Urban Forests and Green Areas as Nature-Based Solutions for Brownfield Redevelopment: A Case Study from Brescia Municipal Area (Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Area
2.2. Intervention Scenarios
2.3. Methodological Approaches for Ecosystem Service Assessment
2.4. Models and Approaches Used for the Assessment: Data Inputs and Methodological Details
2.4.1. Provision of Biomass and Fibers for Processing and Energy
- WV = wood assortment value, EUR
- R = volume of removals per thinning round i, m3
- WD = wood density for each of the j wood species considered, kg/m3
- Wp = wood price per assortment k (either chipped wood or firewood), EUR/Mg.
2.4.2. Phytoremediation Capacity
2.4.3. Removal and Filtration of Air Pollutants
2.4.4. Protection against Hydrogeological Risks and Control of Erosion
2.4.5. Pollination
2.4.6. Biodiversity and Habitat Quality
2.4.7. Carbon Sequestration
2.4.8. Temperature Regulation and Urban Cooling
- Ta = dry-bulb temperature (°C) from the InVEST Urban Cooling model
- Tw = wet-bulb temperature (°C) from the InVEST Urban Cooling model.
2.4.9. Recreation
- d = distance in meters from the specific feature
- α and K = e size and shape parameters of the function adjusted according to a distance threshold. They were assumed to be 0.0009 and 30, respectively, corresponding to distance thresholds of 4000 m at which the score was decreased by 50%, and 8000 at which the score was zero [89]. The choice of parameter values also reflects limitations in access to the area, for instance, by making only specific paths and tracks viable, due to contamination risks.
3. Results
3.1. Assessment of Single Ecosystem Services
3.1.1. Provision of Biomass and Fibers for Processing and Energy
3.1.2. Phytoremediation Capacity
3.1.3. Removal and Filtration of Air Pollutants
3.1.4. Protection against Hydrogeological Risks and Control of Erosion
3.1.5. Pollination
3.1.6. Biodiversity and Habitat Quality
3.1.7. Carbon Sequestration
3.1.8. Temperature Regulation and Urban Cooling
3.1.9. Recreation
- In scenario 1, new forest areas show a ROS ranging between 0.415 and 0.7, with an average value of 0.608, while meadows associated with them have a ROS ranging between 0.213 and 0.674, with an average score of 0.42.
- In scenario 2, the new meadows show a ROS ranging between 0.213 and 0.622, with an average value of 0.419.
3.2. Summary of Results and Total Value for the Intervention Scenarios
- For scenario 1, more than half of the value (57–62%) is attached to the protection against hydrogeological risks and control of erosion, followed by temperature regulation and urban cooling (12–13%); biodiversity and habitat quality (9%); recreation (6–7%); and pollination (4–5%). Altogether these ESs account, on average, for more than 93% of the total value estimated for the urban forest scenario, while other ESs contribute marginally.
- For scenario 2, phytoremediation capacity is the leading ES (74%), followed by the protection against hydrogeological risks and control of erosion (17%); temperature regulation and urban cooling (4%); pollination; biodiversity and habitat quality; and recreation (2–6% each). When an infinite time horizon is considered, the contribution of phytoremediation capacity is not accounted for; the protection against hydrogeological risks and control of erosion becomes the main ES (64%), and temperature regulation and urban cooling grows up to a 17% contribution.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNFPA. United Nations Population Fund. Available online: https://www.unfpa.org/urbanization (accessed on 10 December 2021).
- Borelli, S.; Conigliano, M.; Pineda, F. Unasylva 250; FAO: Rome, Italy, 2018; Volume 69, pp. 3–10. [Google Scholar]
- Aurambout, J.P.; Schiavina, M.; Melchiori, M.; Fioretti, C.; Guzzo, F.; Vandecasteele, I.; Proietti, P.; Kavalov, B.; Panella, F.; Koukoufikis, G. Shrinking Cities—JRC126011; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Kabisch, N.; Korn, H.; Stadler, J.; Bonn, A. Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Vardoulakis, S.; Kinney, P. Grand Challenges in Sustainable Cities and Health. Front. Sustain. Cities 2019, 12, 1–7. [Google Scholar] [CrossRef] [Green Version]
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- World Forum on Urban Forests. Greener, Healthier and Happier Cities for All—A Call for Action. In Proceedings of the World Forum on Urban Forests, Mantova, Italy, 27 November–1 December 2018. [Google Scholar]
- United Nations Human Settlements Programme. The New Urban Agenda; United Nations Human Settlements Programme: Nairobi, Kenya, 2020. [Google Scholar]
- Dorst, H.; van der Jagt, A.; Raven, R.; Runhaar, H. Urban Greening through Nature-Based Solutions—Key Characteristics of an Emerging Concept. Sustain. Cities Soc. 2019, 49, 101620. [Google Scholar] [CrossRef]
- Davies, C.; Lafortezza, R. Transitional Path to the Adoption of Nature-Based Solutions. Land Use Policy 2019, 80, 406–409. [Google Scholar] [CrossRef]
- Dorst, H.; van der Jagt, A.; Raven, R.; Runhaar, H. Structural Conditions for the Wider Uptake of Urban Nature-Based Solutions—A Conceptual Framework. Cities 2021, 116, 103283. [Google Scholar] [CrossRef]
- Nesshöver, C.; Assmuth, T.; Irvine, K.N.; Rusch, G.M.; Waylen, K.A.; Delbaere, B.; Haase, D.; Jones-Walters, L.; Keune, H.; Kovacs, E.; et al. The Science, Policy and Practice of Nature-Based Solutions: An Interdisciplinary Perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef]
- Sowińska-Świerkosz, B.; García, J. What Are Nature-Based Solutions (NBS)? Setting Core Ideas for Concept Clarification. Nature-Based Solut. 2022, 2, 100009. [Google Scholar] [CrossRef]
- Maes, J.; Jacobs, S. Nature-Based Solutions for Europe’s Sustainable Development. Conserv. Lett. 2015, 10, 121–124. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and Valuing Ecosystem Services for Urban Planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Frantzeskaki, N.; Kabisch, N.; McPhearson, T. Advancing Urban Environmental Governance: Understanding Theories, Practices and Processes Shaping Urban Sustainability and Resilience. Environ. Sci. Pol. 2016, 62, 1–6. [Google Scholar] [CrossRef]
- Potschin-Young, M.; Haines-Young, R.; Görg, C.; Heink, U.; Jax, K.; Schleyerb, C. Understanding the Role of Conceptual Frameworks: Reading the Ecosystem Service Cascade. Ecosyst. Serv. 2018, 29 (Pt C), 418–440. [Google Scholar] [CrossRef]
- Potschin, M.; Haines-Young, R. Defining and Measuring Ecosystem Services. In Routledge Handdbook of Ecosystem Services; Potschin, M., Haines-Young, R., Fish, R., Turner, R.K., Eds.; Routledge: New York, NY, USA, 2016; pp. 25–44. [Google Scholar]
- Paya Perez, A.; Van Liedekerke, M.; Pelaez Sanchez, S. Remediated Sites and Brownfields. Success Stories in Europe; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Raymond, C.M.; Frantzeskaki, N.; Kabish, N.; Berry, P.; Breil, M.; Nita, M.R.; Geneletti, D.; Calfapietra, C. A Framework for Assessing and Implementing the Co-Benefits of Nature-Based Solutions in Urban Areas. Environ. Sci. Pol. 2017, 77, 15–24. [Google Scholar] [CrossRef]
- Mathey, J.; Rößler, S.; Banse, J.; Lehmann, I. Brownfields As an Element of Green Infrastructure for Implementing Ecosystem Services into Urban Areas. J. Urban Plan. Dev. 2015, 141, A4015001. [Google Scholar] [CrossRef]
- Pueffel, C.; Haase, D.; Priess, J.A. Mapping Ecosystem Services on Brownfields in Leipzig, Germany. Ecosyst. Serv. 2018, 30, 73–85. [Google Scholar] [CrossRef]
- Hou, D.; Al-Tabbaa, A. Sustainability: A New Imperative in Contaminated Land Remediation. Environ. Sci. Pol. 2014, 39, 25–34. [Google Scholar] [CrossRef]
- O’Connor, D.; Hou, D. Targeting Cleanups towards a More Sustainable Future. Env. Sci. Process. Impacts 2018, 20, 266–269. [Google Scholar] [CrossRef]
- Song, Y.; Kirkwood, N.; Maksimović, C.; Zheng, X.; O’Connor, D.; Jin, Y.; Hou, D. Nature Based Solutions for Contaminated Land Remediation and Brownfield Redevelopment in Cities: A Review. Sci. Total Environ. 2019, 663, 568–579. [Google Scholar] [CrossRef]
- USEPA. Green Remediation: Incorporating Sustainable Environmental Practices into Remediation of Contaminated Sites; EPA 542-R-08-002; United States Environmental Protection Agency: Washington, DC, USA, 2008.
- Donaldson, R.; Lord, R. Can Brownfield Land Be Reused for Ground Source Heating to Alleviate Fuel Poverty? Renew. Energy 2018, 116, 344–355. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; O’Connor, D.; Ok, Y.S.; Tsang, D.C.W.; Liu, A.; Hou, D. Assessment of Sources of Heavy Metals in Soil and Dust at Children’s Playgrounds in Beijing Using GIS and Multivariate Statistical Analysis. Environ. Int. 2019, 124, 320–328. [Google Scholar] [CrossRef]
- Peng, T.; O’Connor, D.; Zhao, B.; Jin, Y.; Zhang, Y.; Tian, L.; Zheng, N.; Li, X.; Hou, D. Spatial Distribution of Lead Contamination in Soil and Equipment Dust at Children’s Playgrounds in Beijing, China. Environ. Pollut. 2019, 245, 363–370. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, D.; O’Connor, D.; Shen, Z.; Shi, P.; Ok, Y.S.; Tsang, D.C.W.; Wen, Y.; Luo, M. Lead Contamination in Chinese Surface Soils: Source Identification, Spatial-Temporal Distribution and Associated Health Risks. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1386–1423. [Google Scholar] [CrossRef]
- Hou, D.; O’Connor, D.; Igalavithana, A.D.; Alessi, D.S.; Luo, J.; Tsang, D.C.W.; Sparks, D.L.; Yamauchi YRinklebe, J.; Ok, Y.S. Metal Contamination and Bioremediation of Agricultural Soils for Food Safety and Sustainability. Nat. Rev. Earth Environ. 2020, 1, 366–381. [Google Scholar] [CrossRef]
- Nassuer, J.I.; Raskin, J. Urban Vacancy and Land Use Legacies: A Frontier for Urban Ecological Research, Design, and Planning. Landsc. Urban Plan. 2014, 125, 245–253. [Google Scholar] [CrossRef]
- Collier, M.J. Novel Ecosystems and the Emergence of Cultural Ecosystem Services. Ecosyst. Serv. 2014, 9, 166–169. [Google Scholar] [CrossRef] [Green Version]
- McPhearson, T.; Kremer, P.; Hamstead, Z. Mapping Ecosystem Services in New York City: Applying a Social–Ecological Approach in Urban Vacant Land. Ecosyst. Serv. 2013, 5, 11–26. [Google Scholar] [CrossRef]
- de Vries, S.; Verheij, R.A.; Groenewegen, P.P.; Spreeuwenberg, P. Natural Environments—Healthy Environments? An Exploratory Analysis of the Relationship between Greenspace and Health. Environ. Plan. A 2003, 35, 1717–1731. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Seijo, A.; Andrade, M.L.; Vega, F.A. Origin and Spatial Distribution of Metals in Urban Soils. J. Soils Sediments 2017, 17, 1514–1526. [Google Scholar] [CrossRef]
- Brown, C.; Burns, A.; Arnell, A. A Conceptual Framework for Integrated Ecosystem Assessment. One Ecosyst. 2018, 3, e25482. [Google Scholar] [CrossRef]
- Liu, H.Y.; Jay, M.; Chen, X. The Role of Nature-Based Solutions for Improving Environmental Quality, Health and Well-Being. Sustainability 2021, 13, 10950. [Google Scholar] [CrossRef]
- Faivre, N.; Fritz, M.; Freitas, T.; de Boissezon, B.; Vandewoestijne, S. Nature-Based Solutions in the EU: Innovating with Nature to Address Social, Economic and Environmental Challenges. Env. Res. 2017, 159, 509–518. [Google Scholar] [CrossRef]
- Van den Bosch, M.; Ode Sang, Å. Urban Natural Environments as Nature-Based Solutions for Improved Public Health—A Systematic Review of Reviews. Env. Res. 2017, 158, 373–384. [Google Scholar] [CrossRef]
- Hansmann, R.; Hug, S.M.; Seeland, K. Restoration and Stress Relief through Physical Activities in Forests and Parks. Urban For. Urban Green. 2007, 6, 213–225. [Google Scholar] [CrossRef]
- Cervinka, R.; Holtgate, J.; Pirgie, L.; Schwab, M.; Sudkamp, J.; Haluza, D.; Arnberger, A.; Eder, R.; Ebenberger, M. Green Public Health—Benefits of Woodlands on Human Health and Well-Being; Bundesforschungszentrum für Wal (BFW): Vienna, Austria, 2014; ISBN 978-3-902762-32-0. [Google Scholar]
- Houlden, V.; Weich, S.; Porto de Albuquerque, J.; Jarvis, S.; Rees, K. The Relationship between Greenspace and the Mental Wellbeing of Adults: A Systematic Review. PLoS ONE 2018, 13, e0203000. [Google Scholar] [CrossRef] [Green Version]
- De Sousa, C.A. The Greening of Brownfields in American Cities. J. Environ. Plan. Manag. 2004, 47, 579–600. [Google Scholar] [CrossRef]
- Özgüner, H.; Kendle, A.D. Public Attitudes towards Naturalistic versus Designed Landscapes in the City of Sheffield (UK). Landsc. Urban Plan. 2006, 74, 139–157. [Google Scholar] [CrossRef]
- Swanwick, C. Society’s Attitudes to and Preferences for Land and Landscape. Land Use Policy 2009, 26S, S62–S75. [Google Scholar] [CrossRef]
- Mitchell, R.J.; Richardson, E.A.; Shortt, N.K.; Pearce, J.R. Neighborhood Environments and Socioeconomic Inequalities in Mental Well-Being. Am. J. Prev. Med. 2015, 49, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Abhijith, K.; Kumar, P.; Gallagher, J.; Mcnabola, A.; Baldauf, R.; Pilla, F.; Broderick, B.; Di Sabatino, S.; Pulvirenti, B. Air Pollution Abatement Performances of Green Infrastructure in Open Road and Built-up Street Canyon Environments—A Review. Atmos. Environ. 2017, 162, 71–86. [Google Scholar] [CrossRef]
- Bartesaghi Koc, C.; Osmond, P.; Peters, A. Evaluating the Cooling Effect of Green Infrastructure: A Systematic Review of Methods, Indicators and Data Sources. Sol. Energy 2018, 166, 486–508. [Google Scholar] [CrossRef]
- Zardo, L.; Geneltti, D.; Pèrez-Soba, M.; Van Eupen, M. Estimating the Cooling Capacity of Green Infrastructures to Support Urban Planning. Ecosyst. Serv. 2017, 26, 225–235. [Google Scholar] [CrossRef]
- Aram, F.; Higueras Garcìa, E.; Solgi, E.; Mansournia, S. Urban Green Space Cooling Effect in Cities. Heliyon Energy 2019, 5, e01339. [Google Scholar] [CrossRef] [Green Version]
- Bolund, P.; Hunhammar, S. Ecosystem Services in Urban Areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- van Renterghem, T.; Attenborough, M.M.; Defrance, J.; Horoshenkov, K.; Bashirk, J.K.I.; Taherzadeh, S.; Altreuther, B.; Khan, A.; Smyrnova, Y.; Yang, H.S. Measured Light Vehicle Noise Reduction by Hedges. J. Appl. Acoust. 2014, 78, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Nika, C.E.; Gusmaroli, L.; Ghafourian, M.; Atanasova, N.; Buttiglieri, G.; Katsou, E. Nature-Based Solutions as Enablers of Circularity in Water Systems: A Review on Assessment Methodologies, Tools and Indicators. Water Res. 2020, 183, 115988. [Google Scholar] [CrossRef]
- Boano, F.; Caruso, A.; Costamagna, E.; Ridolfi, L.; Fiore, S.; Demichelis, F.; Galvao, A.; Pisoeiro, J.; Rizzo, A.; Masi, F. A Review of Nature-Based Solutions for Greywater Treatment: Applications, Hydraulic Design, and Environmental Benefits. Sci. Total Environ. 2020, 711, 134731. [Google Scholar] [CrossRef] [PubMed]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-Based Solutions to Climate Change Mitigation and Adaptation in Urban Areas: Perspectives on Indicators, Knowledge Gaps, Barriers, and Opportunities for Action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef] [Green Version]
- Lavorel, S.; Locatelli, B.; Colloff, M.J.; Bruley, E. Co-Producing Ecosystem Services for Adapting to Climate Change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2020, 375, 20190119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, J.; Simpson, G.; Miller, J. Nature-Based Solutions Forming Urban Intervention Approaches to Anthropogenic Climate Change: A Quantitative Literature Review. Sustainability 2020, 12, 7439. [Google Scholar] [CrossRef]
- Hutchins, M.G.; Fletcher, D.; Hagen-Zanker, A.; Jia, H.; Jones, L.; Li, H.; Loiselle, S.; Miller, J.; Reis, S.; Seifert-Dähnn, I. Why Scale Is Vital to Plan Optimal Nature-Based Solutions for Resilient Citie. Environ. Res. Lett. 2021, 16, 044008. [Google Scholar] [CrossRef]
- McPhearson, T.; Andersson, E.; Elmqvist, T.; Frantzeskaki, N. Resilience of and through Urban Ecosystem Services. Ecosyst. Serv. 2015, 12, 152–156. [Google Scholar] [CrossRef]
- Dagenhart, R.; Leigh, N.G.; Skach, J. Brownfields And Urban Design: Learning From Atlantic Station. In Brownfields III. Prevention, Assessment, Rehabilitation and Development of Brownfield Site; Brebbia, C.A., Mander, U., Eds.; WIT Press: Southampton, UK, 2006; ISBN 978-1-84564-041-5. [Google Scholar]
- EC. Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Terton, A. Building a Climate-Resilient City: Urban Ecosystems; IISD: Winnipeg, MB, Canada, 2017. [Google Scholar]
- Toxopeus, H.; Polzin, F. Reviewing Financing Barriers and Strategies for Urban Nature-Based Solutions. J. Environ. Manag. 2021, 289, 112371. [Google Scholar] [CrossRef]
- Kumar, P.; Esen, S.E.; Yashiro, M. Linking Ecosystem Services to Strategic Environmental Assessment in Development Policies. Environ. Impact. Assess. Rev. 2013, 40, 75–81. [Google Scholar] [CrossRef]
- Croci, E.; Lucchitta, B.; Penati, T. Valuing Ecosystem Services at the Urban Level: A Critical Review. Sustainability 2021, 13, 1129. [Google Scholar] [CrossRef]
- Haase, D.; Larondelle, N.; Andersson, E.; Artmann, M.; Borgström, S.; Breuste, J.; Gomez-Baggethun, E.; Gren, Å.; Hamstead, Z.; Hansen, R.; et al. A Quantitative Review of Urban Ecosystem Service Assessments: Concepts, Models, and Implementation. Ambio 2014, 43, 413–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luederitz, C.; Brink, E.; Gralla, F.; Hermelingmeier, V.; Meyer, M.; Niven, L.; Panzer, L.; Partelow, S.; Rau, A.-R.; Sasaki, R.; et al. A Review of Urban Ecosystem Services: Six Key Challenges for Future Research. Ecosyst. Serv. 2015, 14, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Keyzer, M.; Sonneveld, B.; Veen, W. Valuation of Natural Resources: Efficiency and Equity. Dev. Pr. 2009, 19, 233–239. [Google Scholar] [CrossRef]
- Barton, D.N.; Kelemen, E.; Dick, J.; Martin-Lopez, B.; Gómez-Baggethun, E.; Jacobs, S.; Hendriks, C.M.; Termansen, M.; García-Llorente, M.; Primmer, E.; et al. (Dis) Integrated Valuation—Assessing the Information Gaps in Ecosystem Service Appraisals for Governance Support. Ecosyst. Serv. 2018, 29, 529–541. [Google Scholar] [CrossRef] [Green Version]
- Cortinovis, C.; Geneletti, D. Mapping and Assessing Ecosystem Services to Support Urban Planning: A Case Study on Brownfield Regeneration in Trento, Italy. One Ecosyst. 2018, 3, e25477. [Google Scholar] [CrossRef]
- Ruckelshaus, M.; McKenzie, E.; Tallis, H.; Guerry, A.; Daily, G.; Kareiva, P.; Polasky, S.; Ricketts, T.; Bhagabati, N.; Wood, S.A.; et al. Notes from the Field: Lessons Learned from Using Ecosystem Service Approaches to Inform Real-World Decisions. Ecol. Econ. 2015, 11, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Sanon, S.; Hein, T.; Douven, W.; Winkler, P. Quantifying Ecosystem Service Trade-Offs: The Case of an Urban Floodplain in Vienna, Austria. J. Environ. Manag. 2012, 111, 159–172. [Google Scholar] [CrossRef]
- Kain, J.H.; Larondelle, N.; Haase, D.; Kaczorowska, A. Exploring Local Consequences of Two Land-Use Alternatives for the Supply of Urban Ecosystem Services in Stockholm Year 2050. Ecol. Ind. 2016, 70, 615–629. [Google Scholar] [CrossRef]
- Woodruff, S.C.; BenDor, T.K. Ecosystem Services in Urban Planning: Comparative Paradigms and Guidelines for High Quality Plans. Landsc. Urban Plan. 2016, 152, 90–100. [Google Scholar] [CrossRef]
- Giordano, R.; Pluchinotta, I.; Pagano, I.; Scrieciu, A.; Nanu, F. Enhancing Nature-Based Solutions Acceptance through Stakeholders’ Engagement in Co-Benefits Identification and Trade-Offs Analysis. Sci. Total Environ. 2020, 713, 136552. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, S.; Derdoncker, N.; Martín-López, B.; Barton, D.N.; Gomez-Baggethun, E.; Boeraeve, F.; McGrath, F.L.; Vierikko, K.; Geneletti, D.; Svecke, K.J. A New Valuation School: Integrating Diverse Values of Nature in Resource and Land Use Decisions. Ecosyst. Serv. 2016, 22, 213–220. [Google Scholar] [CrossRef]
- Rosenthal, A.; Verutes, G.; McKenxie, E.; Arkema, K.K.; Bhagabati, N.; Bremer, L.L. Process Matters: A Framework for Conducting Decision-Relevant Assessments of Ecosystem. Int. J. Biodivers. Sci. Ecosyst. Serv. 2015, 11, 190–204. [Google Scholar] [CrossRef]
- Dati Relativi Alla Popolazione Residente a Brescia. In Comune di Brescia Anagrafe. Available online: https://www.comune.brescia.it/servizi/certificatiedocumenti/anagrafe/Pagine/Dati-relativi-alla-popolazione-residente-a-Brescia.aspx (accessed on 10 December 2021).
- Tononi, M.; Pietta, A.; Bonati, S. Alternative Spaces of Urban Sustainability: Results of a First Integrative Approach in the Italian City of Brescia. Geogr. J. 2017, 183, 187–200. [Google Scholar] [CrossRef]
- Ersaf Il Sito D’interesse Nazionale Brescia-Caffaro. Available online: https://www.ersaf.lombardia.it/it/servizi-al-territorio/sin-brescia-caffaro/il-sito-di-interesse-nazionale (accessed on 10 December 2021).
- Tononi, M. Nature Urbane. Rinaturalizzare La Città (Post)Industriale, l’esempio Di Brescia. Riv. Geogr. Ital. 2021, 2, 102–118. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J.; Gałązka, A.; Kucharski, J. Role of Festuca Rubra and Festuca Arundinacea in Determinig the Functional and Genetic Diversity of Microorganisms and of the Enzymatic Activity in the Soil Polluted with Diesel Oil. Environ. Sci. Pollut. Res. 2019, 26, 27738–27751. [Google Scholar] [CrossRef] [Green Version]
- Steliga, T.; Kluk, D. Application of Festuca Arundinacea in Phytoremediation of Soils Contaminated with Pb, Ni, Cd and Petroleum Hydrocarbons. Ecotoxicol. Environ. Saf. 2020, 194, 110409. [Google Scholar] [CrossRef]
- Terzaghi, E.; Vergani, L.; Mapelli, F.; Borin, S.; Raspa, G.; Zanardini, E.; Morosini, C.; Anelli, S.; Nastasio, P.; Sale, V.M.; et al. Rhizoremediation of Weathered PCBs in a Heavily Contaminated Agricultural Soil: Results of a Biostimulation Trial in Semi Field Conditions. Sci. Total Environ. 2019, 686, 484–496. [Google Scholar] [CrossRef]
- CICES. Common International Classification of Ecosystem Services (CICES) Version 5.1. Available online: https://cices.eu/ (accessed on 10 December 2021).
- Natural Capital Project InVEST 3.9.0. Available online: https://naturalcapitalproject.stanford.edu/software/invest (accessed on 10 December 2021).
- I-Tree I-Tree Eco v.6. Available online: https://www.itreetools.org/tools/i-tree-eco (accessed on 10 December 2021).
- Zulian, G.; Paracchini, M.; Maes, J.; Liquete Garcia, M. ESTIMAP: Ecosystem Services Mapping at European Scale; EUR 26474; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- Di Guardo, A.; Terzaghi, E.; Zanardini, E.; Morosini, C.; Borin, S.; Mapelli, F.V.L. Linee Guida Scientifiche per La Bonifica Biologica Delle Zone Agricole Del SIN Brescia Caffaro; Università degli studi dell’Insubria, Università degli studi di Milano and Sapeinza Università di Roma: Brescia, Italy, 2018. [Google Scholar]
- Regione Lombardia Dusaf 6.0—Uso Del Suolo 2018. Available online: https://www.dati.lombardia.it/Territorio/Dusaf-6-0-Uso-del-suolo-2018/7rae-fng6 (accessed on 10 December 2021).
- Gregersen, H.; Contreras, A. Economic Assessment of Forestry Project Impacts; FAO Forestry Paper 106; FAO: Rome, Italy, 1995. [Google Scholar]
- EC. Guide to Cost-Benefit Analysis of Investment Projects. Economic Appraisal Tool for Cohesion Policy 2014–2020; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- ICRAF Tree Functional Attributes and Ecological Database. Wood Density. Available online: http://db.worldagroforestry.org/wd (accessed on 10 December 2021).
- ENI. Vademecum Tecnologie Di Bonifica; ENI: Rome, Italy, 2021. [Google Scholar]
- USEPA Environmental Benefits Mapping and Analysis Program—Community Edition (BenMAP-CE). Available online: https://www.epa.gov/benmap (accessed on 10 December 2021).
- Diener, A.; Mudu, P. How Can Vegetation Protect Us from Air Pollution? A Critical Review Ongreen Spaces’ Mitigation Abilities for Air-Borne Particles from a Publichealth Perspective—with Implications for Urban Planning. Sci. Total Environ. 2021, 796, 148605. [Google Scholar] [CrossRef]
- Regione Emilia-Romagna. Tavole Dendrometriche Regionali; Regione Emilia-Romagna: Bologna, Italy, 2000. [Google Scholar]
- Tabacchi, G.; Di Cosimo, L.; Gasparini, P.; Morelli, S. Stima Del Volume e Della Fitomassa Delle Principali Specie Forestali Italiane. In Equazioni Di Previsione, Tavole Del Volume e Tavole Della Fitomassa Arborea Epigea; CRA-ISAFA: Trento, Italy, 2011. [Google Scholar]
- Natural Capital Project. In VEST User Guide; The Natural Capital Project: Stanford, CA, USA, 2021. [Google Scholar]
- NRCS National Engineering Handbook—Part 630 Hydrology. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/%0Adetailfull/national/water/manage/hydrology/?cid=stelprdb1043063 (accessed on 10 December 2021).
- USDA. Urban Hydrology for Small Watersheds—TR55, 2nd ed.; United States Department of Agriculture: Washington, DC, USA, 1986.
- Masiero, M.; Amato, G.; Murgese, D.; Perino, M.; Allocco, M.; Cimini, M. Relazione Di Applicazione Della Valutazione Dei Servizi Ecosistemici Identificati Con Riferimento Al Verde Urbano Orizzontale e Verticale Di Proprietà Comunale Presente Nel Territorio Del Comune Di Torino; Etifor and SEAcoop: Padova/Torino, Italy, 2021. [Google Scholar]
- Arpa Lombardia Altezze Di Pioggia Previste per Durate 1–24 Ore e Tempi Di Ritorno Di 2, 5, 10, 20, 50, 100 e 200 Anni. Available online: https://idro.arpalombardia.it/manual/dati_link.html (accessed on 10 December 2021).
- Ross, C.W.; Prihodko, L.; Anchang, J.Y.; Kumar, S.S.; Ji, W.; Hanan, N.P. Global Hydrologic Soil Groups (HYSOGs250m) for Curve Number-Based Runoff Modeling. Sci. Data 2018, 5, 1–9. [Google Scholar] [CrossRef] [PubMed]
- SIAN Consultazione Pubblica Rese Benchmark. Available online: https://www.sian.it/consRese/paiRicerca.do (accessed on 10 December 2021).
- Klein, A.M.; Vaissiere, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of Pollinators in Changing Landscapes for World Crops. Proc. R. Soc. B 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutter, L.; Dietemann, V.; Charriére, J.-D.; Herzog, F.; Albrecht, M. Nachfrage, Angebot Und Wert Der Insektenbestäubung in Der Schweizer Landwirtschaft. Agrar. Schweiz 2017, 8, 332–339. [Google Scholar]
- Strollo, A.; Marinosci, I.; Munafò, M.I. Servizi Ecosistemici Nella Città Metropolitana Di Torino. In Strategia Nazionale del Verde Urbano; ISPRA: Rome, Italy, 2017. [Google Scholar]
- Salata, S.; Ronchi, S.; Arcidiacono, A.; Ghirardelli, F. Mapping Habitat Quality in the Lombardy Region, Italy. One Ecosyst. 2017, 2, e11402. [Google Scholar] [CrossRef] [Green Version]
- Ingegnoli, V.; Giglio, E. Landscape Biodiversity Changes in Forest Vegetation and the Case Study of the Lavazé Pass (Trentino, Italy). Ann. di Bot. 2008, 8, 21–29. [Google Scholar] [CrossRef]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4—Agriculture, Forestry and Other Land Use; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Polato, R.; Brotto, L. Calcolo Del Valore Economico Totale Dei Servizi Ecosistemici Prodotti Dagli Impianti Policiclici; Etifor: Padova, Italy, 2016. [Google Scholar]
- Maluccio, S.; Andrighetto, N.; Brotto, L.; Caverni, L.; Crecco, L.; Giordano, D.; Pepe, A.; Pettenella, D.; Pinato, F.; Rivieccio, R.; et al. Progetti Forestali Di Sostenibilità in Italia 2020; CREA: Rome, Italy, 2021. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements, FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- ENEA Atlante Italiano Della Radiazione Solare. Available online: http://www.solaritaly.enea.it/ (accessed on 10 December 2021).
- Ruzzon, M.; Armiraglio, S. Il Ruolo Delle Aree Verdi Nella Regolazione Della Temperatura a Brescia. Nat. Brescia. Ann. del Mus. Civ. di Sci. Nat. 2021, 43, 59–69. [Google Scholar]
- Arpa Lombardia Meteo. Available online: http://ita.arpalombardia.it/meteo/faq.asp (accessed on 10 December 2021).
- ISPRA. Rapporto Annuale Sul Consumo Di Suolo SNPA 08/2019. Edizione 2019; ISPRA: Rome, Italy, 2019.
- Santamouris, M.; Cartalis, C.; Synnefa, A.; Kolokotsa, D. On the Impact of Urban Heat Island and Global Warming on the Power Demand and Electricity Consumption of Buildings—A Review. Energy Build. 2015, 98, 119–124. [Google Scholar] [CrossRef]
- Thom, E.C. The Discomfort Index. Weatherwise 1959, 12, 57–61. [Google Scholar] [CrossRef]
- Epstein, Y.; Moran, D.S. Thermal Comfort and the Heat Stress Indices. Ind. Health 2006, 44, 388–398. [Google Scholar] [CrossRef] [Green Version]
- Cortinovis, C.; Zulian, G.; Geneletti, D. Assessing Nature-Based Recreation to Support Urban Green Infrastructure Planning in Trento (Italy). Land 2018, 7, 112. [Google Scholar] [CrossRef] [Green Version]
- Paracchini, M.L.; Zulian, G.; Kopperoinen, L.; Maes, J.; Schägner, J.P.; Termansen, M.; Zandersen, M.; Pe-rez-Soba, M.; Scholefield, P.A.; Bidoglio, G. Mapping Cultural Ecosystem Services: A Framework to Assess the Potential for Outdoor Recreation across the EU. Ecol. Indic. 2014, 45, 371–385. [Google Scholar] [CrossRef] [Green Version]
- Baró, F.; Palomo, I.; Zulian, G.; Vizcaino, P.; Haase, D.; Gómez-Baggethun, E. Mapping Ecosystem Service Capacity, Flow and Demand for Landscape and Urban Planning: A Case Study in the Barcelona Metropolitan Region. Land Use Policy 2016, 57, 405–417. [Google Scholar] [CrossRef] [Green Version]
- Istat Basi Territoriali e Variabili Censuarie. Available online: https://www.istat.it/it/archivio/104317 (accessed on 10 December 2021).
- Barbosa, O.; Tratalos, J.A.; Armsworth, P.R.; Davies, R.G.; Fuller, R.A.; Johnson, P.; Gaston, K.J. Who Benefits from Access to Green Space? A Case Study from Sheffield, UK. Landsc. Urban Plan. 2007, 83, 187–195. [Google Scholar] [CrossRef]
- Arpa Lombardia Numero Di Giorni Estivi. Available online: www.arpalombardia.it/Pages/Indicatori/2017/Idrometeoreologia/Numero-giorni-estivi-bp-2017.aspx (accessed on 10 December 2021).
- Almenar, J.B.; Elliot, T.; Rugani, B.; Philippe, B.; Navarrete Gutierrez, T.; Sonneman, G.; Geneletti, D. Nexus between Nature-Based Solutions, Ecosystem Services and Urban Challenges. Land Use Policy 2021, 100, 104898. [Google Scholar] [CrossRef]
- Besley, T.; Coate, S. Centralized versus Decentralized Provision of Local Public Goods: A Political Economy Approach. J. Publ. Econ. 2003, 87, 2611–2637. [Google Scholar] [CrossRef]
- Elmqvist, T.; Zipperer, W.C.; Guneralp, B. Urbanization, Habitat Loss and Biodiversity Decline. Solution Pathways to Break the Cycle. In The Routledge Handbook of Urbanization and Global Environmental Change; Seto, K.C., Solecki, W.D., Griffith, C.A., Eds.; Routledge: London, UK; New York, NY, USA, 2016; pp. 139–151. ISBN 9780367581695. [Google Scholar]
- Senes, G.; Ferrario, P.S.; Cirone, G.; Fumagalli, N.; Frattini, P.; Sacchi, G.; Valè, G. Nature-Based Solutions for Storm Water Management—Creation of a Green Infrastructure Suitability Map as a Tool for Land-Use Planning at the Municipal Level in the Province of Monza-Brianza (Italy). Sustainability 2021, 13, 6124. [Google Scholar] [CrossRef]
- Dadea, C.; Russo, A.; Tagliavini, M.; Mimmo, T.; Zerbe, S. Tree Species as Tools for Biomonitoring and Phytoremediation in Urban Environments: A Review with Special Regard to Heavy Metals. Arboric. Urban For. 2017, 44, 155–167. [Google Scholar] [CrossRef]
- WHO. Urban Green Space Interventions and Health. A Review of Impacts and Effectiveness; WHO: Copenhagen, Denmark, 2017. [Google Scholar]
- Rink, D.; Schmidt, C. Afforestation of Urban Brownfields as a Nature-Based Solution. Experiences from a Project in Leipzig (Germany). Land 2021, 10, 893. [Google Scholar] [CrossRef]
- EC. Green Infrastructure (GI)—Enhancing Europe’s Natural Capital /COM/2013/0249 Final; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- McCarthy, L. The Brownfield Dual Land-Use Policy Challenge: Reducing Barriers to Private Redevelopment While Connecting Reuse to Broader Community Goals. Land Use Policy 2002, 19, 287–296. [Google Scholar] [CrossRef]
- Siebielec, G. Brownfield Redevelopment as an Alternative to Greenfield Consumption in Urban Development in Central Europe; Urban SMS/Institute of Soil Science and Plant Cultivation: Puławy, Poland, 2012. [Google Scholar]
- Rey, E.; Laprise, M.; Lufkin, S. The Multiple Potentials of Urban Brownfields. In Neighbourhoods in Transition. The Urban Book Series; Rey, E., Laprise, M., Lufkin, S., Eds.; Springer: Cham, Switzerland, 2022; pp. 47–63. ISBN 978-3-030-82208-8. [Google Scholar]
- Munafò, M. Consumo Di Suolo, Dinamiche Territoriali e Servizi Ecosistemici. Edizione 2021; Report SNPA 22/21; ISPRA: Rome, Italy, 2021.
- De Sousa, C.A.; Wu, C.; Westphal, M. Assessing the Effect of Publicly Assisted Brownfield Redevelopment on Surrounding Property Values. Econ. Dev. Q. 2009, 23, 95–110. [Google Scholar] [CrossRef] [Green Version]
- Haninger, K.; Ma, L.; Timmins, C. The Value of Brownfield Remediation. J. Assoc. Environ. Resour. Econ. 2017, 4, 197–241. [Google Scholar] [CrossRef] [Green Version]
- Keeler, B.L.; Hamel, P.; McPhearson, T.; Hamann, M.H.; Donahue, M.L.; Meza Prado, K.A.; Arkema, K.K.; Bratman, G.N.; Bruman, K.A.; Finaly, J.C.; et al. Social-Ecological and Technological Factors Moderate the Value of Urban Nature. Nat. Sustain. 2019, 2, 29–38. [Google Scholar] [CrossRef]
- Koppenjan, J.F.M.; Enserink, B. Public–Private Partnerships in Urban Infrastructures: Reconciling Private Sector Participation and Sustainability. Publ. Adm. Rev. 2009, 69, 284–296. [Google Scholar] [CrossRef]
- Trinomics & IUCN. Approaches to Financing Nature-Based Solutions in Cities; GrowGreen Project/Trinomics: Rotterdam, The Netherlands, 2019. [Google Scholar]
- Adair, A.; Berry, J.; McGreal, S.; Deddis, B.; Hirst, S. The Financing of Urban Regeneration. Land Use Policy 2000, 17, 147–156. [Google Scholar] [CrossRef]
- Warner, M.E.; Hefetz, A. Managing Markets for Public Service: The Role of Mixed Public-Private Delivery of City Services. Publ. Adm. Rev. 2008, 68, 155–166. [Google Scholar] [CrossRef]
Land Use Categories | Urban Forest (Scenario 1) | Meadows with Sparse Trees (Scenario 2) | ||
---|---|---|---|---|
Area (ha) | % | Area (ha) | % | |
Meadows | 15.78 | 16.2% | 8.78 | 9.0% |
Meadows with trees | - | - | 35.08 | 36.0% |
Existing forest areas | 9.35 | 9.6% | 9.35 | 9.6% |
New forest areas | 30.75 | 31.6% | - | - |
New forested buffers | - | - | 2.44 | 2.5% |
Agriculture land (not for food or feed production) | 8.32 | 8.5% | 8.55 | 8.8% |
Other land uses (developed areas) | 32.40 | 34.1% | 33.2 | 34.1% |
Total | 97.40 | 100.0% | 97.40 | 100.0% |
Ecosystem Services | CICES v 5.1 Section and Code(s) | Rationale and Key-Methodological Aspects of the Assessment Approach |
---|---|---|
1.1 Provision of biomass and fibers for processing and energy (only for scenario 1) | Provisioning, 1.1.5.2 and 1.1.5.3 |
|
2.1 Phytoremediation capacity (only for scenario 2) | Regulating, 2.1.1.1 |
|
2.2 Removal and filtration of air pollutants | Regulating, 2.1.1.2 |
|
2.3 Protection against hydrogeological risks and control of erosion | Regulating, 2.2.1.1 |
|
2.4 Pollination | Regulating, 2.2.2.1 |
|
2.5 Biodiversity and habitat quality | Regulating, 2.2.2.3 |
|
2.6 Carbon sequestration | Regulating, 2.2.6.1 |
|
2.7 Temperature regulation and urban cooling | Regulating, 2.2.6.2 |
|
3.1 Recreation | Cultural, 3.1.1.1 and 3.1.1.2 |
|
Input Data | Description |
---|---|
Removals, R (m3) | Removal volume from thinning operation in the urban forest scenario (see Section 2.2 within the main text of the paper). For each thinning round, a minimum and a maximum removal volume were considered |
Wood density, WD (kg/m3) | Density of the main wood species expected to be used in the urban forest [94] |
Wood price, Wp (EUR/Mg) | Wood price for firewood (average: 40 EUR/Mg) and for chipped wood (average: 30.50 EUR/Mg) based on market analysis via the Chambers of Commerce of Alessandria, Milan and Brescia. Note: 1 Mg corresponds to 1 metric ton |
Output data | Description |
Wood value, WV (EUR) | Total value of wood assortments retrieved from the urban forest |
Input Data | Description |
---|---|
Time needed to fully remove pollutants treated with Festuca arundinacea (years) | 90 years. In 60 years, 80% of the pollutants are removed [90] |
Time needed to fully remove pollutants treated with alternative measures (on-site thermal treatment) (years) | 0.25 to 0.5 [95] |
Volume of soil to be treated | 438,600 m3 |
Unit cost of alternative measures (on-site thermal treatment) (EUR/m3) | Minimum: 51 EUR/m3, Average: 122 EUR/m3, Maximum: 194 EUR/m3 [95] |
Output data | Description |
Value of phytoremediation capacity (EUR) | Total value of the phytoremediation capacity corresponding to the cost of the alternative measures |
Input Data | Description |
---|---|
Tree species and diameter (cm) at year 60 | csv file reporting, for each tree, the species name and the diameter at year 60. Diameters were estimated based on [98] for the urban forest scenario and on [99] for the meadows with sparse trees scenario. For species not included within the model, similar species were considered as proxies |
Precipitation and pollutant concentration data | The model automatically accessed data from selected weather stations within the targeted area. Data for the Brescia area date back to 2015 |
Output data | Description |
Removed pollutants (kg) | Total pollution removed per year and per pollutant type |
Economic value of the removal and filtration of air pollutants (EUR) | Economic value of the removal and filtration of air pollutants based on avoided costs due to the expected reduction in mortality and illness rates |
Input Data | Description |
---|---|
Land cover map | Raster of land use/land cover (LULC) for each pixel (resolution 1 m × 1 m), developed from [91] |
Biophysical table | csv file reporting Curve number (CN) values for each LULC type and each hydrological group. CN values were derived from [102] |
Depth of rainfall (mm) | Three values, i.e., minimum (26.4 mm, return time: 2 years), intermediate (41.80 mm, return time: 10 years), and maximum (55.9 mm, return time: 50 years), identified from [104] |
Soils Hydrological Group Raster | 250 m spatial resolution raster of categorical hydrological groups from [105] |
Output data | Description |
Runoff values (mm) | Raster with runoff values |
Runoff retention index | Raster with runoff retention values (unitless, relative to precipitation volume) |
Runoff retention volume (m3) | Raster with runoff retention volume values |
Input Data | Description |
---|---|
Land cover map | Raster of land use/land cover (LULC) for each pixel (resolution 1 m × 1 m), developed from [91]. A 5 km buffer around the case study area was considered |
Biophysical table | csv file reporting, for each LULC type: (i) nesting availability index, range: (0–1), i.e., a relative index of the availability of the given nesting type within each LULC type; (ii) floral resources index, range: (0–1), i.e., a relative index of the floral abundance (or coverage) as well as the duration of flowering during each season. Spring and Summer were indicated as flowering seasons |
Guild table | csv file reporting on each species of pollinator to be modeled. For each species the following information was provided: (i) nesting substrate, range: (0–1); (ii) foraging activity per season, range: (0–1); (iii) average distance each species travels to forage on flowers; and (iv) relative abundance of the species, range: (0–1) |
Farm vector | Vector of farm areas indicating crop types and their seasonality, as well as the dependency from both wild and managed pollinators [107,108]. As for the latter, reference was made to a database of bee-hiving activities within Brescia Province, provided by ERSAF |
Output data | Description |
Farm results | Farm vector enriched with data on average pollinator abundance on the farm for the active season, total yield index (including all types of pollinators, as well as yield independent from pollinators), index of the potential pollination dependent yield attributable to wild pollinators, and index of the total yield attributable to wild pollinators |
Input Data | Description |
---|---|
Land cover map | Raster of land use/land cover (LULC) for each pixel (resolution 1 m × 1 m), developed from [91] |
Threats data | csv file reporting information on each threat’s relative importance and the maximum distance over which each threat affects habitat quality. For all threats, impacts were assumed to decay according to a linear decay function. A total of 24 threats were identified (each of them corresponding to a specific land use type, e.g., residential continuous medium-dense urban fabrics, industrial areas or railways etc.), building on [110]. A raster file was developed for, and named after, each threat. |
Sensitivity of land cover types to each threat | csv file reporting, for each LULC type, whether or not they are considered habitat (either 1 or 0), and, for LULC types that are habitat, their specific sensitivity to each threat; these are according to a (0–1) range and based on the Biological Territorial Capacity Index [111], and in coherence with [110] |
Accessibility | Vector of areas subject to environmental restrictions and protection, as in the Ecological Regional Network (Regional Territorial Plan) |
Half-saturation constant | 0.5. Default value set by the InVEST model |
Output data | Description |
Habitat quality | Raster file reporting the habitat quality index; this shows the relative level of habitat quality, ranging between 0 and 1, where values closer to 1 indicate better habitat quality vis-à-vis the distribution of habitat quality across the rest of the landscape. Areas on the landscape that are not habitat are given a quality score of 0 |
Input Data | Description |
---|---|
Land cover map | Raster of land use/land cover (LULC) for each pixel (resolution 1 m × 1 m), developed from [91] |
Carbon stock (Mg CO2/ha) | Urban forest: 335.80 MgCO2/ha [113] Meadows with sparse trees: 68 Mg Corg/ha for the meadows [103]. For the tree-component, the total aboveground biomass increment was calculated based on [99]. For species not included within the model, similar species were considered as proxies. The total aboveground biomass was further elaborated to calculate carbon in branches and the belowground biomass pool, via BCEF (Biomass Conversion and Expansion Factor); ratio of below-ground to above-ground biomass and carbon fraction [112]; and finally, C to CO2 conversion factor (assuming 1 Mg of carbon equals 44/12 or 3.67 Mg CO2) |
Annual carbon increment (Mg CO2/ha) | Urban forest: 7.5328 Mg CO2/ha [113] |
Carbon price (EUR/Mg CO2eq) | 10.68 [114] |
Output data | Description |
Carbon stock (Mg CO2eq) | Stock of carbon under the two scenarios at year 60th, converted into Mg CO2eq |
Economic value of the carbon sequestration (EUR) | Total economic value of the carbon sequestration ES |
Input Data | Description |
---|---|
Land cover map | Raster of land use/land cover (LULC) for each pixel (resolution 1 m × 1 m), developed from [91] |
Biophysical table | csv file reporting, for each LULC type: (i) shade, range: (0–1); (ii) crop coefficient [115]; (iii) albedo [116]; (iv) green area (either 0 or 1); (v) building intensity, range: (0–1) |
Reference evapotranspiration (mm) | Raster of reference evapotranspiration according to the FAO Penman–Monteith methodology [115] |
Area of interest | Vector of the boundaries of the case study area |
Green area maximum cooling distance (m) | Distance over which large urban areas (>2 ha) within the case study area have a cooling effect. Defined as 200 m based on [117] |
Baseline air temperature (°C) | 23.4 °C [118] |
Magnitude of the urban heat island (UHI) effect | 3.5 °C [119] |
Air temperature maximum blending distance (m) | 2000 m. Default value set by the InVEST model. |
Building footprints | Vector with built infrastructure footprints, developed based on the Brescia Municipal Technical Map (Carta Tecnica Comunale, version 20th March 2021), using the reference vector “Edificio” (i.e., building). |
Energy consumption table | csv file reporting energy cost per type of building—residential (0.15 EUR/Kwh), industrial (0.12 EUR/Kwh) and other (0.10 EUR/Kwh)—derived as average values from online data by the Italian Regulatory Authority for Energy, Networks and Environment (Autorità di Regolazione per Energia Reti e Ambiente, ARERA).0.54% increase in the daily electricity load for each degree of temperature increase [120] |
Average relative humidity | 72% [118] |
Weights of factors | Shade: 0.6, Albedo: 0.2, Evapotranspiration: 0.2. Default values set by the InVEST model. |
Output data | Description |
Heat mitigation index | Raster with heat mitigation (hm) index values (unitless) showing the cooling effect for the baseline and under each intervention scenario |
Energy savings (kWh) | Avoided energy consumption due to the cooling effects for the baseline and under each intervention scenario |
Energy savings (EUR) | Avoided costs associated with avoided energy consumption, due to the cooling effects, for the baseline and under each intervention scenario |
Input Data | Description |
---|---|
Land cover map | Raster of land use/land cover (LULC) for each pixel (resolution 1 m × 1 m), developed from [91] |
Recreation potential | Scores for natural features and urban green infrastructures adapted from [123]. For the identification of natural features, reference was made to ecological features as in the Lombardy Regional Technical Map (Carta Tecnica Regionale) |
Accessibility | Score for areas varying according to their distance from pedestrian and bicycle paths. Paths were identified based on the Lombardy Regional Technical Map. Scores were adapted from [123] |
Use-related facilities | Score for areas including use-related facilities (e.g., playgrounds, dog areas). Facilities and infrastructures were identified based on the Lombardy Regional Technical Map. Scores were adapted from [123] |
Output data | Description |
Recreational opportunity spectrum (ROS) | Raster with ROS values (unitless, (0–1)) |
Ecosystem Services | Annual Value | Present Value (60 Years) | Present Value (Infinite Time) | |||
---|---|---|---|---|---|---|
Total (EUR/y) | Unit (EUR/y m2) | Total (EUR/y) | Unit (EUR/y m2) | Total (EUR/y) | Unit (EUR/y m2) | |
1.1 Provision of biomass and fibers for processing and energy | 4679.56 | 0.015 | 129,509.22 | 0.42 | - | - |
2.1 Phytoremediation capacity | - | - | - | - | - | - |
2.2 Removal and filtration of air pollutants | 9086.84 | 0.02 | 48,589.32 | 0.13 | 100,000.57 | 0.27 |
2.3 Protection against hydrogeological risks and control of erosion | 80,060.95 | 0.27 | 2,215,732.00 | 7.38 | 2,668,698.43 | 8.89 |
2.4 Pollination | 6200.56 | 0.01 | 171,603.92 | 0.37 | 206,685.25 | 0.44 |
2.5 Biodiversity and habitat quality | 12,024.87 | 0.04 | 332,795.09 | 1.08 | 400,829.04 | 1.30 |
2.6 Carbon sequestration | 2473.85 | 0.01 | 21,254.20 | 0.05 | 82,461.56 | 0.27 |
2.7 Temperature regulation and urban cooling | 16,099.44 | 0.02 | 445,561.00 | 0.61 | 536,648.00 | 0.74 |
3.1 Recreation | 8555.00 | 0.03 | 236,764.45 | 0.77 | 285,166.67 | 0.93 |
Total | 139,181.06 | 0.42 | 3,601,809.20 | 10.81 | 4,280,489.52 | 12.84 |
Ecosystem Services | Annual Value | Present Value (60 Years) | Present Value (Infinite Time) | |||
---|---|---|---|---|---|---|
Total (EUR/y) | Unit (EUR/y m2) | Total (EUR/y) | Unit (EUR/y m2) | Total (EUR/y) | Unit (EUR/y m2) | |
1.1 Provision of biomass and fibers for processing and energy | - | - | - | - | - | - |
2.1 Phytoremediation capacity | 262,535.77 | 0.60 | 7,265,825.49 | 16.57 | - | - |
2.2 Removal and filtration of air pollutants | 2209.72 | 0.03 | 11,213.33 | 0.14 | 23,715.42 | 0.31 |
2.3 Protection against hydrogeological risks and control of erosion | 59,488.15 | 0.13 | 1,646,368.00 | 3.56 | 1,982,938.23 | 4.28 |
2.4 Pollination | 5436.50 | 0.01 | 150,458.16 | 0.32 | 181,216.62 | 0.39 |
2.5 Biodiversity and habitat quality | 5836.46 | 0.02 | 161,527.45 | 0.43 | 194,548.82 | 0.63 |
2.6 Carbon sequestration | 471.62 | 0.001 | 11,559.39 | 0.03 | 15,720.59 | 0.04 |
2.7 Temperature regulation and urban cooling | 15,668.00 | 0.02 | 433,621.00 | 0.60 | 522,267.00 | 0.72 |
3.1 Recreation | 5365.00 | 0.01 | 148,479.40 | 0.40 | 178,883.33 | 0.48 |
Total | 357,011.22 | 0.82 | 9,829,052.22 | 22.05 | 3,099,290.00 | 6.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masiero, M.; Biasin, A.; Amato, G.; Malaggi, F.; Pettenella, D.; Nastasio, P.; Anelli, S. Urban Forests and Green Areas as Nature-Based Solutions for Brownfield Redevelopment: A Case Study from Brescia Municipal Area (Italy). Forests 2022, 13, 444. https://doi.org/10.3390/f13030444
Masiero M, Biasin A, Amato G, Malaggi F, Pettenella D, Nastasio P, Anelli S. Urban Forests and Green Areas as Nature-Based Solutions for Brownfield Redevelopment: A Case Study from Brescia Municipal Area (Italy). Forests. 2022; 13(3):444. https://doi.org/10.3390/f13030444
Chicago/Turabian StyleMasiero, Mauro, Anna Biasin, Giulia Amato, Fabrizio Malaggi, Davide Pettenella, Paolo Nastasio, and Simone Anelli. 2022. "Urban Forests and Green Areas as Nature-Based Solutions for Brownfield Redevelopment: A Case Study from Brescia Municipal Area (Italy)" Forests 13, no. 3: 444. https://doi.org/10.3390/f13030444