Effects of Climate Change on the Carbon Sequestration Potential of Forest Vegetation in Yunnan Province, Southwest China
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
4. Results
4.1. Prediction Accuracy and Contribution of Climate Variables
4.2. Potential Forest Vegetation Distribution under Different Simulation Scenarios
4.3. CSP under Different Simulation Scenarios
5. Discussion
5.1. Climatic Conditions of Suitable Forest Vegetation Habitats
5.2. Effects of Climate Change on the Potential Distribution of Forest Vegetation
5.3. Combined Effects of Temperature and Precipitation on CSP
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, P.; Zhao, X.; Shi, J.; Huang, J.; Tang, J.; Zhang, R.; Chen, J.; Wang, Q.; Zeng, J. The influence of temperature and precipitation on the vegetation dynamics of the tropical island of Hainan. Theor. Appl. Climatol. 2021, 143, 429–445. [Google Scholar] [CrossRef]
- Hui, D.F.; Deng, Q.; Tian, H.Q.; Luo, Y.Q. Climate change and carbon sequestration in forest ecosystems. In Handbook of Climate Change Mitigation and Adaptation; Springer International Publishing: New York, NY, USA, 2017; pp. 1–40. [Google Scholar]
- Watson, R.T.; Zinyowera, M.C.; Moss, R.H. Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Weng, E.S.; Zhou, G.S. Modeling distribution changes of vegetation in China under future climate change. Environ. Model. Assess. 2006, 11, 45–58. [Google Scholar] [CrossRef]
- Ledig, F.T.; Rehfeldt, G.E.; Sáenz-Romero, C.; Flores-López, C. Projections of suitable habitat for rare species under global warming scenarios. Am. J. Bot. 2010, 97, 970–987. [Google Scholar] [CrossRef] [PubMed]
- Lenihan, J.M.; Drapek, R.; Bachelet, D.; Neilson, R.P. Climate change effects on vegetation distribution, carbon, and fire in California. Ecol. Appl. 2003, 13, 1667–1681. [Google Scholar] [CrossRef]
- Rachael, H.; Davidb, R.; Janek, H.; Richard, F.; Chrisd, T. The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Chang. Biol. 2010, 12, 450–455. [Google Scholar]
- Trindade, W.; Santos, M.H.; Artoni, R.F. Climate change shifts the distribution of vegetation types in south Brazilian hotspots. Reg. Environ. Chang. 2020, 20, 90. [Google Scholar] [CrossRef]
- Boisvenue, C.; Running, S.W. Impacts of climate change on natural forest productivity-evidence since the middle of the 20th century. Glob. Chang. Biol. 2010, 12, 862–882. [Google Scholar] [CrossRef]
- Dymond, C.C.; Beukema, S.; Nitschke, C.R.; Coates, K.D.; Scheller, R.M. Carbon sequestration in managed temperate coniferous forests under climate change. Biogeosciences 2016, 13, 1933–1947. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.T.; Piao, S.L.; Wang, T. Future biomass carbon sequestration capacity of Chinese forests. Sci. Bull. 2018, 63, 1108–1117. [Google Scholar] [CrossRef] [Green Version]
- Chiang, J.M.; Iverson, L.R.; Prasad, A.; Brown, K.J. Effects of climate change and shifts in forest composition on forest net primary production. J. Integr. Plant Biol. 2008, 50, 1426–1439. [Google Scholar] [CrossRef]
- Fei, X.H.; Song, Q.H.; Zhang, Y.P.; Liu, Y.T.; Sha, L.Q.; Yu, G.R.; Zhang, L.; Duan, C.; Deng, Y.; Wu, C.; et al. Carbon exchanges and their responses to temperature and precipitation in forest ecosystems in Yunnan, Southwest China. Sci. Total Environ. 2018, 616, 824–840. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Yu, G.R.; Wang, Q.F.; Zhang, Y.J.; Xu, Z.H. Carbon carry capacity and carbon sequestration potential in China based on an integrated analysis of mature forest biomass. Sci. China Life Sci. 2014, 57, 1218–1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, N.P.; Wen, D.; Zhu, J.X.; Tang, X.L.; Xu, L.; Zhang, L.; Hu, H.; Huang, M.; Yu, G. Vegetation carbon sequestration in Chinese forests from 2010 to 2050. Glob. Chang. Biol. 2016, 23, 1575–1584. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.F.; Wang, S.P.; Guo, Z.D.; Xu, B.; Fang, J.Y. The stage-classified matrix models project a significant increase in biomass carbon stocks in China’s forests between 2005 and 2050. Sci. Rep. 2015, 5, 11203. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Guo, Z.D.; Piao, S.L.; Fang, J.Y. Biomass carbon stocks in China’s forests between 2000 and 2050: A prediction based on forest biomass-age relationships. Sci. China Life Sci. 2010, 53, 776–783. [Google Scholar] [CrossRef]
- Peng, D.L.; Zhang, B.; Wu, C.Y.; Huete, A.R.; Gonsamo, A.; Lei, L.P. Country-level net primary production distribution and response to drought and land cover change. Sci. Total Environ. 2017, 574, 65–77. [Google Scholar] [CrossRef]
- Peng, C.H.; Zhou, X.L.; Zhao, S.Q.; Wang, X.P.; Zhu, B.; Piao, S.L. Quantifying the response of forest carbon balance to future climate change in Northeastern China: Model validation and prediction. Glob. Planet. Chang. 2009, 66, 179–194. [Google Scholar] [CrossRef]
- Li, W.; Peng, M.C.; Higa, M.; Tanaka, N.; Matsui, T.; Tang, C.Q.; Ou, X.K.; Zhou, R.W.; Wang, C.Y.; Yan, H.Z. Effects of climate change on potential habitats of the cold temperate coniferous forest in Yunnan Province, Southwestern China. J. Mt. Sci. 2016, 13, 1411–1422. [Google Scholar] [CrossRef]
- Michaelsen, J.; Schimel, D.S.; Friedl, M.A.; Davis, F.W.; Dubayah, R.C. Regression tree analysis of satellite and terrain data to guide vegetation sampling and surveys. J. Veg. Sci. 1994, 5, 673–686. [Google Scholar] [CrossRef]
- Vayssieres, M.P.; Plant, R.E.; Allendiaz, B.H. Classification trees: An alternative nonparametric approach for predicting species distribution. J. Veg. Sci. 2000, 11, 679–694. [Google Scholar] [CrossRef]
- Zhou, R.W.; Li, W.J.; Zhang, Y.P.; Peng, M.C.; Wang, C.Y.; Sha, L.Q.; Liu, Y.T.; Song, Q.H.; Fei, X.H.; Jin, Y.Q.; et al. Responses of the carbon storage and sequestration potential of forest vegetation to temperature increases in Yunnan Province, SW China. Forests 2018, 9, 227. [Google Scholar] [CrossRef] [Green Version]
- Cai, L. Study on Carbon Storage of Forest Vegetation and Its Changes in Yunnan Province. Master’s Thesis, Southwest Forestry University, Kunming, China, 2009. [Google Scholar]
- Li, L. Dynamic Change and Carbon Sequestration of Forest Vegetation Carbon Potential Analysis from 1992 to 2007 in Yunnan. Master’s Thesis, Yunnan University of Finance and Economics, Kunming, China, 2012. [Google Scholar]
- Zhou, J.J.; Xu, S.S. Analysis of the current status and dynamics of forest carbon storage in Yunnan Province. For. Inventory Plan. 2016, 1, 17–23. [Google Scholar]
- Chen, J.G.; Xie, M.E. The analysis of regional climate change features over Yunnan in recent 50 years. Prog. Geogr. 2008, 27, 19–26. [Google Scholar]
- Mueller, R.C.; Scudder, C.M.; Porter, M.E.; Trotter, R.T.; Gehring, C.A.; Whitham, T.G. Differential tree mortality in response to severe drought: Evidence for long-term vegetation shifts. J. Ecol. 2005, 93, 1085–1093. [Google Scholar] [CrossRef]
- Xu, C.H.; Xu, Y. The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi model ensemble. Atmos. Ocean. Sci. Lett. 2012, 5, 527–533. [Google Scholar]
- Wang, S.; Huang, J.; Yuan, X. Attribution of 2019 extreme spring-early summer hot drought over Yunnan in Southwestern China. Bull. Am. Meteorol. Soc. 2021, 102, S91–S96. [Google Scholar] [CrossRef]
- Molen, M.K.; Dolman, A.J.; Ciais, P.; Eglin, T.; Gobron, N.; Law, B.E.; Meir, P.; Peters, W.; Phillips, O.; Reichstein, M.; et al. Drought and ecosystem carbon cycling. Agric. For. Meteorol. 2011, 151, 765–773. [Google Scholar] [CrossRef]
- Heyder, U.; Schaphoff, S.; Gerten, D.; Lucht, W. Risk of severe climate change impact on the terrestrial biosphere. Environ. Res. Lett. 2011, 6, 034036. [Google Scholar] [CrossRef]
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef]
- Feeley, K.J.; Silman, M.R.; Bush, M.B.; Farfan, W.; Cabrera, K.G.; Malhi, Y.; Meir, P.; Revilla, N.S.; Quisiyupanqui, M.N.R.; Saatchi, S. Upslope migration of Andean trees. J. Biogeogr. 2011, 38, 783–791. [Google Scholar] [CrossRef]
- Fridley, J.D.; Wright, J.P. Drivers of secondary succession rates across temperate latitudes of the Eastern USA: Climate, soils, and species pools. Oecologia 2012, 168, 1069–1077. [Google Scholar] [CrossRef]
- Liu, C.H.; Yang, J.B.; Yin, L. Progress, achievements and prospects of biodiversity protection in Yunnan Province. Biodivers. Sci. 2021, 29, 200–211. [Google Scholar] [CrossRef]
- Peng, M.C. A Study on Classification and Dynamics of Vegetation in Yunnan Based on Remote Sensing. Ph.D. Thesis, Yunnan University, Kunming, China, 2008. [Google Scholar]
- Wu, Z.Y.; Zhu, Y.C. Vegetation of Yunnan; Science Press: Beijing, China, 1987. [Google Scholar]
- Zhang, M.; Zhou, Z.; Chen, W.; Slik, J.F.; Cannon, C.H.; Raes, N. Using species distribution modelling to improve conservation and land use planning of Yunnan, China. Biol. Conserv. 2012, 153, 257–264. [Google Scholar] [CrossRef]
- Yang, Y.; Tian, K.; Hao, J.; Pei, S.; Yang, Y. Biodiversity and biodiversity conservation in Yunnan, China. Biodivers. Conserv. 2004, 13, 813–826. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [Green Version]
- Masahiro, H.; Ikutaro, T.; Tetsuya, M.; Yuji, K.; Nobuyuki, T. Assessing the potential impacts of climate change on the alpine habitat suitability of Japanese stone pine (Pinus pumila). Landsc. Ecol. 2009, 24, 115–128. [Google Scholar]
- Selvalakshmi, S.; Kalarikkal, R.K.; Yang, X. Predicting the habitat distribution of rubber plantations with topography, soil, land use, and climatic factors. Environ. Monit. Assess. 2020, 192, 1–11. [Google Scholar] [CrossRef]
- Soja, A.J.; Tchebakova, N.M.; Parfenova, E.I.; Cantin, A.; Conard, S.G. Projected impacts of 21st century climate change on potential habitat for vegetation and forest types in Russia. In Proceedings of the 2015 AGU Fall Meeting, San Francisco, CA, USA, 14–18 December 2015. [Google Scholar]
- Beane, N.R.; Rentch, J.S. Using known occurrences to model suitable habitat for a rare forest type in West Virginia under select climate change scenarios. Ecol. Restor. 2015, 33, 178–189. [Google Scholar] [CrossRef]
- Hirayama, H.; Tomita, M.; Hara, K. Prediction of changes in vegetation distribution under climate change scenarios using modis dataset. ISPRS 2016, XLI-B8, 883–887. [Google Scholar]
- Amissah, L.; Mohren, G.M.J.; Bongers, F.; Hawthorne, W.D.; Poorter, L. Rainfall and temperature affect tree species distribution in Ghana. J. Trop. Ecol. 2014, 30, 435–446. [Google Scholar] [CrossRef]
- Kreyling, J. Winter climate change: A critical factor for temperate vegetation performance. Ecology 2010, 91, 1939–1948. [Google Scholar] [CrossRef]
- Federer, C.A.; Tritton, L.M.; Hornbeck, J.W.; Smith, R.B. Physiologically based dendroclimate models for effects of weather on red spruce basal-area growth. Agric. For. Meteorol. 1989, 46, 159–172. [Google Scholar] [CrossRef]
- Weiskittel, A.R.; Crookston, N.L.; Rehfeldt, G.E. Projected future suitable habitat and productivity of Douglas-fir in Western North America. Schweiz. Z. Forstwes. 2012, 163, 70–78. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Graham, C.H. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Chang. Biol. 2006, 12, 2272–2281. [Google Scholar] [CrossRef]
- Huntley, B.; Barnard, P.; Altwegg, R.; Chambers, L.; Coetzee, B.W.T.; Gibson, L. Beyond bioclimatic envelopes: Dynamic species’ range and abundance modeling in the context of climatic change. Ecography 2010, 33, 621–626. [Google Scholar] [CrossRef]
- Michelsen, O.; Syverhuset, A.O.; Pedersen, B.; Holten, J.I. The impact of climate change on recent vegetation changes on Dovrefjell, Norway. Diversity 2011, 3, 91–111. [Google Scholar] [CrossRef] [Green Version]
- Mátyás, C. Forecasts needed for retreating forests. Nature 2010, 464, 1271. [Google Scholar] [CrossRef]
- Soja, A.J.; Tchebakova, N.M.; French, N.H.F.; Flannigan, M.D.; Shugart, H.H.; Stocks, B.J. Climate-induced boreal forest change: Predictions versus current observations. Glob. Planet. Chang. 2007, 56, 274–296. [Google Scholar] [CrossRef] [Green Version]
- Kerns, B.K.; Powell, D.C.; Mellmann-Brown, S.; Carnwath, G.; Kim, J.B. Effects of projected climate change on vegetation in the Blue Mountains ecoregion, USA. Clim. Serv. 2017, 10, 33–43. [Google Scholar] [CrossRef]
- Shi, Z.G.; Sha, Y.Y.; Liu, X.D. Effect of Yunnan-Guizhou topography at the Southeastern Tibetan Plateau on the Indian monsoon. J. Clim. 2016, 30, 1259–1272. [Google Scholar] [CrossRef]
- Bachelet, D.; Neilson, R.P.; Lenihan, J.M.; Drapek, R.J. Climate change effects on vegetation distribution and carbon budget in the United States. Ecosystems 2001, 4, 164–185. [Google Scholar] [CrossRef]
- Lenihan, J.M.; Bachelet, D.; Neilson, R.P.; Drapek, R. Simulated response of conterminous United States ecosystems to climate change at different levels of fire suppression, CO2 emission rate, and growth response to CO2. Glob. Planet. Chang. 2008, 64, 16–25. [Google Scholar] [CrossRef]
- Hamann, A.; Wang, T. Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology 2006, 87, 2773–2786. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.Q. The Subtropical Vegetation of Southwestern China; Springer: Dordrecht, The Netherlands, 2015; pp. 339–342. [Google Scholar]
- Guo, Q.; Hu, Z.M.; Li, S.G.; Li, X.R.; Sun, X.M.; Yu, G.R. Spatial variations in aboveground net primary productivity along a climate gradient in Eurasian temperate grassland: Effects of mean annual precipitation and its seasonal distribution. Glob. Chang. Biol. 2012, 18, 3624–3631. [Google Scholar] [CrossRef]
- Dai, Z.; Johnson, K.D.; Birdsey, R.A.; Hernandez-Stefanoni, J.L.; Dupuy, J.M. Assessing the effect of climate change on carbon sequestration in a Mexican dry forest in the Yucatan Peninsula. Ecol. Complex. 2015, 24, 46–56. [Google Scholar] [CrossRef]
- Alexeyev, V.; Birdsey, R.; Stakanov, V.; Korotkov, I. Carbon in vegetation of Russian forests: Methods to estimate storage and geographical distribution. Water Air Soil Pollut. 1995, 82, 271–282. [Google Scholar] [CrossRef]
- Nabuurs, G.J.; Mohren, G.M.J. Carbon in Dutch forest ecosystems. Neth. J. Agric. Sci. 1993, 41, 309–326. [Google Scholar] [CrossRef]
- Peckham, S.D.; Gower, S.T.; Buongiorno, J. Estimating the carbon budget and maximizing future carbon uptake for a temperate forest region in the U.S. Carbon Balance Manag. 2012, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Brienen, R.J.; Phillips, O.L.; Feldpausch, T.R.; Gloor, E.; Baker, T.R.; Lloyd, J. Long-term decline of the Amazon carbon sink. Nature 2015, 519, 344–348. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.Y.; Piao, S.L.; Field, C.B.; Pan, Y.; Guo, Q.H.; Zhou, L.M. Increasing net primary production in China from 1982 to 1999. Front. Ecol. Environ. 2003, 1, 293–297. [Google Scholar] [CrossRef]
- Piao, S.L.; Fang, J.Y.; Zhou, L.M.; Zhu, B.; Tan, K.; Tao, S. Changes in vegetation net primary productivity from 1982 to 1999 in China. Glob. Biogeochem. Cycles 2005, 19, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Yu, G.R.; Ge, J.P.; Sun, X.M.; Hirano, T.; Saigusa, N.; Wang, Q.; Zhu, X.; Zhang, Y.; Zhang, J.; et al. Temperature and precipitation control of the spatial variation of terrestrial ecosystem carbon exchange in the Asian region. Agric. For. Meteorol. 2013, 182, 266–276. [Google Scholar] [CrossRef]
- Wu, Z.L. A review of the research status of Pinus kesiya var. langbianensis in Southwestern China. Sci. Silvae Sin. 1994, 30, 151–157. [Google Scholar]
- Reyes, W.M.; Epstein, H.E.; Li, X.; Mcglynn, B.L.; Riveros-Iregui, D.A.; Emanuel, R.E. Complex terrain influences ecosystem carbon responses to temperature and precipitation. Glob. Biogeochem. Cycles 2017, 31, 1306–1317. [Google Scholar] [CrossRef]
- Schimel, D.S. Terrestrial ecosystems and the carbon cycle. Glob. Chang. Biol. 1995, 1, 77–91. [Google Scholar] [CrossRef]
- Walker, A.P.; Zaehle, S.; Medlyn, B.E.; De Kauwe, M.G.; Asao, S.; Hickler, T. Vegetation turnover and nitrogen feedback drive temperate forest carbon sequestration in response to elevated CO2. A multimodel structural analysis. In Proceedings of the 2013 AGU Fall Meeting, San Francisco, CA, USA, 9–13 December 2013. [Google Scholar]
- Wang, K.B.; Deng, L.; Ren, Z.P.; Shi, W.Y.; Chen, Y.P.; Shang-Guan, Z.P. Dynamics of ecosystem carbon stocks during vegetation restoration on the Loess Plateau of China. J. Arid. Land 2016, 8, 207–220. [Google Scholar] [CrossRef] [Green Version]
Simulation Scenario | Temperature (°C) | Precipitation (%) |
---|---|---|
T00P00 | 00 | 00 |
T01P00 | +1 | 00 |
T01P10 | +1 | −10 |
T01P20 | +1 | −20 |
T01P30 | +1 | −30 |
T02P00 | +2 | 00 |
T02P10 | +2 | −10 |
T02P20 | +2 | −20 |
T02P30 | +2 | −30 |
Simulation Scenario | TMW | TMS | PRS | PRW | AUC | ||||
---|---|---|---|---|---|---|---|---|---|
DWS | % | DWS | % | DWS | % | DWS | % | ||
T00P00 | 13,439 | 46.21 | 2023 | 19.82 | 7443 | 23.19 | 1986 | 10.78 | 0.85 |
T01P00 | 19,334 | 54.45 | 1553 | 12.97 | 5497 | 23.44 | 3151 | 9.14 | 0.85 |
T01P10 | 18,757 | 47.39 | 2056 | 19.31 | 5586 | 24.39 | 3060 | 8.91 | 0.85 |
T01P20 | 19,397 | 54.15 | 1704 | 14.10 | 5454 | 22.70 | 3192 | 9.05 | 0.8 6 |
T01P30 | 19,443 | 56.85 | 1367 | 8.49 | 5626 | 24.11 | 3223 | 10.55 | 0.85 |
T02P00 | 20,003 | 57.08 | 1399 | 12.30 | 5552 | 22.76 | 2914 | 7.86 | 0.86 |
T02P10 | 18,963 | 51.09 | 2060 | 15.11 | 5502 | 23.38 | 3287 | 10.42 | 0.86 |
T02P20 | 19,433 | 54.23 | 1688 | 13.86 | 5550 | 23.03 | 3107 | 8.88 | 0.85 |
T02P30 | 18,642 | 48.25 | 2126 | 19.05 | 5545 | 23.68 | 3090 | 9.03 | 0.85 |
Forest Vegetation | T01P00–T00P00 | T01P10–T00P00 | T01P20–T00P00 | T01P30–T00P00 | ||||
---|---|---|---|---|---|---|---|---|
Area | Rate of Change | Area | Rate of Change | Area | Rate of Change | Area | Rate of Change | |
MEB | −6.22 | −14.24 | −8.23 | −18.80 | −7.19 | −16.44 | −7.26 | −16.59 |
SEB | −10.33 | −54.17 | −9.68 | −50.74 | −11.61 | −60.89 | −8.41 | −44.08 |
MHEB | −2.39 | −37.18 | 8.52 | 132.48 | −0.64 | −9.97 | −1.24 | −19.26 |
WHC | −6.37 | −4.89 | −6.37 | −4.89 | −77.94 | −59.76 | −5.80 | −4.45 |
WTC | 50.15 | 27.32 | 50.09 | 27.29 | 52.63 | 28.68 | 50.15 | 27.32 |
TCC | −6.22 | −18.13 | −6.55 | −29.66 | −5.05 | −22.85 | −4.15 | −18.79 |
CTC | −4.46 | −18.56 | −3.72 | −15.49 | −3.45 | −14.36 | −3.48 | −14.48 |
Mean | 14.15 | 3.30 | 24.06 | 5.60 | −53.25 | −12.41 | 19.81 | 4.62 |
Forest Vegetation | T02P00–T00P00 | T02P10–T00P00 | T02P20–T00P00 | T02P30–T00P00 | ||||
---|---|---|---|---|---|---|---|---|
Area | Rate of Change | Area | Rate of Change | Area | Rate of Change | Area | Rate of Change | |
MEB | −6.67 | −15.44 | −71.94 | −16.44 | −67.57 | −15.44 | −67.57 | −15.44 |
SEB | −10.35 | −54.28 | −81.77 | −42.88 | −111.51 | −58.47 | −114.19 | −59.88 |
MHEB | −1.28 | −28.33 | 10.08 | 156.78 | −0.64 | −9.97 | −2.39 | −37.18 |
WHC | −77.94 | −59.76 | −77.94 | −59.76 | −77.12 | −59.13 | −8.19 | −6.28 |
WTC | 57.92 | 31.56 | 55.87 | 30.45 | 59.76 | 32.56 | 53.82 | 29.33 |
TCC | −5.00 | −22.63 | −41.51 | −18.79 | −53.17 | −24.07 | −44.19 | −20.00 |
CTC | −3.72 | −15.49 | −34.49 | −14.36 | −41.55 | −17.31 | −58.07 | −24.19 |
Mean | −47.66 | −11.10 | −34.96 | −8.14 | −45.38 | −10.57 | 14.84 | 3.46 |
Forest Vegetation | T00P00 | T01P00 | T01P10 | T01P20 | T01P30 | T02P00 | T02P10 | T02P20 | T02P30 |
---|---|---|---|---|---|---|---|---|---|
MEB | 78.79 | 38.32 | 25.35 | 32.05 | 31.63 | 34.89 | 32.05 | 34.89 | 34.89 |
SEB | 29.69 | −40.51 | −30.09 | −49.23 | −27.43 | −40.66 | −25.87 | −46.09 | −47.91 |
MHEB | 52.89 | 5.00 | 223.56 | 40.05 | 28.08 | 16.40 | 254.87 | 40.05 | 5.00 |
WHC | 567.62 | 743.28 | 743.28 | 234.96 | 747.34 | 234.96 | 234.96 | 240.77 | 730.36 |
WTC | 156.78 | 193.30 | 246.83 | 251.39 | 246.94 | 260.36 | 257.22 | 264.21 | 253.54 |
TCC | 119.00 | 69.66 | 66.99 | 78.92 | 86.05 | 79.32 | 86.05 | 76.79 | 83.92 |
CTC | 95.84 | 55.24 | 61.96 | 64.41 | 64.16 | 61.96 | 64.41 | 57.98 | 42.92 |
Sum | 1100.61 | 1064.29 | 1337.88 | 652.57 | 1176.76 | 647.24 | 903.70 | 668.61 | 1102.72 |
Forest Vegetation | Suitable Habitat Climatic Conditions |
---|---|
MEB | PRS > 638.5 mm and TMW > 3.45 °C and PRW > 63.5 mm |
SEB | TMW < 3.75 °C and PRW > 63.5 mm |
MHEB | TMW < 1.05 °C and PRS > 699.5 mm |
WHC | PRS > 646.5 mm and PRW > 63.5 mm and TMW > −1.85 °C |
WTC | 14.25 °C < TMS < 20.35 °C |
TCC | −6.05 °C < TMW < −1.15 °C and PRW > 325.5 mm |
CTC | TMW < −3.75 °C and PRS < 537.5 mms |
Forest Vegetation | T00P00 | T00P10 | T00P20 | T00P30 |
---|---|---|---|---|
MEB | 78.79 | 25.36 | 31.63 | 31.63 |
SEB | 29.69 | −25.52 | −47.59 | −45.34 |
MHEB | 52.89 | 54.80 | 16.20 | 28.08 |
WHC | 567.62 | 743.28 | 236.60 | 234.96 |
WTC | 156.78 | 255.62 | 257.19 | 245.26 |
TCC | 119.00 | 78.92 | 74.43 | 79.32 |
CTC | 95.84 | 55.24 | 49.47 | 64.41 |
Sum | 1100.64 | 1187.69 | 617.91 | 638.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, R.; Zhang, Y.; Peng, M.; Jin, Y.; Song, Q. Effects of Climate Change on the Carbon Sequestration Potential of Forest Vegetation in Yunnan Province, Southwest China. Forests 2022, 13, 306. https://doi.org/10.3390/f13020306
Zhou R, Zhang Y, Peng M, Jin Y, Song Q. Effects of Climate Change on the Carbon Sequestration Potential of Forest Vegetation in Yunnan Province, Southwest China. Forests. 2022; 13(2):306. https://doi.org/10.3390/f13020306
Chicago/Turabian StyleZhou, Ruiwu, Yiping Zhang, Mingchun Peng, Yanqiang Jin, and Qinghai Song. 2022. "Effects of Climate Change on the Carbon Sequestration Potential of Forest Vegetation in Yunnan Province, Southwest China" Forests 13, no. 2: 306. https://doi.org/10.3390/f13020306