv:1702.02171. [Google Scholar]
- Raghu, M.; Zhang, C.; Kleinberg, J.; Bengio, S. Transfusion: Understanding transfer learning with applications to medical imaging. arXiv 2019, arXiv:1902.07208. [Google Scholar]
- Jeddi, A.; Shafiee, M.J.; Wong, A. A Simple Fine-tuning Is All You Need: Towards Robust Deep Learning Via Adversarial Fine-tuning. arXiv 2020, arXiv:2012.13628. [Google Scholar]
- Wu, X.; Li, W.; Hong, D.; Tian, J.; Tao, R.; Du, Q. Vehicle detection of multi-source remote sensing data using active fine-tuning network. ISPRS J. Photogramm. Remote Sens. 2020, 167, 39–53. [Google Scholar] [CrossRef]
- Novikov, G.; Trekin, A.; Potapov, G.; Ignatiev, V.; Burnaev, E. Satellite imagery analysis for operational damage assessment in emergency situations. In Proceedings of the International Conference on Business Information Systems, Berlin, Germany, 18–20 July 2018; Springer: Cham, Switzerland, 2018; pp. 347–358. [Google Scholar]
- Kaiser, J.; Kurtyigit, S.; Kotchourko, S.; Schlechtweg, D. Effects of Pre-and Post-Processing on type-based Embeddings in Lexical Semantic Change Detection. arXiv 2021, arXiv:2101.09368. [Google Scholar]
Training | Validation | |||
---|---|---|---|---|
Epoch | Loss Value * | Accuracy | Loss Value | Accuracy |
500 | 0.0263 | 0.99 | 0.13 | 0.96 |
1000 | 0.0063 | 0.99 | 0.18 | 0.97 |
1500 | 0.0020 | 0.99 | 0.24 | 0.97 |
2000 | 0.0014 | 0.99 | 0.27 | 0.97 |
Accuracy | F1 Score | IoU | |
---|---|---|---|
Semantic segmentation of forest and non-forest | 0.99 | 0.97 | 0.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyo, J.; Han, K.-j.; Cho, Y.; Kim, D.; Jin, D. Generalization of U-Net Semantic Segmentation for Forest Change Detection in South Korea Using Airborne Imagery. Forests 2022, 13, 2170. https://doi.org/10.3390/f13122170
Pyo J, Han K-j, Cho Y, Kim D, Jin D. Generalization of U-Net Semantic Segmentation for Forest Change Detection in South Korea Using Airborne Imagery. Forests. 2022; 13(12):2170. https://doi.org/10.3390/f13122170
Chicago/Turabian StylePyo, JongCheol, Kuk-jin Han, Yoonrang Cho, Doyeon Kim, and Daeyong Jin. 2022. "Generalization of U-Net Semantic Segmentation for Forest Change Detection in South Korea Using Airborne Imagery" Forests 13, no. 12: 2170. https://doi.org/10.3390/f13122170
APA StylePyo, J., Han, K.-j., Cho, Y., Kim, D., & Jin, D. (2022). Generalization of U-Net Semantic Segmentation for Forest Change Detection in South Korea Using Airborne Imagery. Forests, 13(12), 2170. https://doi.org/10.3390/f13122170