A Proposal for a Forest Digital Twin Framework and Its Perspectives
Abstract
:1. Introduction
- enhance monitoring and verifiability of forest ecosystem services status;
- reduce the risk posture of the health of forest ecosystem services by implementing early warning mechanisms based on the tracking of state variables at tree and forest levels;
- increase liquidity of the ecosystem assets and improve the capital flow towards sustainable practices of forest management.
2. The Forest Digital Twin: Framework Description
- Harvested volumes and biomass: whereby routine silvicultural intervention for raw material procurement or biomass removal for successional or sanitation purposes may be fed back into the FDT providing necessary information on past actions to inform future interventions;
- Harvesting cycle: established harvesting cycles, not only as planning tools, may also be embedded where scenarios based on the virtual component of the FDT simulations offers additional information under certain temporal scales and their respective outcomes, e.g., mean annual increment (MAI) stand or forest level, or at tree level average sawlog volume (ASV);
- Rotation: similar to harvest cycles, rotation age information could be continuously assessed and modified under a scenario-based predefined objective or simulated to reflect changes in abiotic and biotic limitation, including changes in timber market conditions;
- Timber traceability: tracing harvest removals (sawlog or biomass) from forest to landing to sawmill with a specific identifier or barcode, which may be tagged as either part of the blockchain ledger or as a specific subset within the FDT to clearly trace raw material forest source and additional repository functions.
- IoT device: a device or a system of devices equipped with a unique identifier that measures physical and/or biotic parameters that transmit and receive signals over a network. In this context, this classification includes (list no exhaustive): sap flow sensors, diameter growth sensors, sound piezometric sensors, soil moisture sensors, air quality sensors, digital cameras to capture animal movements, weather stations;
- Image sensing technologies: remote sensing (satellite images and light detection and ranging (LiDAR) technology operated by drones and planes) and terrestrial laser scanners;
- Flux towers: measures of gas exchanges (carbon dioxide and water vapor exchange) between the forest ecosystem and the atmosphere;
- Field measurements and metadata: measurements in-situ performed by individuals and usage of additional data sources (e.g., forest inventories).
- the compositional context (from vegetation association and habitat types to single stand characterization);
- the temporal context (from strategic planning to operations);
- the spatial scale (from regional to single stand);
- the spatial context (for example, to manage the harvest units or wild habitat patterns);
- the decision-making context (from multi-decisions/multi-stakeholder to single stakeholder).
- enable different actors to have access and operate on the data recorded in a decentralized way on the basis of the specific use cases;
- transfer of digital assets and information without requiring a trusted third party: value sharing related to digitized natural assets like a carbon credit or like any value linked to a forest ecosystem service is fundamental, and the potential variety of actors and use cases enabled by the FDT make the establishment of a trusted third party difficult to realize;
- clear data ownership: digital identifiers for forest ecosystem services evaluations (e.g., wood production, carbon sequestered, pollution removal) linked to a trusted ownership mechanism are mandatory for accountability and transparency;
- enable monitoring activities: depending on the use cases, the public sector, the scientific community, and civil society should have real-time access to the transactions. Data reconciliation must be an “off of the shelf” capability to minimize disputes and manual efforts. A full log of transactions must also be available to reconstruct the evolution of the forest ecosystem services.
- thanks to a cloud-native design, similar to the digital twin implementations for manufacturing, the solution would underpin the collection, storage, and analysis of data recorded in different ways and forms (e.g., IoT, remote sensing, and national forest inventories), creating a new data lake from tree to forest level available for modeling;
- the punctual monitoring at tree level, could enable a better prediction of the impact of forest management actions on ecosystem services. A clear example could be the impact evaluation of biomass removal via harvesting for a stand. Monitoring the state variables of the trees forming the stand via IoT devices would enable the daily collection of data pre and post-harvesting, for example: for radial growth (via growth sensors), canopy health (via spectrometer), tree competition (via GPS), and stem water usage (via transient thermal dissipation probs), thus providing a continuous stream of data for assessing the impact of the forest management activities.
2.1. Twinning the Tree: The Physical and Biotic State, the Sockets, and the Processes
2.2. Twinning the Forest: The Physical and Biotic State, the Sockets, and the Processes
- IoT devices for monitoring air quality and pollution, weather, wildlife, and herbivores;
- image sensing technologies for monitoring species diversity and stand structure;
- flux towers to monitor atmospheric gaseous and energy exchanges;
- field measurements and metadata analysis for monitoring forest management activities and tree competitions;
- combinations of these monitoring means for disturbance regime (remote sensing and metadata) and for the hydrological basin (remote sensing and IoT).
2.3. Risk Management and Early-Warnings
- (1)
- the risk of reversals impacting the asset value provided by an ecosystem service shared with a potential buyer (e.g., risk of wind storm hindering the forest’s potential of carbon sequestration);
- (2)
- signals of the forest’s health degradation for the scientific community (e.g., increasing episodes of hydraulic failure, carbon starvation, insects, and pathogens).
2.4. Ecosystem Services Evaluation: The Value of Tree Monitoring
2.5. Putting All Together: An End-to-End Theoretical Application of a Forest Digital Twin
3. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; de Groot, R.; Farberll, S.; Grassot, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; Raskin, R.G.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R.; et al. Ecosystems and Human Well-Being—Synthesis: A Report of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A Safe Operating Space for Humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Bonan, G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [Green Version]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural Climate Solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef] [Green Version]
- Başkent, E.Z. A Review of the Development of the Multiple Use Forest Management Planning Concept. Int. For. Rev. 2018, 20, 296–313. [Google Scholar] [CrossRef]
- Lier, M.; Köhl, M.; Korhonen, K.T.; Linser, S.; Prins, K. Forest Relevant Targets in EU Policy Instruments—Can Progress Be Measured by the Pan-European Criteria and Indicators for Sustainable Forest Management? For. Policy Econ. 2021, 128, 102481. [Google Scholar] [CrossRef]
- Welcome to Digital Twin Consortium|Digital Twin Consortium®. Available online: https://www.digitaltwinconsortium.org/ (accessed on 2 December 2021).
- Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A Systematic Literature Review. CIRP J. Manuf. Sci. Technol. 2020, 29, 36–52. [Google Scholar] [CrossRef]
- Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital Twin: Enabling Technologies, Challenges and Open Research. IEEE Access 2020, 8, 108952–108971. [Google Scholar] [CrossRef]
- Bauer, P.; Stevens, B.; Hazeleger, W. A Digital Twin of Earth for the Green Transition. Nat. Clim. Chang. 2021, 11, 80–83. [Google Scholar] [CrossRef]
- Destination Earth|Shaping Europe’s Digital Future. Available online: https://digital-strategy.ec.europa.eu/en/policies/destination-earth (accessed on 2 December 2021).
- Renda, A. The Age of Foodtech: Optimizing the Agri-Food Chain with Digital Technologies. In Achieving the Sustainable Development Goals through Sustainable Food Systems; Springer: Cham, Switzerland, 2019; pp. 171–187. ISBN 9783030239695. [Google Scholar]
- Nitoslawski, S.A.; Wong-Stevens, K.; Steenberg, J.W.N.; Witherspoon, K.; Nesbitt, L.; Konijnendijk van den Bosch, C.C. The Digital Forest: Mapping a Decade of Knowledge on Technological Applications for Forest Ecosystems. Earth’s Future 2021, 9, e2021EF002123. [Google Scholar] [CrossRef]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Decentralized Bus. Rev. 2008, 21260. Available online: https://www.debr.io/article/21260.pdf (accessed on 23 January 2021).
- Wust, K.; Gervais, A. Do you Need a Blockchain? In Proceedings of the 2018 Crypto Valley Conference on Blockchain Technology, Zug, Switzerland, 20–22 June 2018; pp. 45–54. [Google Scholar]
- Chapron, G. The Environment Needs Cryptogovernance. Nature 2017, 545, 403–405. [Google Scholar] [CrossRef]
- Hartmann, H.; Moura, C.F.; Anderegg, W.R.L.; Ruehr, N.K.; Salmon, Y.; Allen, C.D.; Arndt, S.K.; Breshears, D.D.; Davi, H.; Galbraith, D.; et al. Research Frontiers for Improving Our Understanding of Drought-Induced Tree and Forest Mortality. New Phytol. 2018, 218, 15–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trugman, A.T.; Anderegg, L.D.L.; Anderegg, W.R.L.; Das, A.J.; Stephenson, N.L. Why Is Tree Drought Mortality so Hard to Predict? Trends Ecol. Evol. 2021, 36, 520–532. [Google Scholar] [CrossRef]
- Maréchaux, I.; Langerwisch, F.; Huth, A.; Bugmann, H.; Morin, X.; Reyer, C.P.O.; Seidl, R.; Collalti, A.; Dantas de Paula, M.; Fischer, R.; et al. Tackling Unresolved Questions in Forest Ecology: The Past and Future Role of Simulation Models. Ecol. Evol. 2021, 11, 3746–3770. [Google Scholar] [CrossRef]
- Baskent, E.Z.; Borges, J.G.; Kašpar, J.; Tahri, M. A Design for Addressing Multiple Ecosystem Services in Forest Management Planning. Forests 2020, 11, 1108. [Google Scholar] [CrossRef]
- de Donno, M.; Tange, K.; Dragoni, N. Foundations and Evolution of Modern Computing Paradigms: Cloud, IoT, Edge, and Fog. IEEE Access 2019, 7, 150936–150948. [Google Scholar] [CrossRef]
- What Is Azure Digital Twins?—Azure Digital Twins|Microsoft Docs. Available online: https://docs.microsoft.com/en-us/azure/digital-twins/overview (accessed on 4 December 2021).
- Zou, W.; Lo, D.; Kochhar, P.S.; Le, X.B.D.; Xia, X.; Feng, Y.; Chen, Z.; Xu, B. Smart Contract Development: Challenges and Opportunities. IEEE Trans. Softw. Eng. 2021, 47, 2084–2106. [Google Scholar] [CrossRef]
- Streck, C. Who Owns REDD+? Carbon Markets, Carbon Rights and Entitlements to REDD+ Finance. Forests 2020, 11, 959. [Google Scholar] [CrossRef]
- van Kooten, G.C. Forest Carbon Offsets and Carbon Emissions Trading: Problems of Contracting. For. Policy Econ. 2017, 75, 83–88. [Google Scholar] [CrossRef]
- Yaga, D.; Mell, P.; Roby, N.; Scarfone, K. Blockchain Technology Overview. arXiv 2019, arXiv:1906.11078. [Google Scholar]
- Stoll, C.; Klaaßen, L.; Gallersdörfer, U. The Carbon Footprint of Bitcoin. Joule 2019, 3, 1647–1661. [Google Scholar] [CrossRef]
- Segura, M.; Ray, D.; Maroto, C. Decision Support Systems for Forest Management: A Comparative Analysis and Assessment. Comput. Electron. Agric. 2014, 101, 55–67. [Google Scholar] [CrossRef]
- Rahman, G.; Sohag, H.; Chowdhury, R.; Wahid, K.A.; Dinh, A.; Arcand, M.; Vail, S. SoilCam: A Fully Automated Minirhizotron Using Multispectral Imaging for Root Activity Monitoring. Sensors 2020, 20, 787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burton, L.; Jayachandran, K.; Bhansali, S. Review—The “Real-Time” Revolution for In Situ Soil Nutrient Sensing. J. Electrochem. Soc. 2020, 167, 037569. [Google Scholar] [CrossRef]
- Sylvain, M.; Lehoux, F.; Morency, S.; Faucher, F.; Bharucha, E.; Tremblay, D.M.; Raymond, F.; Sarrazin, D.; Moineau, S.; Allard, M.; et al. The EcoChip: A Wireless Multi-Sensor Platform for Comprehensive Environmental Monitoring. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 1289–1300. [Google Scholar] [CrossRef]
- Gougherty, A.V.; Keller, S.R.; Kruger, A.; Stylinski, C.D.; Elmore, A.J.; Fitzpatrick, M.C. Estimating Tree Phenology from High Frequency Tree Movement Data. Agric. For. Meteorol. 2018, 263, 217–224. [Google Scholar] [CrossRef]
- Valentini, R.; Marchesini, L.B.; Gianelle, D.; Sala, G.; Yarovslavtsev, A.; Vasenev, V.I.; Castaldi, S. New Tree Monitoring Systems: From Industry 4.0 to Nature 4.0. Ann. Silvic. Res. 2019, 43, 84–88. [Google Scholar] [CrossRef]
- Simon, H.; Lindén, J.; Hoffmann, D.; Braun, P.; Bruse, M.; Esper, J. Modeling Transpiration and Leaf Temperature of Urban Trees—A Case Study Evaluating the Microclimate Model ENVI-Met against Measurement Data. Landsc. Urban Plan. 2018, 174, 33–40. [Google Scholar] [CrossRef]
- Ryu, Y.; Verfaillie, J.; Macfarlane, C.; Kobayashi, H.; Sonnentag, O.; Vargas, R.; Ma, S.; Baldocchi, D.D. Continuous Observation of Tree Leaf Area Index at Ecosystem Scale Using Upward-Pointing Digital Cameras. Remote Sens. Environ. 2012, 126, 116–125. [Google Scholar] [CrossRef]
- Matasov, V.; Marchesini, L.B.; Yaroslavtsev, A.; Sala, G.; Fareeva, O.; Seregin, I.; Castaldi, S.; Vasenev, V.; Valentini, R. IoT Monitoring of Urban Tree Ecosystem Services: Possibilities and Challenges. Forests 2020, 11, 775. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, F.; Hu, H.; Yang, P. A Comparison of Methods for Determining Field Evapotranspiration: Photosynthesis System, Sap Flow, and Eddy Covariance. Hydrol. Earth Syst. Sci. 2014, 18, 1053–1072. [Google Scholar] [CrossRef] [Green Version]
- Churkina, G.; Kuik, F.; Bonn, B.; Lauer, A.; Grote, R.; Tomiak, K.; Butler, T.M. Effect of VOC Emissions from Vegetation on Air Quality in Berlin during a Heatwave. Environ. Sci. Technol. 2017, 51, 6120–6130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livesley, S.J.; McPherson, E.G.; Calfapietra, C. The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale. J. Environ. Qual. 2016, 45, 119–124. [Google Scholar] [CrossRef]
- O’Brien, A.M.; Ginnan, N.A.; Rebolleda-Gómez, M.; Wagner, M.R. Microbial Effects on Plant Phenology and Fitness. Am. J. Bot. 2021, 108, 1824–1837. [Google Scholar] [CrossRef]
- Lau, J.A.; Lennon, J.T. Evolutionary Ecology of Plant-Microbe Interactions: Soil Microbial Structure Alters Selection on Plant Traits. New Phytol. 2011, 192, 215–224. [Google Scholar] [CrossRef]
- Rosenbaum, U.; Bogena, H.R.; Herbst, M.; Huisman, J.A.; Peterson, T.J.; Weuthen, A.; Western, A.W.; Vereecken, H. Seasonal and Event Dynamics of Spatial Soil Moisture Patterns at the Small Catchment Scale. Water Resour. Res. 2012, 48, W10544. [Google Scholar] [CrossRef] [Green Version]
- Lammirato, C.; Lebender, U.; Tierling, J.; Lammel, J. Analysis of Uncertainty for N2O Fluxes Measured with the Closed-Chamber Method under Field Conditions: Calculation Method, Detection Limit, and Spatial Variability. J. Plant Nutr. Soil Sci. 2018, 181, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Barba, J.; Lloret, F.; Poyatos, R.; Molowny-Horas, R.; Yuste, J.C. Multi-Temporal Influence of Vegetation on Soil Respiration in a Drought-Affected Forest. iForest Biogeosci. For. 2018, 11, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.S.; Cho, H.B.; Heo, D.; Kim, N.S.; Kim, Y.S.; Lee, K.; Lee, S.H.; Ryu, J. Precision Monitoring of Radial Growth of Trees and Micro-Climate at a Korean Fir (Abies Koreana Wilson) Forest at 10 Minutes Interval in 2016 on Mt. Hallasan National Park, Jeju Island, Korea. J. Ecol. Environ. 2019, 43, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, M.; Feng, Z.; Mikhailova, T.A.; Kalugina, O.V.; Shergina, O.V.; Afanasieva, L.V.; Heng, R.K.J.; Majid, N.M.A.; Sase, H. Air Pollution Monitoring and Tree and Forest Decline in East Asia: A Review. Sci. Total Environ. 2020, 742, 140288. [Google Scholar] [CrossRef] [PubMed]
- FLUXNET. Available online: https://fluxnet.org/ (accessed on 5 December 2021).
- Morfopoulos, C.; Müller, J.F.; Stavrakou, T.; Bauwens, M.; de Smedt, I.; Friedlingstein, P.; Prentice, I.C.; Regnier, P. Vegetation Responses to Climate Extremes Recorded by Remotely Sensed Atmospheric Formaldehyde. Glob. Chang. Biol. 2021 28, 1809–1822. [CrossRef]
- Kane, V.R.; North, M.P.; Lutz, J.A.; Churchill, D.J.; Roberts, S.L.; Smith, D.F.; Mcgaughey, R.J.; Kane, J.T.; Brooks, M.L. Assessing Fire Effects on Forest Spatial Structure Using a Fusion of Landsat and Airborne LiDAR Data in Yosemite National Park. Remote Sens. Environ. 2014, 151, 89–101. [Google Scholar] [CrossRef]
- Senf, C.; Seidl, R. Mapping the Forest Disturbance Regimes of Europe. Nat. Sustain. 2020, 4, 63–70. [Google Scholar] [CrossRef]
- Felipe-Lucia, M.R.; Soliveres, S.; Penone, C.; Manning, P.; van der Plas, F.; Boch, S.; Prati, D.; Ammer, C.; Schall, P.; Gossner, M.M.; et al. Multiple Forest Attributes Underpin the Supply of Multiple Ecosystem Services. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Grady, J.; Zhang, D.; O’Connor, N.; Regan, F. A Comprehensive Review of Catchment Water Quality Monitoring Using a Tiered Framework of Integrated Sensing Technologies. Sci. Total Environ. 2020, 765, 142766. [Google Scholar] [CrossRef]
- Guo, X.; Coops, N.C.; Tompalski, P.; Nielsen, S.E.; Bater, C.W.; John Stadt, J. Regional Mapping of Vegetation Structure for Biodiversity Monitoring Using Airborne Lidar Data. Ecol. Inform. 2017, 38, 50–61. [Google Scholar] [CrossRef]
- Rautiainen, M.; Lukeš, P.; Homolová, L.; Hovi, A.; Pisek, J.; Mõttus, M. Spectral Properties of Coniferous Forests: A Review of In Situ and Laboratory Measurements. Remote Sens. 2018, 10, 207. [Google Scholar] [CrossRef] [Green Version]
- Quegan, S.; le Toan, T.; Chave, J.; Dall, J.; Exbrayat, J.F.; Minh, D.H.T.; Lomas, M.; D’Alessandro, M.M.; Paillou, P.; Papathanassiou, K.; et al. The European Space Agency BIOMASS Mission: Measuring Forest above-Ground Biomass from Space. Remote Sens. Environ. 2019, 227, 44–60. [Google Scholar] [CrossRef] [Green Version]
- Asner, G.P.; Mascaro, J.; Muller-Landau, H.C.; Vieilledent, G.; Vaudry, R.; Rasamoelina, M.; Hall, J.S.; van Breugel, M. A Universal Airborne LiDAR Approach for Tropical Forest Carbon Mapping. Oecologia 2012, 168, 1147–1160. [Google Scholar] [CrossRef] [PubMed]
- Jucker, T.; Caspersen, J.; Chave, J.; Antin, C.; Barbier, N.; Bongers, F.; Dalponte, M.; van Ewijk, K.Y.; Forrester, D.I.; Haeni, M.; et al. Allometric Equations for Integrating Remote Sensing Imagery into Forest Monitoring Programmes. Glob. Chang. Biol. 2017, 23, 177–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaglio Laurin, G.; Ding, J.; Disney, M.; Bartholomeus, H.; Herold, M.; Papale, D.; Valentini, R. Tree Height in Tropical Forest as Measured by Different Ground, Proximal, and Remote Sensing Instruments, and Impacts on above Ground Biomass Estimates. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101899. [Google Scholar] [CrossRef]
- Bothmann, L.; Menzel, A.; Menze, B.H.; Schunk, C.; Kauermann, G. Automated Processing of Webcam Images for Phenological Classification. PLoS ONE 2017, 12, e0171918. [Google Scholar] [CrossRef]
- Niță, M.D. Testing Forestry Digital Twinning Workflow Based on Mobile LiDAR Scanner and AI Platform. Forests 2021, 12, 1576. [Google Scholar] [CrossRef]
- Jin, H.; Jönsson, A.M.; Olsson, C.; Lindström, J.; Jönsson, P.; Eklundh, L. New Satellite-Based Estimates Show Significant Trends in Spring Phenology and Complex Sensitivities to Temperature and Precipitation at Northern European Latitudes. Int. J. Biometeorol. 2019, 63, 763–775. [Google Scholar] [CrossRef] [Green Version]
- Castro, I.; de Rosa, A.; Priyadarshani, N.; Bradbury, L.; Marsland, S. Experimental Test of Birdcall Detection by Autonomous Recorder Units and by Human Observers Using Broadcast. Ecol. Evol. 2019, 9, 2376–2397. [Google Scholar] [CrossRef] [Green Version]
- Davies, A.B.; Asner, G.P. Advances in Animal Ecology from 3D-LiDAR Ecosystem Mapping. Trends Ecol. Evol. 2014, 29, 681–691. [Google Scholar] [CrossRef]
- Blennow, K.; Persson, J.; Wallin, A.; Vareman, N.; Persson, E. Understanding Risk in Forest Ecosystem Services: Implications for Effective Risk Management, Communication and Planning. For. Int. J. For. Res. 2014, 87, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest Disturbances under Climate Change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Burton, P.J.; Jentsch, A.; Walker, L.R. The Ecology of Disturbance Interactions. BioScience 2020, 70, 854–870. [Google Scholar] [CrossRef]
- Zeki BASKENT, E. A Framework for Characterizing and Regulating Ecosystem Services in a Management Planning Context. Forests 2020, 11, 102. [Google Scholar] [CrossRef] [Green Version]
- Başkent, E.Z. Assessment and Valuation of Key Ecosystem Services Provided by Two Forest Ecosystems in Turkey. J. Environ. Manag. 2021, 285, 112135. [Google Scholar] [CrossRef]
- Klosterman, S.T.; Hufkens, K.; Gray, J.M.; Melaas, E.; Sonnentag, O.; Lavine, I.; Mitchell, L.; Norman, R.; Friedl, M.A.; Richardson, A.D. Evaluating Remote Sensing of Deciduous Forest Phenology at Multiple Spatial Scales Using PhenoCam Imagery. Biogeosciences 2014, 11, 4305–4320. [Google Scholar] [CrossRef] [Green Version]
- Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. IPCC Guidelines for National Greenhouse Gas Inventories; National Greenhouse Gas Inventories Programme: Geneva, Switzerland, 2006. [Google Scholar]
- Taskforce on Scaling Voluntary Carbon Markets > Homepage. Available online: https://www.iif.com/tsvcm (accessed on 4 December 2021).
- Climate Action Reserve—Climate Action Reserve: Climate Action Reserve. Available online: https://www.climateactionreserve.org/ (accessed on 15 December 2021).
- Verra—Standards for a Sustainable Future. Available online: https://verra.org/ (accessed on 15 December 2021).
- Certify a Project|The Gold Standard. Available online: https://www.goldstandard.org/take-action/certify-project (accessed on 15 December 2021).
- Homepage—American Carbon Registry. Available online: https://americancarbonregistry.org/ (accessed on 15 December 2021).
- U.S. Forest Projects—June 25, 2015|California Air Resources Board. Available online: https://ww2.arb.ca.gov/our-work/programs/compliance-offset-program/compliance-offset-protocols/us-forest-projects/2015 (accessed on 5 December 2021).
- Repman, M.; Schelske, O.; Colijn, D.; Prasad, S. The Insurance Rationale for Carbon Removal Solutions; Swiss Re Institute: Zürich, Switzerland, 2021. [Google Scholar]
- Churkina, G.; Organschi, A.; Reyer, C.P.O.; Ruff, A.; Vinke, K.; Liu, Z.; Reck, B.K.; Graedel, T.E.; Schellnhuber, H.J. Buildings as a Global Carbon Sink. Nat. Sustain. 2020, 3, 269–276. [Google Scholar] [CrossRef]
Typologies of State Variables | IoT Availability | Physical and Physiological Processes: Variables Relevance for Process Modeling and Selected References | |||||||
---|---|---|---|---|---|---|---|---|---|
BVOC Emission | Biomass Production | Phenology | Photosynthesis | Soil Respiration | Stability | Transpiration | |||
Tree | Mechanical stability | Available | ✓ | ✓ | |||||
[34,35] | |||||||||
IR leaves temperature | Available | ✓ | ✓ | ✓ | ✓ | ||||
[36] | |||||||||
Light spectral components | Available | ✓ | ✓ | ✓ | ✓ | ✓ | |||
[35,37] | |||||||||
Radial growth | Available | ✓ | ✓ | ✓ | ✓ | ||||
[38] | |||||||||
Roots growth and dynamics | Reduced availability | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
[31] | |||||||||
Sap flow | Available | ✓ | ✓ | ✓ | ✓ | ||||
[36,38,39] | |||||||||
Volatile organic | Available | ✓ | ✓ | ✓ | |||||
[40,41] | |||||||||
Soil | Microbiology | Reduced availability | ✓ | ✓ | ✓ | ✓ | ✓ | ||
[33,42,43] | |||||||||
Moisture | Available | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
[44] | |||||||||
Nutrients | Reduced availability | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
[32] | |||||||||
Respiration | Available | ✓ | ✓ | ✓ | ✓ | ✓ | |||
[45,46] | |||||||||
Microclimate factors * | Available | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
[36,38,47] |
Typologies of State Variables | Real–Virtual Sockets | Physical and Physiological Processes: Variables Relevance for Process Modeling and Selected References | |||||||
---|---|---|---|---|---|---|---|---|---|
Carbon Sequestration | Phenology | Population Dynamics | Biodiversity | Pollution Removal | Soil Erosion | Evapotranspiration and Hydrological Balance | Surface Energy Balance and Albedo | ||
Air quality and pollution | IoT | ✓ | ✓ | ✓ | ✓ | ||||
[48] | |||||||||
Atmospheric gaseous and energy exchanges | Flux towers | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
[49,50] | |||||||||
Disturbance regime | Immage sensing/metadata | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
[51,52] | |||||||||
Forest management | Field measurements and metadata | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
[53] | |||||||||
Hydrological basin parameters | Remote sensing, IoT | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
[54] | |||||||||
Species diversity | Remote sensing | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
[55,56] | |||||||||
Stand structure | Remote sensing, IoT | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
[57,58,59,60,61,62] | |||||||||
Weather | IoT | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
[63] | |||||||||
Wildlife and herbivores | IoT | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
[64,65] |
Ecosystem Service | Type | Unit | Measure Frequency | Tree/Soil Physical and Physiological Processes Monitored |
---|---|---|---|---|
Timber production | Provisioning | m3 volume growth | yearly on a daily stream of data | Biomass production |
C removal | Regulating | Kg C sequestered and stored | yearly on a daily stream of data | Soil respiration |
Particulate absorption on tree canopy | Regulating | g/m2 | daily | Phenology |
Gaseous pollutants removal on tree canopy | Regulating | g/m2 | daily | Phenology |
Water runoff | Regulating | % based on indirect LAI (leaf area index) | daily | Phenology |
Water runoff | Regulating | L/hour | daily | Transpiration |
Water runoff | Regulating | Soil volumetric water content | daily | Soil moisture |
Energy balance regulation | Regulating | W/m2 | daily | Transpiration |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buonocore, L.; Yates, J.; Valentini, R. A Proposal for a Forest Digital Twin Framework and Its Perspectives. Forests 2022, 13, 498. https://doi.org/10.3390/f13040498
Buonocore L, Yates J, Valentini R. A Proposal for a Forest Digital Twin Framework and Its Perspectives. Forests. 2022; 13(4):498. https://doi.org/10.3390/f13040498
Chicago/Turabian StyleBuonocore, Luca, Jim Yates, and Riccardo Valentini. 2022. "A Proposal for a Forest Digital Twin Framework and Its Perspectives" Forests 13, no. 4: 498. https://doi.org/10.3390/f13040498
APA StyleBuonocore, L., Yates, J., & Valentini, R. (2022). A Proposal for a Forest Digital Twin Framework and Its Perspectives. Forests, 13(4), 498. https://doi.org/10.3390/f13040498