Forest Conservation and Restoration Using the Emberger Index: Cork Oak as Study Case
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Daget, P.H. Le bioclimat Mediterraneen: Caractères généraux, modes de caractérisation. Vegetatio 1977, 34, 1–20. [Google Scholar] [CrossRef]
- Aschmann, H. A restrictive definition of Mediterranean climates. Bull. Soc. Bot. Fr. Act. Bot. 1984, 131, 21–30. [Google Scholar] [CrossRef]
- Trigo, R.; Xoplaki, E.; Zorita, E.; Luterbacher, J.; Krichak, S.O.; Alpert, P.; Jacobeit, J.; Sáenz, J.; Fernández, J.; González-Rouco, F.; et al. Relations between variability in the Mediterranean region and mid-latitude variability. In Developments in Earth and Environmental Sciences; Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 4, pp. 179–226. [Google Scholar] [CrossRef]
- Köppen, W. Une nouvelle classification générale des climats. Rev. Gen. Sc. 1918, 30, 550–554. [Google Scholar]
- Emberger, L. Les limites de l’aire de végétation méditerranéenne en France. Bull. Soc. Hist. Nat. Toul. 1943, 78, 158–180. [Google Scholar]
- Aschmann, H. Distribution and peculiarity of Mediterranean ecosystems. In Mediterranean Type Ecosystems; Springer: Berlin/Heidelberg, Germany, 1973; pp. 11–19. [Google Scholar]
- Giacobbe, A. Schema di una teoria ecologica per la classificazione della vegetazione italiana. Plant Biosyst. 1938, 45, 37–121. [Google Scholar] [CrossRef]
- Bérenger, M. Mémorial de la Météorologie Nationale: Essai d’Etude Météorologique du Bassin Méditerranéen; Imp. Nationale: Paris, France, 1955. [Google Scholar]
- Quézel, P. Definition of the Mediterranean region and the origin of its flora. In Plant Conservation in the Mediterranean Area. Geobotany 7; Gomez-Campo, C., Ed.; W. Junk: Dordrecht, The Netherlands; Boston, MA, USA; Lancaster, UK, 1985; pp. 9–24. [Google Scholar]
- Quézel, P.; Barbero, M. Carte de la Végétation Potentielle de la Région Méditerranéenne: Feuille n° 1 Méditerranée Orientale; Ed. du Centre National de la Recherche Scientifique (CNRS): Paris, France, 1985. [Google Scholar]
- Médail, F.; Quézel, P. Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Ann. Mo. Bot. Gard. 1997, 84, 112–127. [Google Scholar] [CrossRef]
- Rivas-Martínez, S.; Penas, A.; Díaz, T.E. Bioblimatic Map of Europe. Cartographic Service; University of Léon: Leon, Spain, 2004. [Google Scholar]
- Mitrakos, K. A theory for Mediterranean plant life. Acta Oecol. 1980, 1, 245–252. [Google Scholar]
- Emberger, L. La végétation de la Région Méditerranéenne: Essai d’une classification des groupenments végétaux. Rev. Génerale Bot. 1930, 42, 642–662. [Google Scholar]
- Sauvage, C. Le quotient pluviothermique d’Emberger, son utilisation et la representation géographique de ses variations au Maroc. Ann. Phys. Globe Météo Inst. Sci Chérif. 1963, 20, 11–23. [Google Scholar]
- Le Houérou, H.N. An outline of the bioclimatology of Libya. Bull. Société Bot. Fr. Actual. Bot. 1984, 131, 157–178. [Google Scholar] [CrossRef]
- Gavilán, R.G. The use of climatic parameters and indices in vegetation distribution. A case study in the Spanish Sistema Central. Int. J. Biometeorol. 2005, 50, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Rego, F.C.; Rocha, M.S. Climatic patterns in the Mediterranean region. Ecol. Mediterr. 2014, 40, 49–59. [Google Scholar] [CrossRef]
- Haghighi, A.T.; Zaki, N.A.; Rossi, P.M.; Noori, R.; Hekmatzadeh, A.A.; Saremi, H.; Kløve, B. Unsustainability Syndrome—From meteorological to agricultural drought in arid and semi-arid regions. Water 2020, 12, 838. [Google Scholar] [CrossRef] [Green Version]
- Nikolova, N.; Yanakiev, D. Climate aridity in southern Bulgaria for the period 1961–2015. Forum Geografic. Stud. Cercet. Geogr. Protecția Mediu. 2020, XIX, 10–17. [Google Scholar] [CrossRef]
- Golvan, Y.; Rioux, J. Ecologie des mérions du Kurdistan Iranien: Relations avec l’épidémiologie de la peste rurale. Ann. Par. Hum. Comp. 1961, 36, 449–558. [Google Scholar] [CrossRef]
- Despois, J.; Raynal, R. Géographie de l’Afrique du Nord-Ouest; Payot: Paris, France, 1967; Volume 26. [Google Scholar]
- Dumroese, R.K.; Palik, B.J.; Stanturf, J.A. Forest restoration is forward thinking. J. For. 2015, 113, 430–432. [Google Scholar] [CrossRef]
- Schirone, B.; Radoglou, K.; Vessella, F. Conservation and restoration strategies to preserve the variability of cork oak Quercus suber—A Mediterranean forest species-under global warming. Clim. Res. 2017, 71, 171–185. [Google Scholar] [CrossRef]
- Nahal, I. Le Pin d’Alep (Pinus halepensis Mill.). 1962, Étude taxonomique, phytogéographique, écologique et sylvicole. Ann. Ecole Nat. Eaux For. Stat. Rech. Exp. For. 1962, 19, 477–688. [Google Scholar]
- Quezel, P. Les forêts du pourtour méditerranéen. In Forêts et Maquis Méditerranéens: Écologie, Conservation et Aménagement; Note Technique MAB, 2; UNESCO: Paris, France, 1976; pp. 9–33. [Google Scholar]
- Daget, P. Le Bioclimat Mediterraneen: Analyse des formes climatiques par le systeme d’Emberger. Vegetatio 1977, 34, 87–103. [Google Scholar] [CrossRef]
- Quézel, P.; Tomaselli, R.; Morandini, R. Bosque y Maquia Mediterráneos: Ecología, Conservación y Gestión [Mediterranean Forest and Maquis: Ecology, Conservation and Management]; Serbal/UNESCO: Paris, France, 1977; Volume 333.75. Q5. [Google Scholar]
- Guara Requena, M.; Laguna Lumbreras, E.; Sanchis Duato, E. Aproximacion cartografica a la distribucion del indice de Emberger en la Comunidad Valenciana. Collect. Bot. Barcinonensi Bot. Inst. Ed. 1986, 16, 355–363. [Google Scholar]
- Quézel, P.; Médail, F. Ecologie et Biogéographie des Forêts du Bassin Méditerranéen: Collection Environnement; Elsevier: Paris, France, 2003. [Google Scholar]
- Dufour-Dror, J.M.; Ertas, A. Bioclimatic perspectives in the distribution of Quercus ithaburensis Decne. subspecies in Turkey and in the Levant. J. Biogeogr. 2004, 31, 461–474. [Google Scholar] [CrossRef]
- Klausmeyer, K.R.; Shaw, M.R. Climate change, habitat loss, protected areas and the climate adaptation potential of species in Mediterranean ecosystems worldwide. PLoS ONE 2009, 4, e6392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. Climate Change: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Aronson, J.; Pereira, J.S.; Pausas, J.G. Cork Oak Woodlands on the Edge: Ecology, Adaptive Management, and Restoration; Island Press: Washington, DC, USA; Covelo, Italy; London, UK, 2009. [Google Scholar]
- Magri, D.; Fineschi, S.; Bellarosa, R.; Buonamici, A.; Sebastiani, F.; Schirone, B.; Simeone, M.C.; Vendramin, G.G. The distribution of Quercus suber chloroplast haplotypes matches the palaeogeographical history of the western Mediterranean. Mol. Ecol. 2007, 16, 5259–5266. [Google Scholar] [CrossRef]
- Vessella, F.; Simeone, M.C.; Schirone, B. Quercus suber range dynamics by ecological niche modelling: From the Last Interglacial to present time. Quat. Sci Rev. 2015, 119, 85–93. [Google Scholar] [CrossRef]
- Correia, A.; Costa-e-Silva, F.; Dubbert, M.; Piayda, A.; Pereira, J. Severe dry winter affects plant phenology and carbon balance of a cork oak woodland understorey. Acta Oecol. 2016, 76, 1–12. [Google Scholar] [CrossRef]
- Simeone, M.C.; Papini, A.; Vessella, F.; Bellarosa, R.; Spada, F.; Schirone, B. Multiple genome relationships and a complex biogeographic history in the eastern range of Quercus suber L. (Fagaceae) implied by nuclear and chloroplast DNA variation. Caryologia 2009, 62, 236–252. [Google Scholar]
- Emberger, L. Nouvelle contribution à l’étude de la classification des groupements végétaux. Rev. Gén. Bot. 1933, 45, 473–486. [Google Scholar]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Araújo, M.B.; Cabeza, M.; Thuiller, W.; Hannah, L.; Williams, P.H. Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Glob. Change Biol. 2004, 10, 1618–1626. [Google Scholar] [CrossRef]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.; De Siqueira, M.F.; Grainger, A.; Hannah, L. Extinction risk from climate change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef]
- Thuiller, W.; Lavorel, S.; Araújo, M.B.; Sykes, M.T.; Prentice, I.C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. USA 2005, 102, 8245–8250. [Google Scholar] [CrossRef] [Green Version]
- Carnicer, J.; Colla, M.; Ninyerola, M.; Pons, X.; Sánchez, G.; Peñuelas, J. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc. Natl. Acad. Sci. USA 2011, 108, 1474–1478. [Google Scholar] [CrossRef] [Green Version]
- Schirone, B.; Al-Hirsh, I.; Al-Qaddi, N.; Battisti, C.; Vessella, F.; Marras, T.; Ortolani, R.M. Parallel disasters: Wars and biodiversity loss in mountain areas. Reforesta 2016, 1, 76–80. [Google Scholar] [CrossRef] [Green Version]
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [Green Version]
- Stanturf, J.A.; Palik, B.J.; Williams, M.I.; Dumroese, R.K.; Madsen, P. Forest restoration paradigms. J. Sustain. For. 2014, 33, S161–S194. [Google Scholar]
- Dumroese, R.K.; Williams, M.I.; Stanturf, J.A.; Clair, J.B.S. Considerations for restoring temperate forests of tomorrow: Forest restoration, assisted migration, and bioengineering. New For. 2015, 46, 947–964. [Google Scholar] [CrossRef]
- Artz, R.; Anastasoiu, D.; Arrouays, D.; Bastos, A.; Benedetti, A.; Pagliai, M. European Atlas of Soil Biodiversity; Publication Office of the European Union: Luxembourg, 2010. [Google Scholar]
- Caloiero, T.; Callegari, G.; Cantasano, N.; Coletta, V.; Pellicone, G.; Veltri, A. Bioclimatic analysis in a region of southern Italy (Calabria). Plant Biosyst. 2016, 150, 1282–1295. [Google Scholar] [CrossRef]
- Barrón, L.G.; Morales, J.; Sousa, A. Time analysis of Emberger’s Pluviothermic Q Index in the SW of the Iberian Peninsula. In Patterns and Mechanisms of Climate, Paleoclimate and Paleoenvironmental Changes from Low-Latitude Regions, Proceedings of the Conference of the Arabian Journal of Geosciences (CAJG-1), Sousse, Tunisia, 12–15 November 2018; Zhang, Z., Khélifi, N., Mezghani, A., Heggy, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 45–47. [Google Scholar]
- FAO; CIFOR. FAO Framework Methodology for Climate Change Vulnerability Assessments of Forests and Forest Dependent People; Forestry Paper 183; FAO: Rome, Italy, 2019. [Google Scholar]
- Balekoglu, S.; Caliskan, S.; Dirik, H. Effects of geoclimatic factors on the variability in Pinus pinea cone, seed, and seedling traits in Turkey native habitats. Ecol. Process. 2020, 9, 55. [Google Scholar] [CrossRef]
- Van Couwenberghe, R.; Collet, C.; Pierrat, J.-C.; Verheyen, K.; Gégout, J.-C. Can species distribution models be used to describe plant abundance patterns? Ecography 2013, 36, 665–674. [Google Scholar] [CrossRef]
- Médail, F.; Diadema, K. Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J. Biogeogr. 2009, 36, 1333–1345. [Google Scholar] [CrossRef]
- Acácio, V.; Dias, F.S.; Catry, F.X.; Bugalho, M.N.; Moreira, F. Canopy cover loss of Mediterranean oak woodlands: Long-term effects of management and climate. Ecosystems 2021, 24, 1775–1791. [Google Scholar] [CrossRef]
- Montero-Muñoz, J.L.; Ureña, C.; Navarro, D.; Herrera, V.; Alonso-Rojo, P.; Hernández-Alonso, H.; Cepeda-González, M.F.; Jovellar, L.C.; Fernández-Santos, B.; Silla, F. Regeneration dynamics in fragmented landscapes at the leading edge of distribution: Quercus suber woodlands as a study case. Plant Soil 2021, 467, 311–327. [Google Scholar] [CrossRef]
- Rossetti, I.; Bagella, S. Mediterranean Quercus suber wooded grasslands risk disappearance: New evidences from Sardinia (Italy). For. Ecol. Manag. 2014, 329, 148–157. [Google Scholar] [CrossRef]
- Touhami, I.; Chirino, E.; Aouinti, H.; El Khorchani, A.; Elaieb, M.T.; Khaldi, A.; Nasr, Z. Decline and dieback of cork oak (Quercus suber L.) forests in the Mediterranean basin: A case study of Kroumirie, Northwest Tunisia. J. For. Res. 2020, 31, 1461–1477. [Google Scholar] [CrossRef]
- Condés, S.; García-Robredo, F. An empirical mixed model to quantify climate influence on the growth of Pinus halepensis Mill. stands in South-Eastern Spain. For. Ecol. Manag. 2012, 284, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Aabdousse, J.; Wahid, N.; Faida, R.; Karaoui, I.; Boulli, A.; Hassib, A. Determination of the effect of biogeographic variability on myrtle ecology in Morocco using a combination of GIS and bioclimatic indices. J. Mater. Environ. Sci. 2021, 12, 1209–1225. [Google Scholar]
- Vessella, F.; López-Tirado, J.; Simeone, M.C.; Schirone, B.; Hidalgo, P.J. A tree species range in the face of climate change: Cork oak as a study case for the Mediterranean biome. Eur. J. For. Res. 2017, 136, 555–569. [Google Scholar] [CrossRef]
- Houston Durrant, T.; de Rigo, D.; Caudullo, G. Quercus suber in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of the European Union: Luxembourg, 2016; p. e01ff11. [Google Scholar]
- Alía, R.; Gómez, A.; Agúndez, M.; Bueno, M.; Notivol, E. Levels of genetic differentiation in Pinus halepensis Mill. in Spain using quantitative traits, isozymes, RAPDs and cp-microsatellites. In Genetic Response of Forest Systems to Changing Environmental Conditions; Springer: Dordrecht, The Netherlands, 2001; pp. 151–160. [Google Scholar]
- Derory, J.; Mariette, S.; Gonzaléz-Martínez, S.C.; Chagné, D.; Madura, D.; Gerber, S.; Brach, J.; Persyn, F.; Ribeiro, M.M.; Plomion, C. What can nuclear microsatellites tell us about maritime pine genetic resources conservation and provenance certification strategies? Ann. For. Sci. 2002, 59, 699–708. [Google Scholar] [CrossRef]
- Martín, J.; Esteban, L.; de Palacios, P.; Fernandez, F.G. Variation in wood anatomical traits of Pinus sylvestris L. between Spanish regions of provenance. Trees 2010, 24, 1017–1028. [Google Scholar] [CrossRef]
- Reis, F.; Soares-Castro, P.; Costa, D.; Tavares, R.M.; Baptista, P.; Santos, P.M.; Lino-Netoa, T. Climatic impacts on the bacterial community profiles of cork oak soils. Appl. Soil Ecol. 2019, 143, 89–97. [Google Scholar] [CrossRef] [Green Version]
Orange | Blue | Green | Purple | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Q | Today | 2050 | 2070 | Today | 2050 | 2070 | Today | 2050 | 2070 | Today | 2050 | 2070 |
Minimum | 84 | 69 | 63 | 91 | 73 | 65 | 50 | 38 | 35 | 63 | 48 | 43 |
Mean | 96 | 82 | 77 | 102 | 88 | 80 | 103 | 91 | 84 | 82 | 63 | 57 |
Maximum | 113 | 99 | 92 | 115 | 102 | 94 | 122 | 105 | 93 | 114 | 83 | 83 |
m | ||||||||||||
Minimum | 3.1 | 5 | 6.2 | 3.4 | 5.1 | 5.9 | 1.5 | 3.1 | 4.1 | 2.7 | 4 | 4.9 |
Mean | 3.6 | 6 | 7.1 | 5.1 | 7.1 | 7.9 | 4 | 6.1 | 7.3 | 5.9 | 7.2 | 8.1 |
Maximum | 4.2 | 8.9 | 9.9 | 6.4 | 9 | 9 | 5.1 | 7.2 | 8.2 | 8.2 | 9.2 | 10.3 |
Orange | Blue | Green | Purple | Total | |
---|---|---|---|---|---|
Present | 2707 | 8970 | 12,929 | 51,773 | 76,739 |
2050 | 2274 | 7866 | 11,120 | 35,771 | 57,031 |
2070 | 1819 | 5963 | 8359 | 19,710 | 35,851 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vessella, F.; Schirone, B. Forest Conservation and Restoration Using the Emberger Index: Cork Oak as Study Case. Forests 2022, 13, 252. https://doi.org/10.3390/f13020252
Vessella F, Schirone B. Forest Conservation and Restoration Using the Emberger Index: Cork Oak as Study Case. Forests. 2022; 13(2):252. https://doi.org/10.3390/f13020252
Chicago/Turabian StyleVessella, Federico, and Bartolomeo Schirone. 2022. "Forest Conservation and Restoration Using the Emberger Index: Cork Oak as Study Case" Forests 13, no. 2: 252. https://doi.org/10.3390/f13020252
APA StyleVessella, F., & Schirone, B. (2022). Forest Conservation and Restoration Using the Emberger Index: Cork Oak as Study Case. Forests, 13(2), 252. https://doi.org/10.3390/f13020252