A Comparative Analysis of the Hydraulic Strategies of Non-Native and Native Perennial Forbs in Arid and Semiarid Areas of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Field Sampling
2.2. Experimental Procedure
2.3. Data Processing and Statistical Analysis
3. Results
3.1. Vessel Anatomical Traits of Non-Native and Native Forbs
3.2. Correlations of the Major Hydraulic Traits of Non-Native and Native Forbs
3.3. Variation in Vessel Anatomical Traits of Non-Native and Native Forbs along a Precipitation Gradient
4. Discussion
4.1. Differences in Xylem Features and Plasticity between Native and Non-Native Forbs
4.2. Differences in the Relationship between Vessel Traits of Non-Native and Native Forbs
4.3. Response Differences of Vessel Traits of Non-Native and Native Forbs to Precipitation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zavaleta, E.S.; Shaw, M.R.; Chiariello, N.R.; Thomas, B.D.; Cleland, E.E.; Field, C.B.; Mooney, H.A. Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecol. Monogr. 2003, 73, 585–604. [Google Scholar] [CrossRef] [Green Version]
- Easterling, D.R. Climate extremes: Observations, modelling, and impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brookshire, E.N.J.; Weaver, T. Long-term decline in grassland productivity driven by increasing dryness. Nat. Commun. 2015, 6, 7148. [Google Scholar] [CrossRef]
- Liu, H.Y.; Mi, Z.R.; Lin, L.; Wang, Y.H.; Zhang, Z.H.; Zhang, F.W.; Wang, H.; Liu, L.L.; Zhu, B.; Cao, G.M.; et al. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proc. Natl. Acad. Sci. USA 2018, 115, 4051–4056. [Google Scholar] [CrossRef] [Green Version]
- Knapp, A.K.; Briggs, J.M.; Koelliker, J.K. Frequency and extent of water limitation to primary production in a mesic temperate grassland. Ecosystems 2001, 4, 19–28. [Google Scholar] [CrossRef]
- Gao, Q.Z.; Zhu, W.Q.; Schwartz, M.W.; Ganjurjav, H.; Wan, Y.F.; Qin, X.B.; Ma, X.; Williamson, M.A.; Li, Y. Climatic change controls productivity variation in global grasslands. Sci. Rep. 2016, 6, 26958. [Google Scholar] [CrossRef] [PubMed]
- Grime, J.P.; Brown, V.K.; Thompson, K.; Masters, G.J.; Hillier, S.H.; Clarke, I.P.; Askew, A.P.; Corker, D.; Kielty, J.P. The response of two contrasting limestone grasslands to simulated climate change. Science 2000, 289, 762–765. [Google Scholar] [CrossRef]
- White, S.R.; Carlyle, C.N.; Fraser, L.H.; Cahill, J.F. Climate change experiments in temperate grasslands: Synthesis and future directions. Biol. Lett. 2012, 8, 484–487. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.H.; Fang, J.Y.; Yang, Y.H.; Mohammat, A. Biomass carbon stocks and their changes in northern China’s grasslands during 1982–2006. Sci. China Life Sci. 2010, 53, 841–850. [Google Scholar] [CrossRef]
- Ma, W.H.; Liu, Z.L.; Wang, Z.H.; Wang, W.; Liang, C.Z.; Tang, Y.H.; He, J.S.; Fang, J.Y. Climate change alters interannual variation of grassland aboveground productivity: Evidence from a 22-year measurement series in the Inner Mongolian grassland. J. Plant Res. 2010, 123, 509–517. [Google Scholar] [CrossRef]
- Büntgen, U.; Psomas, A.; Schweingruber, F.H. Introducing wood anatomical and dendrochronological aspects of herbaceous plants: Applications of the Xylem Database to vegetation science. J. Veg. Sci. 2014, 25, 967–977. [Google Scholar] [CrossRef]
- Gea-Izquierdo, G.; Fonti, P.; Cherubini, P.; Martín-Benito, D.; Chaar, H.; Caellas, I. Xylem hydraulic adjustment and growth response of Quercus canariensis Willd. to climatic variability. Tree Physiol. 2012, 32, 401–413. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Sancho, E.; Dorado-Lián, I.; Heinrich, I.; Helle, G.; Menzel, A. Xylem adjustment of sessile oak at its southern distribution limits. Tree Physiol. 2017, 37, 903–914. [Google Scholar] [CrossRef] [PubMed]
- Pérez-de-Lis, G.; Rozas, V.; Vázquez-Ruiz, R.A.; García-González, I. Do ring-porous oaks prioritize earlywood vessel efficiency over safety? Environmental effects on vessel diameter and tyloses formation. Agric. For. Meteorol. 2018, 248, 205–214. [Google Scholar] [CrossRef]
- Hallinger, M.; Manthey, M.; Wilmking, M. Establishing a missing link: Warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia. New Phytol. 2010, 186, 890–899. [Google Scholar] [CrossRef]
- Schweingruber, F.H.; Hellmann, L.; Tegel, W.; Braun, S.; Nievergelt, D.; Büntgen, U. Evaluating the wood anatomical and dendroecological potential of Arctic dwarf shrubs communities. IAWA J. 2013, 34, 485–497. [Google Scholar] [CrossRef]
- Buras, A.; Lehejček, J.; Michalová, Z.; Morrissey, R.C.; Svoboda, M.; Wilmking, M. Shrubs shed light on 20th century Greenland Ice Sheet melting. Boreas 2017, 46, 667–677. [Google Scholar] [CrossRef]
- Unterholzner, L.; Carrer, M.; Bär, A.; Beikircher, B.; Dämon, B.; Losso, A.; Prendin, A.L.; Mayr, S. Juniperus communis populations exhibit low variability in hydraulic safety and efficiency. Tree Physiol. 2020, 40, 1668–1679. [Google Scholar] [CrossRef]
- Rodríguez-Ramírez, E.C.; Vázquez-García, J.A.; García-González, I.; Alcántara-Ayala, O.; Luna-Vega, I. Drought effects on the plasticity in vessel traits of two endemic Magnolia species in the tropical montane cloud forests of eastern Mexico. J. Plant Ecol. 2020, 13, 331–340. [Google Scholar] [CrossRef]
- Rodríguez-Ramírez, E.C.; Valdez-Nieto, J.A.; Vázquez-García, J.A.; Dieringer, G.; Luna-Vega, I. Plastic responses of Magnolia schiedeana Schltdl., a relict-endangered Mexican Cloud Forest tree, to climatic events: Evidences from leaf venation and wood vessel anatomy. Forests 2020, 11, 737. [Google Scholar] [CrossRef]
- Zhang, H.X.; Yuan, F.H.; Wu, J.B.; Jin, C.J.; Pivovaroff, A.L.; Tian, J.Y.; Li, W.B.; Guan, D.X.; Wang, A.Z.; McDowell, N.G. Responses of functional traits to seven-year nitrogen addition in two tree species: Coordination of hydraulics, gas exchange and carbon reserves. Tree Physiol. 2021, 41, 190–205. [Google Scholar] [CrossRef] [PubMed]
- Ganthaler, A.; Mayr, S. Subalpine dwarf shrubs differ in vulnerability to xylem cavitation: An innovative staining approach enables new insights. Physiol. Plantarum 2021, 172, 2011–2021. [Google Scholar] [CrossRef] [PubMed]
- García-Cervigón, A.I.; García-López, M.A.; Pistón, N.; Pugnaire, F.I.; Olano, J.M. Co-ordination between xylem anatomy, plant architecture and leaf functional traits in response to abiotic and biotic drivers in a nurse cushion plant. Ann. Bot. 2021, 127, 919–929. [Google Scholar] [CrossRef]
- Schweingruber, F.H.; Dietz, H. Annual rings in the xylem of dwarf shrubs and perennial dicotyledonous herbs. Dendrochronologia 2001, 19, 115–126. [Google Scholar]
- Olano, J.M.; Almería, I.; Eugenio, M.; von Arx, G.; Tjoelker, M. Under pressure: How a Mediterranean high-mountain forb coordinates growth and hydraulic xylem anatomy in response to temperature and water constraints. Funct. Ecol. 2013, 27, 1295–1303. [Google Scholar] [CrossRef]
- Dee, J.R.; Palmer, M.W. Application of herb-chronology: Annual fertilization and climate reveal annual ring signatures within the roots of U.S. tallgrass prairie plants. Botany 2016, 94, 277–288. [Google Scholar] [CrossRef] [Green Version]
- Hummel, I.; Vile, D.; Violle, C.; Devaux, J.; Ricci, B.; Blanchard, A.; Garnier, E.; Roumet, C. Relating root structure and anatomy to whole-plant functioning in 14 herbaceous Mediterranean species. New Phytol. 2007, 173, 313–321. [Google Scholar] [CrossRef]
- Dietz, H.; Fattorini, M. Comparative analysis of growth rings in perennial forbs grown in an alpine restoration experiment. Ann. Bot. 2002, 90, 663–668. [Google Scholar] [CrossRef] [Green Version]
- Dietz, H.; von Arx, G.; Dietz, S. Growth increment patterns in the roots of two alpine forbs growing in the center and at the periphery of a snowbank. Arct. Antarct. Alp. Res. 2004, 36, 591–597. [Google Scholar] [CrossRef] [Green Version]
- Schweingruber, F.H.; Büntgen, U. What is ‘wood’—An anatomical re-definition. Dendrochronologia 2013, 31, 187–191. [Google Scholar] [CrossRef]
- Dietz, H.; von Arx, G. Climatic fluctuation causes large-scale synchronous variation in radial root increments of perennial forbs. Ecology 2005, 86, 327–333. [Google Scholar] [CrossRef]
- Dee, J.R.; Stambaugh, M.C. A new approach towards climate monitoring in Rocky Mountain alpine plant communities: A case study using herb-chronology and Penstemon whippleanus. Arct. Antarct. Alp. Res. 2019, 51, 84–95. [Google Scholar] [CrossRef]
- Fonti, P.; von Arx, G.; García-González, I.; Eilmann, B.; Sass-Klaassen, U.; Gärtner, H.; Eckstein, D. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings research. New Phytol. 2010, 185, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Venegas-González, A.; Chagas, M.P.; Anholetto Júnior, C.R.; Alvares, C.A.; Roig, F.A.; Tomazello Filho, M. Sensitivity of tree ring growth to local and large-scale climate variability in a region of southeastern Brazil. Theor. Appl. Climatol. 2016, 123, 233–245. [Google Scholar] [CrossRef]
- von Arx, G.; Archer, S.R.; Hughes, M.K. Long-term functional plasticity in plant hydraulic architecture in response to supplemental moisture. Ann. Bot. 2012, 109, 1091–1100. [Google Scholar] [CrossRef] [Green Version]
- Castagneri, D.; Carrer, M.; Regev, L.; Boaretto, E. Precipitation variability differently affects radial growth, xylem traits and ring porosity of three Mediterranean oak species at xeric and mesic sites. Sci. Total Environ. 2020, 699, 134285. [Google Scholar] [CrossRef]
- Tyree, M.T.; Ewers, F.W. The hydraulic architecture of trees and other woody plants. New Phytol. 1991, 119, 345–360. [Google Scholar] [CrossRef]
- Choat, B.; Jansen, S.; Brodribb, T.J.; Cochard, H.; Delzon, S.; Bhaskar, R.; Bucci, S.J.; Feild, T.S.; Gleason, S.M.; Hacke, U.G.; et al. Global convergence in thevulnerability of forests to drought. Nature 2012, 491, 752–755. [Google Scholar] [CrossRef] [Green Version]
- McDowell, N.G. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol. 2011, 155, 1051–1059. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, N.; Jansen, S.; Verheyden, A.; Kairo, J.G.; Beeckman, H.; Koedam, N. Comparative anatomy of intervessel pits in two mangrove species growing along a natural salinity gradient in Gazi Bay, Kenya. Ann. Bot. 2007, 100, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Cochard, H.; Tyree, M.T. Xylem dysfunction in Quercus: Vessel sizes, tyloses, cavitation and seasonal changes in embolism. Tree Physiol. 1990, 6, 393–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hacke, U.G.; Sperry, J.S.; Pockman, W.T.; Davis, S.D.; McCulloh, K.A. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 2001, 126, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Sperry, J.S.; Meinzer, F.C.; Mcculloh, K.A. Safety and efficiency conflicts in hydraulic architecture: Scaling from tissues to trees. Plant Cell Environ. 2008, 31, 632–645. [Google Scholar] [CrossRef] [PubMed]
- Hacke, U.G.; Jacobsen, A.L.; Pratt, R.B. Xylem function of arid-land shrubs from California, USA: An ecological and evolutionary analysis. Plant Cell Environ. 2009, 32, 1324–1333. [Google Scholar] [CrossRef]
- Hacke, U.G.; Sperry, J.S.; Wheeler, J.K.; Castro, L. Scaling of angiosperm xylem structure with safety and eficiency. Tree Physiol. 2006, 26, 89–701. [Google Scholar] [CrossRef]
- Kołodziejek, J.; Glińska, S.; Michlewska, S. Seasonal leaf dimorphism in Potentilla argentea L. var. tenuiloba (Jord.) Sw. (Rosaceae). Acta Bot. Croat. 2015, 74, 53–70. [Google Scholar] [CrossRef] [Green Version]
- Munir, M.; Khan, M.A.; Ahmad, M.; Abbasi, A.M.; Zafar, M.; Khan, K.Y.; Tariq, K.; Tabassum, S.; Ahmed, S.N.; Habiba, U.; et al. Taxonomic potential of foliar epidermal anatomy among the wild culinary vegetables of Pakistan. J. Med. Plants Res. 2011, 5, 2857–2862. [Google Scholar]
- Liu, W.S.; Zheng, L.; Qi, D.H. Variation in leaf traits at different altitudes reflects the adaptive strategy of plants to environmental changes. Ecol. Evol. 2020, 10, 8166–8175. [Google Scholar] [CrossRef]
- Purnobasuki, H.; Nurhidayati, T.; Hariyanto, S.; Jadid, N. Data of root anatomical responses to periodic waterlogging stress of tobacco (Nicotiana tabacum) varieties. Data Brief 2018, 20, 2012–2016. [Google Scholar] [CrossRef]
- von Arx, G.; Dietz, H. Growth rings in the roots of temperate forbs are robust annual markers. Plant Biol. 2006, 8, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Lewis, A.M.; Boose, E.R. Estimating volume flow rates through xylem conduits. Am. J. Bot. 1995, 82, 1112–1116. [Google Scholar] [CrossRef]
- Sperry, J.S.; Nichols, K.L. Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of Northern Utah and Interior Alaska. Ecology 1994, 75, 1736–1752. [Google Scholar] [CrossRef]
- Ashton, P.M.S.; Olander, L.P.; Berlyn, G.P.; Thadani, R.; Cameron, I.R. Changes in leaf structure in relation to crown position and tree size of Betula papyrifera within fire-origin stands of interior cedar-hemlock. Can. J. Bot. 1998, 76, 1180–1187. [Google Scholar]
- Kerkhoff, A.J.; Enquist, B.J. Multiplicative by nature: Why logarithmic transformation is necessary in allometry. J. Theor. Biol. 2009, 257, 519–521. [Google Scholar] [CrossRef]
- Liu, Y.B.; Zhang, Q.B. Growth rings of roots in perennial forbs in Duolun Grassland, Inner Mongolia, China. J. Integr. Plant Biol. 2007, 49, 144–149. [Google Scholar] [CrossRef]
- Dietz, H.; Schweingruber, F.H. Annual rings in native and introduced forbs of lower Michigan, USA. Can. J. Bot. 2002, 80, 642–649. [Google Scholar] [CrossRef]
- Shi, S.L.; Li, Z.S.; Wang, H.; von Arx, G.; Lü, Y.H.; Wu, X.; Wang, X.C.; Liu, G.H.; Fu, B.J. Roots of forbs sense climate fluctuations in the semi-arid Loess Plateau: Herb-chronology based analysis. Sci. Rep. 2016, 6, 28435. [Google Scholar] [CrossRef]
- Brodribb, T.J.; Bowman, D.; Nichols, S.; Delzon, S.; Burlett, R. Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytol. 2010, 188, 533–542. [Google Scholar] [CrossRef]
- Sperry, J.S.; Hacke, U.W.; Wheeler, J.K. Comparative analysis of end wall resistivity in xylem conduits. Plant Cell Environ. 2005, 28, 456–465. [Google Scholar] [CrossRef]
- Schmitz, N.; Verheyden, A.; Beeckman, H.; Kairo, J.G.; Koedam, N. Influence of a salinity gradient on the vessel characters of the mangrove species Rhizophora mucronata. Ann. Bot. 2006, 98, 1321–1330. [Google Scholar] [CrossRef]
- Verheyden, A.; De Ridder, F.; Schmitz, N.; Beeckman, H.; Koedam, N. High-resolution time series of vessel density in Kenyan mangrove trees reveal a link with climate. New Phytol. 2005, 167, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wei, W.; Chen, L.D.; Mo, B.R. Response of deep soil moisture to land use and afforestation in the semi-arid Loess Plateau, China. J. Hydrol. 2012, 475, 111–122. [Google Scholar] [CrossRef]
- Liu, B.X.; Shao, M.A. Modeling soil-water dynamics and soil-water carrying capacity for vegetation on the Loess Plateau, China. Agric. Water Manag. 2015, 159, 176–184. [Google Scholar] [CrossRef]
- Abrams, M.D.; Kubiske, M.E.; Mostoller, S.A. Relating wet and dry year ecophysiology to leaf structure in contrasting temperate tree species. Ecology 1994, 75, 123–133. [Google Scholar] [CrossRef]
- Nicotra, A.B.; Davidson, A. Adaptive phenotypic plasticity and plant water use. Funct. Plant Biol. 2010, 37, 117–127. [Google Scholar] [CrossRef]
- Zimmermann, M.H. Hydraulic architecture of some diffuse-porous trees. Can. J. Bot. 1978, 56, 2286–2295. [Google Scholar] [CrossRef] [Green Version]
- Yáñez-Espinosa, L.; Terrazas, T.; López-Mata, L. Effects of flooding on wood and bark anatomy of four species in a mangrove forest community. Trees 2001, 15, 91–97. [Google Scholar] [CrossRef]
- Cochard, H. Vulnerability of several conifers to air embolism. Tree Physiol. 1992, 11, 73–83. [Google Scholar] [CrossRef]
- Kavanagh, K.L.; Bond, B.J.; Aitken, S.N.; Gartner, B.L.; Knowe, S. Shoot and root vulnerability to xylem cavitation in four populations of Douglas-fir seedlings. Tree Physiol. 1999, 19, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, K.R.; von Fischer, J.C.; Muscha, J.M.; Petersen, M.K.; Knapp, A.K. Contrasting above- and belowground sensitivity of three Great Plains grasslands to altered rainfall regimes. Glob. Chang. Biol. 2015, 21, 335–344. [Google Scholar] [CrossRef]
- Pockman, W.T.; Sperry, J.S. Vulnerability to xylem cavitation and the distribution of Sonoran Desert vegetation. Am. J. Bot. 2000, 89, 1287–1299. [Google Scholar] [CrossRef] [Green Version]
- García-Cervigón, A.I.; Olano, J.M.; von Arx, G.; Fajardo, A. Xylem adjusts to maintain efficiency across a steep precipitation gradient in two coexisting generalist species. Ann. Bot. 2018, 122, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Boughalleb, F.; Abdellaoui, R.; Ben-Brahim, N.; Neffati, M. Anatomical adaptations of Astragalus gombiformis Pomel. under drought stress. Cent. Eur. J. Biol. 2014, 9, 1215–1225. [Google Scholar] [CrossRef]
- Williams, A.L.; Wills, K.E.; Janes, J.K.; Schoor, J.; Newton, P.; Hovenden, M.J. Warming and free-air CO2 enrichment alter demographics in four co-occurring grassland species. New Phytol. 2007, 176, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.J.; Liu, S.J.; Arzac, A.; Cooper, D.J.; Jin, Y.; Yuan, D.Y.; Zhu, Y.; Zhang, X.; Li, Z.S.; Zhang, Y.D.; et al. Different response of earlywood vessel features of Fraxinus mandshurica to rapid warming in warm-dry and cold-wet areas. Agric. For. Meteorol. 2021, 307, 108523. [Google Scholar] [CrossRef]
Site Code | Location (Latitude N, Longitude E) | Precipitation (mm) | Temperature (°C) | Elevation (m) | Species | Number of Samples |
---|---|---|---|---|---|---|
S1 | 37.10°, 108.22° | 445 | 7.80 | 1372 | MF, MS | 10 |
S2 | 36.65°, 108.32° | 500 | 8.20 | 1526 | MF, MS, ML, MR, MM, PT | 30 |
S3 | 44.27°, 116.53° | 282 | 1.39 | 1140 | MR, PT | 10 |
S4 | 43.55°, 116.67° | 321 | 1.51 | 1260 | MS | 5 |
S5 | 50.20°, 119.39° | 357 | −2.08 | 525 | MR | 5 |
S6 | 43.91°, 115.50° | 227 | 1.80 | 1131 | MR | 5 |
S7 | 45.14°, 121.53° | 404 | 5.76 | 275 | MR | 5 |
S8 | 36.98°, 107.85° | 430 | 6.80 | 1405 | PT, PC | 10 |
S9 | 44.37°, 116.11° | 253 | 2.58 | 938 | PT | 5 |
S11 | 43.55°, 116.67° | 320 | 1.52 | 1271 | PT, PA, PC | 15 |
S12 | 47.94°, 117.32° | 230 | 0.60 | 595 | PT | 5 |
S13 | 45.04°, 118.92° | 358 | 1.03 | 1015 | PT | 5 |
S14 | 48.52°, 119.74° | 360 | −1.31 | 749 | PT, PA | 10 |
Traits | Genera | |
---|---|---|
Medicago | Potentilla | |
NV | 0.430 | 0.295 |
VF (%) | 0.558 | 0.466 |
MVA (μm2) | 0.568 | 0.430 |
Kh (kg m MPa−1 s−1) | 0.684 | 0.697 |
Dh (μm) | 0.364 | 0.285 |
PI mean | 0.521 | 0.435 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Li, Z.; Keyimu, M.; Chen, Y.; Gao, G.; Wang, C.; Wang, X. A Comparative Analysis of the Hydraulic Strategies of Non-Native and Native Perennial Forbs in Arid and Semiarid Areas of China. Forests 2022, 13, 193. https://doi.org/10.3390/f13020193
Dong Y, Li Z, Keyimu M, Chen Y, Gao G, Wang C, Wang X. A Comparative Analysis of the Hydraulic Strategies of Non-Native and Native Perennial Forbs in Arid and Semiarid Areas of China. Forests. 2022; 13(2):193. https://doi.org/10.3390/f13020193
Chicago/Turabian StyleDong, Yanjun, Zongshan Li, Maierdang Keyimu, Ying Chen, Guangyao Gao, Cong Wang, and Xiaochun Wang. 2022. "A Comparative Analysis of the Hydraulic Strategies of Non-Native and Native Perennial Forbs in Arid and Semiarid Areas of China" Forests 13, no. 2: 193. https://doi.org/10.3390/f13020193
APA StyleDong, Y., Li, Z., Keyimu, M., Chen, Y., Gao, G., Wang, C., & Wang, X. (2022). A Comparative Analysis of the Hydraulic Strategies of Non-Native and Native Perennial Forbs in Arid and Semiarid Areas of China. Forests, 13(2), 193. https://doi.org/10.3390/f13020193