The Nature and Size Fractions of Particulate Matter Deposited on Leaves of Four Tree Species in Beijing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Sites
2.2. Sampling Procedure
2.3. Analysis of PM
2.4. Analysis of Leaf Surface Characteristics
2.5. Data Analysis
3. Results
3.1. Differences in PM and Its Size Fractions among Species
3.2. Differences in PM and Its Size Fractions among Sites
3.3. Morphological Structure of Leaf Surfaces
3.4. Encapsulation of PM
3.5. The Effects of Leaf Structure on PM Accumulation
4. Discussion
4.1. Differences in PM Accumulation among Species
4.2. Differences in PM Accumulation between Sites
4.3. Importance of Leaf Structure for PM Accumulation
5. Conclusions
- (i)
- The amounts of accumulated PM differed significantly among species, in the order of P. acerifolia > F. chinensis > G. biloba > P. tomentosa. Most of the accumulated PM belonged to the largest fraction (>10 µm). Some PM was encapsulated in cuticles of F. chinensis and G. biloba, and which was dominated by PM2.5 (>90%).
- (ii)
- Trees at polluted site had higher rates of PM accumulation and higher percentage of fine and coarse fractions than less polluted site. With the increase of pollution level, the PM retention ability of tree species increased with the decrease of particle size, indicating that plant leaves could accumulate fine particles and purify local air.
- (iii)
- Leaf structures affect PM accumulation and its size fractions. Large leaves, along with low stomatal aperture, width, and density, as well as low CA, all resulted in increased PM capture.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beijing Municipal Ecological and Environmental Monitoring Center Ambient Air Quality Daily Report. Available online: http://www.bjmemc.com.cn/ (accessed on 17 May 2021). (In Chinese).
- Liu, J.; Yin, H.; Tang, X.; Zhu, T.; Zhang, Q.; Liu, Z.; Tang, X.; Yi, H. Transition in air pollution, disease burden and health cost in China: A comparative study of long-term and short-term exposure. Environ. Pollut. 2021, 277, 116770. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Agrawal, M. World air particulate matter: Sources, distribution and health effects. Environ. Chem. Lett. 2017, 15, 283–309. [Google Scholar] [CrossRef]
- Dockery, D.W.; Pope, C.A. Acute Respiratory Effects of Particulate Air Pollution. Annu. Rev. Public Health 1994, 15, 107–132. [Google Scholar] [CrossRef]
- Tchepel, O.; Dias, D. Quantification of health benefits related with reduction of atmospheric PM10levels: Implementation of population mobility approach. Int. J. Environ. Heal. Res. 2011, 21, 189–200. [Google Scholar] [CrossRef]
- Wang, H.X.; Maher, B.A.; Ahmed, I.A.M.; Davison, B. Efficient Removal of Ultrafine Particles from Diesel Exhaust by Selected Tree Species: Implications for Roadside Planting for Improving the Quality of Urban Air. Environ. Sci. Technol. 2020, 53, 6906–6916. [Google Scholar] [CrossRef]
- Platel, A.; Privat, K.; Talahari, S.; Delobel, A.; Dourdin, G.; Gateau, E.; Simar, S.; Saleh, Y.; Sotty, J.; Antherieu, S.; et al. Study of in vitro and in vivo genotoxic effects of air pollution fine (PM2.5–0.18) and quasi-ultrafine (PM0.18) particles on lung models. Sci. Total Environ. 2020, 711, 134666. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of the People’s Republic of China. Ambient Air Quality Standards (GB 3095-2012); China Environmental Science Press: Beijing, China, 2012; p. 3. (In Chinese) [Google Scholar]
- Zhang, M.; Han, L.H.; Liu, B.X.; Wang, Q.; Cao, Y. Evolution of PM2.5 and its components during heavy pollution episodes in winter in Beijing. China Environ. Sci. 2020, 40, 2829–2838, (In Chinese with English Abstract). [Google Scholar]
- Zhang, X.Y.; Lyu, J.Y.; Han, Y.J.; Sun, N.X.; Sun, W.; Li, J.M.; Liu, C.J.; Yin, S. Effects of the leaf functional traits of coniferous and broadleaved trees in subtropical monsoon regions on PM2.5 dry deposition velocities. Environ. Pollut. 2020, 265, 114845. [Google Scholar] [CrossRef]
- Sæbø, A.; Popek, R.; Nawrot, B.; Hanslin, H.M.; Gawronska, H.; Gawronski, S.W. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total Environ. 2012, 427–428, 347–354. [Google Scholar] [CrossRef]
- Fowler, D.; Cape, J.N.; Unsworth, M.H.; Mayer, H.; Crower, J.M.; Jarvis, P.G.; Gardiner, B.; Shuttleworth, W.J. Deposition of atmospheric pollutants on forests. Philos. Trans. R. Soc. B Biol. Sci. 1989, 324, 247–265. [Google Scholar] [CrossRef]
- McDonald, A.G.; Bealey, W.J.; Fowler, D.; Dragosits, U.; Skiba, U.; Smith, R.I.; Donovan, R.G.; Brett, H.E.; Hewitt, C.N.; Nemitz, E. Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbation. Atmos. Environ. 2007, 41, 8455–8467. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Ellis, E.; Greenfield, E.J. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.S.; Teng, M.J.; Huang, C.B.; Zhou, Z.X.; Chen, X.P.; Xiang, Y. Canopy density effects on particulate matter attenuation coefficients in street canyons during summer in the Wuhan metropolitan area. Atmos. Environ. 2020, 240, 117739. [Google Scholar] [CrossRef]
- Uni, D.; Katra, I. Airborne dust absorption by semi-arid forests reduces PM pollution in nearby urban environments. Sci. Total Environ. 2017, 598, 984–992. [Google Scholar] [CrossRef] [PubMed]
- Escobedo, F.J.; Nowak, D.J. Spatial heterogeneity and air pollution removal by an urban forest. Landsc. Urban Plan 2009, 90, 102–110. [Google Scholar] [CrossRef]
- Räsänen, J.V.; Holopainen, T.; Joutsensaari, J.; Ndam, C.; Pasanen, P.; Rinnan, Å.; Kivimäenpää, M. Effects of species-specific leaf characteristics and reduced water availability on fine particle capture efficiency of trees. Environ. Pollut. 2013, 183, 64–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.X.; Shi, H.; Li, Y.Y.; Yu, Y.; Zhang, J. Seasonal variations in leaf capturing of particulate matter, surface wettability and micromorphology in urban tree species. Front. Environ. Sci. Eng. 2013, 7, 579–588. [Google Scholar] [CrossRef]
- Yue, C.; Cui, K.D.; Duan, J.; Wu, X.Y.; Yan, P.B.; Rodriguez, C.; Fu, H.M.; Deng, T.; Zhang, S.W.; Liu, J.Q.; et al. The retention characteristics for water-soluble and water-insoluble particulate matter of five tree species along an air pollution gradient in Beijing, China. Sci. Total Environ. 2021, 767, 145497. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.K.; Zhang, Z.; Meng, H.; Zhang, T. How does leaf surface micromorphology of different trees impact their ability to capture particulate matter? Forests 2018, 9, 681. [Google Scholar] [CrossRef] [Green Version]
- Aryal, B.; Neuner, G. Leaf wettability decreases along an extreme altitudinal gradient. Oecologia 2010, 162, 1–9. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.Q.; Chen, L.X.; McNulty, S. An investigation on the leaf accumulation-removal efficiency of atmospheric particulate matter for five urban plant species under different rainfall regimes. Atmos. Environ. 2019, 208, 123–132. [Google Scholar] [CrossRef]
- Wang, H.X.; Shi, H. Particle retention capacity, efficiency, and mechanism of selected plant species: Implications for urban planting for improving urban air quality. Plants 2021, 10, 2109. [Google Scholar] [CrossRef] [PubMed]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Quantification of the traffic-generated particulate matter capture by plant species in a living wall and evaluation of the important leaf characteristics. Sci. Total Environ. 2018, 635, 1012–1024. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.X.; Wang, Y.H.; Shi, H. Abatement of Air Particulate Pollutants by Urban Greening Plants, 1st ed.; China Forestry Publishing House: Beijing, China, 2020; pp. 90–91. [Google Scholar]
- Terzaghi, E.; Wild, E.; Zacchello, G.; Cerabolini, B.E.L.; Jones, K.C.; Guardo, A.D. Forest filter effect: Role of leaves in capturing/releasing air particulate matter and its associated PAHs. Atmos. Environ. 2013, 74, 378–384. [Google Scholar] [CrossRef]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Topographical structures in planting design of living walls affect their ability to immobilise traffic-based particulate matter. Sci. Total Environ. 2019, 660, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Hoehn, R. Modeled PM2.5 removal by trees in ten U.S. cities and associated health effects. Environ. Pollut. 2013, 178, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Tallis, M.; Taylor, G.; Sinnett, D.; Freer-Smith, P. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landsc. Urban Plan 2011, 103, 129–138. [Google Scholar] [CrossRef]
- Freer-Smith, P.H.; Beckett, K.P.; Taylor, G. Deposition velocities to Sorbus aria, Acer campestre, Populus deltoids × trichocarpa ‘Beaupré’, Pinus nigra and × Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment. Environ. Pollut. 2005, 133, 157–167. [Google Scholar] [CrossRef]
- Przybysz, A.; Sæbø, A.; Hanslin, H.M.; Gawroński, S.W. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. Sci. Total Environ. 2014, 481, 360–369. [Google Scholar] [CrossRef]
- Wu, F.Y.; Wang, W.; Man, Y.B.; Chan, C.Y.; Liu, W.X.; Tao, S.; Wong, M.H. Levels of PM2.5/PM10 and associated metal(loid)s in rural households of Henan Province, China. Sci. Total Environ. 2015, 512–513, 194–200. [Google Scholar] [CrossRef]
- Yang, J.; Wang, H.X.; Xie, B.Z.; Wang, Y.H.; Shi, H. Quantity and mass of particulate matter retained on tree leaves and determination methods. J. Ecol. Rural Environ. 2015, 31, 440–444, (In Chinese with English Abstract). [Google Scholar]
- Kardel, F.; Wuyts, K.; Maher, B.A.; Hansard, R.; Samson, R. Leaf saturation isothermal remanent magnetization (SIRM) as a proxy for particulate matter monitoring: Inter-species differences and in-season variation. Atmos. Environ. 2011, 45, 5164–5171. [Google Scholar] [CrossRef]
- Burkhardt, J.; Koch, K.; Kaiser, H. Deliquescence of deposited atmospheric particles on leaf surfaces. Water Air Soil Poll. 2001, 1, 313–321. [Google Scholar] [CrossRef]
- Nobel, P.S. Physicochemical and Environmental Plant Physiology, 4th ed.; Academic Press: New York, NY, USA, 2009; pp. 228–275. [Google Scholar] [CrossRef]
- Barber, J.L.; Thomas, G.O.; Kerstiens, G.; Jones, K.C. Air-side and plant-side resistances influence the uptake of airborne PCBs by evergreen plants. Environ. Sci. Technol. 2002, 36, 3224–3229. [Google Scholar] [CrossRef]
- Dzierżanowski, K.; Popek, R.; Gawrońska, H.; Sæbø, A.; Gawroński, S.W. Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. Int. J. Phytoremediat. 2011, 13, 1037–1046. [Google Scholar] [CrossRef]
Tree Species | Beijing Botanical Garden (Site 1) a | Huangcun (Site 2) a | Amount Ratios b | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PM0.1–2.5 | PM2.5–10 | PM>10 | Total PM | PM0.1–2.5 | PM2.5–10 | PM>10 | Total PM | PM0.1–2.5 | PM2.5–10 | PM>10 | Total PM | |
P. tomentosa | 3.9 ± 0.6 (4.4 ± 0.3) | 5.7 ± 1.1 (6.4 ± 0.5) | 80.0 ± 11.6 (89.2 ± 1.7) | 89.6 ± 13.2 | 9.3 ± 0.8 (7.5 ± 0.8) | 15.9 ± 1.7 (12.8 ± 0.9) | 98.7 ± 4.7 (79.7 ± 1.4) | 123.9 ± 5.5 | 2.4 | 2.8 | 1.2 | 1.4 |
P. acerifolia | 14.2 ± 0.4 (8.6 ± 1.5) | 41.2 ± 7.0 (25.0 ± 6.9) | 109.1 ± 31.7 (66.4 ± 8.2) | 164.5 ± 30.1 | 25.0 ± 4.9 (5.4 ± 1.0) | 51.7 ± 7.6 (11.1 ± 1.7) | 389.5 ± 15.2 (83.5 ± 2.6) | 466.2 ± 26.9 | 1.8 | 1.3 | 3.6 | 2.8 |
F. chinensis | 7.0 ± 2.0 (6.3 ± 0.7) | 11.1 ± 2.5 (10.0 ± 0.9) | 93.3 ± 23.2 (83.7 ± 2.2) | 111.4 ± 27.4 | 15.6 ± 4.5 (10.0 ± 3.0) | 24.1 ± 4.4 (15.4 ± 2.0) | 117.3 ± 20.6 (74.6 ± 1.4) | 157.0 ± 25.4 | 2.2 | 2.2 | 1.3 | 1.4 |
G. biloba | 6.4 ± 2.3 (6.5 ± 2.4) | 8.6 ± 1.2 (8.8 ± 1.3) | 83.2 ± 2.7 (84.7 ± 1.5) | 98.2 ± 1.8 | 10.8 ± 3.2 (7.3 ± 2.3) | 18.0 ± 3.8 (12.1 ± 2.9) | 119.5 ± 11.6 (80.6 ± 3.0) | 148.3 ± 9.1 | 1.7 | 2.1 | 1.4 | 1.5 |
Leaf Surface Structure Properties | Beijing Botanical Garden (Site 1) | Huangcun (Site 2) | ||||||
---|---|---|---|---|---|---|---|---|
P. tomentosa | P. acerifolia | F. chinensis | G. biloba | P. tomentosa | P. acerifolia | F. chinensis | G. biloba | |
Stomatal density (/mm2) | 217.1 ± 42.4 | 245.2 ± 56.8 | 205.0 ± 112.6 | 69.0 ± 22.4 | 278.8 ± 84.9 | 288.0 ± 26.3 | 423.5 ± 135.3 | 187.4 ± 37.8 |
Stomatal length (µm) | 17.8 ± 1.5 | 29.1 ± 4.3 | 23.5 ± 4.6 | 23.1 ± 4.9 | 16.7 ± 3.0 | 20.9 ± 2.7 | 18.6 ± 2.7 | 15.2 ± 2.7 |
Stomatal width (µm) | 7.4 ± 0.9 | 22.2 ± 3.6 | 11.3 ± 4.4 | 8.7 ± 2.2 | 5.3 ± 1.2 | 15.2 ± 1.5 | 8.0 ± 1.7 | 5.0 ± 1.6 |
Stomatal aperture (µm) | 2.1 ± 1.0 | 7.3 ± 2.1 | 2.3 ± 1.2 | n.d. | 1.9 ± 0.7 | 6.3 ± 1.9 | 2.5 ± 0.6 | n.d. |
Stomatal with particle (%) | 72.2 ± 31.5 | 66.4 ± 12.3 | 43.0 ± 25.9 | 14.6 ± 18.5 | 92.9 ± 12.6 | 89.9 ± 20.2 | 63.4 ± 18.0 | 11.0 ± 15.2 |
Contact angle (upper side) (o) | 75.7 ± 4.6 | 67.4 ± 4.9 | 74.6 ± 6.2 | 74.0 ± 7.6 | 53.5 ± 7.0 | 63.8 ± 8.9 | 60.9 ± 3.1 | 68.8 ± 4.6 |
Contact angle (lower side) (o) | 65.3 ± 3.2 | 67.1 ± 4.6 | 61.1 ± 7.8 | 103.1 ± 10.3 | 63.6 ± 8.1 | 56.3 ± 6.4 | 61.8 ± 5.7 | 93.2 ± 5.1 |
Single leaf area (cm2) | 84.9 ± 24.7 | 117.3 ± 22.3 | 24.8 ± 6.1 | 17.4 ± 3.6 | 53.6 ± 12.0 | 92.0 ± 18.8 | 19.4 ± 3.3 | 7.6 ± 2.9 |
Specific leaf area (cm2/g) | 89.6 ± 9.1 | 116.1 ± 9.6 | 119.0 ± 17.6 | 191.8 ± 7.3 | 106.8 ± 6.9 | 140.8 ± 17.1 | 129.7 ± 13.0 | 121.8 ± 10.8 |
Leaf length (cm) | 10.1 ± 1.6 | 18.2 ± 2.3 | 9.8 ± 1.5 | 4.5 ± 0.6 | 7.8 ± 1.3 | 14.7 ± 1.3 | 8.6 ± 0.9 | 3.4 ± 0.6 |
Leaf width (cm) | 9.3 ± 0.9 | 19.9 ± 1.0 | 4.6 ± 0.6 | 6.2 ± 1.0 | 7.1 ± 1.0 | 15.5 ± 1.7 | 3.9 ± 0.4 | 4.3 ± 1.2 |
Petiole length (cm) | 8.6 ± 1.0 | 7.7 ± 1.1 | 1.6 ± 1.1 | 4.5 ± 1.7 | 5.2 ± 0.9 | 4.8 ± 1.2 | 1.2 ± 0.8 | 3.4 ± 1.1 |
Roughness (upper side) | 1 | 3 | 3 | 4 | 2 | 3 | 3 | 4 |
Roughness (lower side) | 3 | 4 | 4 | 5 | 3 | 4 | 4 | 5 |
PM | PM>10 | PM2.5–10 | PM0.1–2.5 | |||||
---|---|---|---|---|---|---|---|---|
B | Beta | B | Beta | B | Beta | B | Beta | |
Stomatal density | 0.038 | 0.031 | 0.030 | 0.029 | 0.006 | 0.038 | 0.003 | 0.052 |
Stomatal length | 0.057 | 0.002 | 0.015 | 0.001 | 0.122 | 0.034 | 0.018 | 0.012 |
Stomatal width | 0.833 | 0.039 | 0.648 | 0.036 | 0.182 | 0.065 | 0.053 | 0.046 |
Stomatal aperture | 2.757 | 0.060 | 2.254 | 0.058 | 0.470 | 0.077 | 0.162 | 0.064 |
Contact angle (upper side) | −0.473 | −0.030 | −0.362 | −0.027 | −0.074 | −0.035 | −0.041 | −0.047 |
Contact angle (lower side) | −0.255 | −0.035 | −0.235 | −0.039 | −0.036 | −0.037 | −0.015 | −0.039 |
Single leaf area | −0.036 | −0.011 | −0.039 | −0.014 | 0.011 | 0.027 | 0.000 | 0.001 |
Specific leaf area | 0.062 | 0.015 | 0.059 | 0.017 | 0.003 | 0.005 | 0.003 | 0.014 |
Leaf length | 1.12 | 0.045 | 0.929 | 0.044 | 0.217 | 0.065 | 0.067 | 0.049 |
Leaf width | 1.049 | 0.050 | 0.847 | 0.048 | 0.188 | 0.067 | 0.054 | 0.047 |
Petiole length | −0.194 | −0.004 | −0.138 | −0.003 | 0.053 | 0.008 | −0.040 | −0.015 |
Roughness (upper side) | 2.224 | 0.018 | 1.238 | 0.012 | 0.279 | 0.017 | 0.163 | 0.024 |
Roughness (lower side) | 1.641 | 0.010 | 0.636 | 0.005 | 0.112 | 0.005 | 0.096 | 0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Xing, Y.; Yang, J.; Xie, B.; Shi, H.; Wang, Y. The Nature and Size Fractions of Particulate Matter Deposited on Leaves of Four Tree Species in Beijing, China. Forests 2022, 13, 316. https://doi.org/10.3390/f13020316
Wang H, Xing Y, Yang J, Xie B, Shi H, Wang Y. The Nature and Size Fractions of Particulate Matter Deposited on Leaves of Four Tree Species in Beijing, China. Forests. 2022; 13(2):316. https://doi.org/10.3390/f13020316
Chicago/Turabian StyleWang, Huixia, Yan Xing, Jia Yang, Binze Xie, Hui Shi, and Yanhui Wang. 2022. "The Nature and Size Fractions of Particulate Matter Deposited on Leaves of Four Tree Species in Beijing, China" Forests 13, no. 2: 316. https://doi.org/10.3390/f13020316
APA StyleWang, H., Xing, Y., Yang, J., Xie, B., Shi, H., & Wang, Y. (2022). The Nature and Size Fractions of Particulate Matter Deposited on Leaves of Four Tree Species in Beijing, China. Forests, 13(2), 316. https://doi.org/10.3390/f13020316