Effects of Girdling Intensity, Pruning Season and Thinning on Tree Growth, Crown Vigor and Wound Recovery in Japanese Larch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Girdling
2.3. Thinning
2.4. Top Pruning
2.5. Light Intensity
2.6. Tree Size and Healthiness Index
2.7. Data Analysis
3. Results
3.1. Light Intensity
3.2. Tree Size Growth Characteristics
3.3. Healthiness Index and Recovery from Girdling Damage
3.4. Time Series Analysis of Girdling Depth Recovery
4. Discussion
4.1. Effect of Thinning
4.2. Effect of Pruning
4.3. Effect of Girdling
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Park, Y.S.; Fowler, D.P. A provenance test of Japanese larch in eastern Canada, including comparative data on European larch and tamarack. Silvae Genet. 1983, 32, 96–101. [Google Scholar]
- Pâques, L.E. Roles of European and Japanese larch in the genetic control of growth, architecture and wood quality traits in interspecific hybrids (Larix × eurolepis Henry). Ann. For. Sci. 2004, 61, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Baltunis, B.S.; Greenwood, M.S.; Eysteinsson, T. Hybrid vigor in Larix: Growth of intra-and interspecific hybrids of Larix decidua, L. laricina, and L. kaempferi after 5-years. Silvae Genet. 1998, 47, 288–293. [Google Scholar]
- Kita, K.; Fujimoto, T.; Uchiyama, K.; Kuromaru, M.; Akutsu, H. Estimated amount of carbon accumulation of hybrid larch in three 31-year-old progeny test plantations. J. Wood Sci. 2009, 55, 425–434. [Google Scholar] [CrossRef]
- Kita, K.; Sugai, T.; Fujita, S.; Koike, T. Breeding effort on hybrid larch F1 and its responses to environmental stresses. For. Gen. Tree Breed. 2018, 7, 107–114, (In Japanese with English Summary). [Google Scholar]
- Kurinobu, S. Forest Tree Breeding for Japanese larch. Eurasian J. For. Res. 2005, 8, 127–134. [Google Scholar]
- Fukatsu, E.; Hiraoka, Y.; Matsunaga, K.; Tsubomura, M.; Nakada, R. Genetic relationship between wood properties and growth traits in Larix kaempferi obtained from a diallel mating test. J. Wood Sci. 2015, 61, 10–18. [Google Scholar] [CrossRef]
- Forestry Agency, Ministry of Agriculture, Forestry and Fisheries of Japan. Annual Report on Forest and Forestry in Japan for FY 2018; Forestry Agency, Ministry of Agriculture, Forestry and Fisheries of Japan: Tokyo, Japan, 2019.
- Forest Tree Breeding Center. The Current States and Statistics in Forest Tree Breeding in Japan; Forest Tree Breeding Center, Forestry and Forestry Product Research Institute: Hitachi, Japan, 2019.
- Uchiyama, K.; Kuromaru, M.; Kita, K. Effect of light intensity and girdling on seed production of Larix gmelinii var. japonica clones. Bull. Hokkaido For. Res. Inst. 2007, 44, 119–127, (In Japanese with English Summary). [Google Scholar]
- Asakawa, S.; Fujita, K.; Nagao, A.; Yokoyama, T. The effect of girdling on the coning of larch seed trees as affected by stand density. J. Jpn. For. Soc. 1966, 48, 245–249, (In Japanese with English Summary). [Google Scholar]
- Tamura, A.; Ubukata, M.; Yamada, H.; Fukuda, Y.; Yano, K.; Orita, H. Effect of line thinning on stimulation of flowering in a Japanese larch orchard. Jpn. For. Soc. Cong. 2015, 126, 334. [Google Scholar]
- Shearer, R.C.; Schmidt, W.C. Cone production and stand density in young Larix occidentalis. For. Ecol. Manag. 1987, 19, 219–226. [Google Scholar] [CrossRef]
- Bonnet-Masimbert, M. Effect of growth regulators, girdling, and mulching on flowering of young European and Japanese larches under field conditions. Can. J. For. Res. 1981, 12, 276–279. [Google Scholar] [CrossRef]
- Bonnet-Masimbert, M. Flower induction in conifers: A review of available techniques. For. Ecol. Manag. 1987, 19, 135–146. [Google Scholar] [CrossRef]
- Crain, B.A.; Cregg, B.M. Regulation and management of cone induction in temperate conifers. For. Sci. 2017, 64, 82–101. [Google Scholar] [CrossRef]
- Prill, R. Cone induction on western larch seed trees. BC Min. For. Silv. Br. Prog. Rep. 1990, SX87601-10, 29. [Google Scholar]
- Mikami, S.; Asakawa, S.; Iizuka, M.; Yokoyama, T.; Nagao, A.; Takehana, S.; Kaneko, T. Flower induction in Japanese larch, Larix leptolepis Gord. Bull. FFPRI 1979, 307, 9–24, (In Japanese with English Summary). [Google Scholar]
- Miller, L.K.; Debell, J. Current seed orchard techniques and innovations. In National Proceedings: Forest and Conservation Nursery Associations 2012; USDA Forest Service: Fort Collins, CO, USA, 2013; pp. 80–86. [Google Scholar]
- Lee, W.Y.; Lee, J.S.; Lee, J.H.; Noh, E.W.; Park, E.-J. Enhanced seed production and metabolic alterations in Larix leptolepis by girdling. For. Ecol. Manag. 2011, 261, 1957–1961. [Google Scholar] [CrossRef]
- Markiewicz, P. Problems with seed production of European larch in seed orchards in Poland. In Proceedings of a Seed Orchard Conference Umeå, Sweden, 26–28 September 2007; Lindgren, D., Ed.; Swedish University of Agricultural Sciences: Umeå, Sweden, 2007; pp. 161–164. [Google Scholar]
- Verkaik, I.; Espelta, J.M. Post-fire regeneration thinning, cone production, serotiny and regeneration age in Pinus halepensis. For. Ecol. Manag. 2006, 231, 155–163. [Google Scholar] [CrossRef]
- Peters, G.; Sala, A. Reproductive output of ponderosa pine in response to thinning and prescribed burning in western Montana. Can. J. For. Res. 2008, 38, 844–850. [Google Scholar] [CrossRef]
- Lindh, B.C. Flowering of understory herbs following thinning in the western Cascades, Oregon. For. Ecol. Manag. 2008, 256, 929–936. [Google Scholar] [CrossRef]
- Matsushita, M.; Setsuko, S.; Tamaki, I.; Nakagawa, M.; Nishimura, N.; Tomaru, N. Thinning operations increase the demographic performance of the rare subtree species Magnolia stellata in a suburban forest landscape. Landsc. Ecol. Eng. 2016, 12, 179–186. [Google Scholar] [CrossRef]
- Bose, K.; Weiskittel, A.; Kuehne, C.; Wagner, R.G.; Turnblom, E.; Burkhart, H.E. Tree-level growth and survival following commercial thinning of four major softwood species in North America. For. Ecol. Manag. 2018, 427, 355–364. [Google Scholar] [CrossRef]
- Gasser, D.; Messier, C.; Beaudet, M.; Lechowicz, M.J. Sugar maple and yellow birch regeneration in response to canopy opening, liming and vegetation control in a temperate deciduous forest of Quebec. For. Ecol. Manag. 2010, 259, 2006–2014. [Google Scholar] [CrossRef] [Green Version]
- Funda, T.; El-Kassaby, Y.A. Seed orchard genetics. Cab. Rev. 2012, 7, 1–23. [Google Scholar] [CrossRef]
- Almqvist, C.; Jansson, G. Effects of pruning and stand density on cone and pollen production in an experimental Pinus sylvestris seed orchard. Silva Fennica 2015, 49, 1243. [Google Scholar] [CrossRef] [Green Version]
- Alan, M.; Sabuncu, R.; Ezen, T.; Kaplan, S. The effects of top pruning on growth and production of conelets and cones in Pinus brutia ten seed orchards of different ages. Šumarski List 2018, 5–6, 269–282. [Google Scholar] [CrossRef] [Green Version]
- Neilsen, W.A.; Pinkard, E.A. Effects of green pruning on growth of Pinus radiata. Can. J. For. Res. 2003, 33, 2067–2073. [Google Scholar] [CrossRef]
- Alcorn, P.J.; Bauhus, J.; Smith, R.G.B.; Thomas, D.; James, R.; Nicotra, A. Growth response following green crown pruning in plantation-grown Eucalyptus pilularis and Eucalyptus cloeziana. Can. J. For. Res. 2008, 38, 770–781. [Google Scholar] [CrossRef]
- O’Hara, K.L.; York, R.A.; Heald, R.C. Effect of pruning severity and timing of treatment on epicormic sprout development in giant sequoia. Forestry 2008, 81, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Van Kleunen, M.; Stuefer, J.F. Quantifying the effects of reciprocal assimilate and water translocation in a clonal plant by the use of steam girdling. Oikos 1999, 85, 135–145. [Google Scholar] [CrossRef]
- Isogimi, T.; Matsushita, M.; Watanabe, Y.; Nakagawa, M. Sexual differences in physiological integration in the dioecious shrub Lindera triloba: A field experiment using girdling manipulation. Ann. Bot. 2011, 107, 1029–1037. [Google Scholar] [CrossRef] [Green Version]
- Isogimi, T.; Matsushita, M.; Nakagawa, M. Species-specific sprouting pattern in two dioecious Lindera shrubs: The role of physiological integration. Flora 2014, 209, 718–724. [Google Scholar] [CrossRef]
- Levin, A.G.; Lavee, S. The influence of girdling on flower type, number, inflorescence density, fruit set, and yields in three different olive cultivars (Barnea, Picual, and Souri). Austral J. Agri. Res. 2005, 56, 827–831. [Google Scholar] [CrossRef]
- Rivas, F.; Gravina, A.; Agustí, M. Girdling effects on fruit set and quantum yield efficiency of PSII in two Citrus cultivars. Tree Physiol. 2007, 27, 527–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, N.C.; Cade, S.C.; Masters, C.J.; Ross, S.D.; Keeley, J.W.; Hsin, L.Y. Girdling: A safe, effective and practical treatment for enhancing seed yields in Douglas-fir seed orchards. Can. J. For. Res. 1985, 15, 505–510. [Google Scholar] [CrossRef]
- Percival, G.; Smiley, T. The influence of stem girdling on survival and long term health of English oak (Quercus robur L.) and silver birch (Betula pendula Roth.). Urban For. Urban Green. 2015, 14, 991–999. [Google Scholar] [CrossRef]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Moreno-Fernández, D.; Sánchez-González, M.; Álvarez-González, J.G.; Hevia, A.; Majada, J.P.; Cañellas, I.; Gea-Izquierdo, G. Response to the interaction of thinning and pruning of pine species in Mediterranean mountains. Eur. J. Forest Res. 2014, 133, 833–843. [Google Scholar] [CrossRef]
- Cutter, B.E.; Lowell, K.E.; Dwyer, J.P. Thinning effects on diameter growth in black and scarlet oak as shown by tree ring analyses. For Ecol Manag. 1991, 43, 1–13. [Google Scholar] [CrossRef]
- Cabon, A.; Mouillot, F.; Lempereur, M.; Ourcival, J.-M.; Simioni, G.; Limousin, J.-M. Thinning increases tree growth by delaying drought-induced growth cessation in a Mediterranean evergreen oak coppice. For. Ecol. Manag. 2018, 409, 333–342. [Google Scholar] [CrossRef]
- Longman, K.A.; Nasr, T.A.; Wareing, P.F. Gravimorphism in trees. 4. The effect of gravity on flowering. Ann. Bot. 1965, 29, 105–111. [Google Scholar] [CrossRef]
- Matsushita, M.; Nishikawa, H.; Tamura, A.; Takahashi, M. Effects of light intensity and girdling treatments on the production of female cones in Japanese larch (Larix kaempferi (Lamb.) Carr.): Implications for the management of seed orchards. Forests 2020, 11, 1110. [Google Scholar] [CrossRef]
- Amateis, R.L.; Burkhart, H.E. Growth of young loblolly pine trees following pruning. For Ecol Manag. 2011, 262, 2338–2343. [Google Scholar] [CrossRef]
- Hevia, A. Influencia de la Poda en el Desarrollo de Masas de Pinus radiata D. Don y Pinus pinaster Aiton en Asturias. Ph.D. Thesis, Universidad de Santiago de Compostela, Santiago, Spain, 2012. [Google Scholar]
- Waring, K.M.; O’Hara, K.L. Ten-year growth and epicormic sprouting response of western larch to pruning in western Montana. West. J. Appl. For. 2005, 20, 228–232. [Google Scholar] [CrossRef] [Green Version]
- Fajstavr, M.; Giagli, K.; Vavrčík, H.; Gryc, V.; Urban, J. The effect of stem girdling on xylem and phloem formation in Scots pine. Silva Fenn. 2017, 51, 1760. [Google Scholar] [CrossRef] [Green Version]
- Fajstavr, M.; Giagli, K.; Vavrčík, H.; Gryc, V.; Horáček, P.; Urban, J. The cambial response of Scots pine trees to girdling and water stress. IAWA J. 2020, 41, 159–185. [Google Scholar] [CrossRef]
- Neely, D. Tree wound closure rates on trees. J. Arb. 1988, 14, 250–254. [Google Scholar]
- Goren, R.; Huberman, M.; Goldschmidt, E.E. Girdling: Physiological and horticultural aspects. Hort. Rev. 2004, 30, 1–36. [Google Scholar]
- Chano, V.; López, R.; Pita, P.; Collada, C.; Soto, A. Proliferation of axial parenchymatic xylem cells is a key step in wound closure of girdled stems in Pinus canariensis. BMC Plant Biol. 2015, 15, 64. [Google Scholar] [CrossRef] [Green Version]
- Wilson, B.F. Effect of girdling on cambial activity in white pine. Can. J. Bot. 1968, 46, 141–146. [Google Scholar] [CrossRef]
- Collin, F.; Sanjines, A.; Fortin, M.; Bontemps, J.D.; Nicolini, E. Fagus sylvatica trunk epicormics in relation to primary and secondary growth. Ann. Bot. 2012, 110, 995–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López, R.; Brossa, R.; Gil, L.; Pita, P. Stem girdling evidences a trade-off between cambial activity and sprouting and dramatically reduces plant transpiration due to feedback inhibition of photosynthesis and hormone signaling. Front. Plant Sci. 2015, 6, 285. [Google Scholar] [CrossRef] [PubMed]
- Landhausser, S.M.; Lieffers, V.J. Leaf area renewal, root retention and carbohydrate reserves in a clonal tree species following above-ground disturbance. J. Ecol. 2002, 90, 658–665. [Google Scholar] [CrossRef] [Green Version]
- Wilson, B.F.; Gartner, B.L. Effects of phloem girdling in conifers on apical control of branches, growth allocation and air in wood. Tree Physiol. 2002, 22, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Wagener, W.W. Guidelines for estimating the survival of fire-damaged trees in California. USDA Forest Service. Misc. Pap. 1961, 60. [Google Scholar] [CrossRef]
- Stone, E.L. The communal root system of red pine: Growth of girdled trees. For. Sci. 1974, 20, 294–305. [Google Scholar]
- Schmitt, C.L.; Filip, G.M. Understanding and Defining Mortality in Western Conifers; R6-FHP1-05; USDA Forest Service: Portland, OR, USA, 2005; p. 17.
rPPFD (%) | DBH (cm) | Height (m) | Crown Width (m) | ||
---|---|---|---|---|---|
2017 | Mean | 49.2 | 38.8 | 10.1 | 4.4 |
(n = 39) | S.E. | 2.47 | 0.95 | 0.40 | 0.13 |
2021 | Mean | 35.9 | 39.0 | 11.4 | 5.3 |
(n = 39) | S.E. | 2.57 | 0.88 | 0.48 | 0.17 |
F-value | 13.908 | 0.015 | 5.588 | 17.788 | |
p-value | <0.001 | 0.903 | 0.021 | <0.001 |
Healthiness Index | Recovery Rate | |||
---|---|---|---|---|
F-Value | p-Value | F-Value | p-Value | |
Thinning | 0.204 | 0.562 | 0.137 | 0.712 |
Girdling | 4.238 | 0.007 | 13.030 | <0.001 |
Pruning | 61.512 | <0.001 | 20.593 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsushita, M.; Nishikawa, H.; Tamura, A. Effects of Girdling Intensity, Pruning Season and Thinning on Tree Growth, Crown Vigor and Wound Recovery in Japanese Larch. Forests 2022, 13, 449. https://doi.org/10.3390/f13030449
Matsushita M, Nishikawa H, Tamura A. Effects of Girdling Intensity, Pruning Season and Thinning on Tree Growth, Crown Vigor and Wound Recovery in Japanese Larch. Forests. 2022; 13(3):449. https://doi.org/10.3390/f13030449
Chicago/Turabian StyleMatsushita, Michinari, Hiroki Nishikawa, and Akira Tamura. 2022. "Effects of Girdling Intensity, Pruning Season and Thinning on Tree Growth, Crown Vigor and Wound Recovery in Japanese Larch" Forests 13, no. 3: 449. https://doi.org/10.3390/f13030449
APA StyleMatsushita, M., Nishikawa, H., & Tamura, A. (2022). Effects of Girdling Intensity, Pruning Season and Thinning on Tree Growth, Crown Vigor and Wound Recovery in Japanese Larch. Forests, 13(3), 449. https://doi.org/10.3390/f13030449