Changes in Soil-Phosphorus Fractions by Nitrogen and Phosphorus Fertilization in Korean Pine Plantation and Its Natural Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Scheme and Treatments
2.3. Soil-Sampling Plan
2.4. Soil-Phosphorus Fractionation
2.5. Statistical Breakdown
3. Results
3.1. Changes in Soil Properties
3.2. Effects of Fertilizations on Soil Inorganic P, Organic P, and Total P
3.3. Inorganic-P (Pi) Fractions
3.4. Residual-P Fractions
3.5. Organic P (Po) Fractions
3.6. Correlation between Soil-P Fractions and Chemical Properties
3.7. Principal Component Analysis (PCA) of P Fractions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raghothama, K.G.; Karthikeyan, A.S. Phosphate acquisition. Plant Soil 2005, 274, 37. [Google Scholar] [CrossRef]
- Soinne, H.; Peltovuori, T. Extractability of slurry and fertilizer phosphorus in soil after repeated freezing. Agric. Food Sci. 2005, 14, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Meng, J.; Jiang, L.; Yang, X.; Lan, Y.; Cheng, X.; Chen, W. Rice husk biochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types. Appl. Soil Ecol. 2017, 116, 12–22. [Google Scholar] [CrossRef]
- Redel, Y.; Rubio, R.; Godoy, R.; Borie, F. Phosphorus fractions and phosphatase activity in an Andisol under different forest ecosystems. Geoderma 2008, 145, 216–221. [Google Scholar] [CrossRef]
- Hedley, M.J.; Stewart, J.W.B.; Chauhan, B. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J. 1982, 46, 970–976. [Google Scholar] [CrossRef]
- Sui, Y.; Thompson, M.L.; Shang, C. Fractionation of phosphorus in a Mollisol amended with biosolids. Soil Sci. Soc. Am. J. 1999, 63, 1174–1180. [Google Scholar] [CrossRef]
- Hao, X.; Godlinski, F.; Chang, C. Distribution of phosphorus forms in soil following long-term continuous and discontinuous cattle manure applications. Soil Sci. Soc. Am. J. 2008, 72, 90–97. [Google Scholar] [CrossRef]
- Kashem, M.A.; Akinremi, O.O.; Racz, G.J. Phosphorus fractions in soil amended with organic and inorganic phosphorus sources. Can. J. Soil Sci. 2004, 84, 83–90. [Google Scholar] [CrossRef]
- Saleque, M.A.; Naher, U.A.; Islam, A.; Pathan, A.B.M.B.U.; Hossain, A.T.M.S.; Meisner, C.A. Inorganic and organic phosphorus fertilizer effects on the phosphorus fractionation in wetland rice soils. Soil Sci. Soc. Am. J. 2004, 68, 1635–1644. [Google Scholar] [CrossRef]
- Tang, X.; Li, Z.; Ma, Y.; Liang, Y. Mechanism of fulvic acid-and organic manure-mediated phosphorus mobilization in black soil at low temperature. Plant Nutr. Fert. Sci. 2012, 18, 893–899. [Google Scholar]
- Elser, J.J. Phosphorus: A limiting nutrient for humanity? Curr. Opin. Biotechnol. 2012, 23, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, A.; Akhtar, M.; Khan, K.; Khalid, A.; Imran, M.; Rukh, S. Relationship of Phosphorus Uptake with Its Fractions in Different Soil Parent Materials. Int. J. Plant Soil Sci. 2015, 4, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.; Borjesson, G.; Hedlund, K. The effects of 55 years of different inorganic fertilizer regimes on soil properties and microbial community composition. Soil Biol. Biochem. 2013, 67, 41–46. [Google Scholar] [CrossRef]
- Malik, M.A.; Marschner, P.; Khan, K.S. Addition of organic and inorganic P sources to soil-Effects on P pools and microorganisms. Soil Biol. Biochem. 2012, 49, 106–113. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Malhi, S.S. Interactions of Nitrogen with Other Nutrients and Water: Effect on Crop Yield and Quality, Nutrient Use Efficiency, Carbon Sequestration, and Environmental Pollution. Adv. Agron. 2005, 86, 341–409. [Google Scholar]
- Cox, A.E.; Camberato, J.J.; Smith, B.R. Phosphate Availability and Inorganic transformation in an Alum Sludge Affected Soil. J. Environ. Qual. 1997, 26, 1393–1398. [Google Scholar] [CrossRef]
- Kuo, S.; Huang, B.; Bembenek, R. Effects of long-term phosphorus fertilization and winter cover cropping on soil phosphorus transformations in less weathered soil. Biol. Fertil. Soils 2005, 41, 116–123. [Google Scholar] [CrossRef]
- Solis, P.; Torrent, J. Phosphate Fractions in Calcareous Vertisols and Inceptisols of Spain. Soil Sci. Soc. Am. J. 1989, 53, 462–466. [Google Scholar] [CrossRef]
- Buehler, S.; Oberson, A.; Rao, I.M.; Friesen, D.K.; Frossard, E. Sequential Phosphorus Extraction of a P-Labeled Oxisol under Contrasting Agricultural Systems. Soil Sci. Soc. Am. J. 2014, 66, 868. [Google Scholar] [CrossRef]
- Kritzler, U.H.; Johnson, D. Mineralisation of carbon and plant uptake of phosphorus from microbially-derived organic matter in response to 19 years simulated nitrogen deposition. Plant Soil 2010, 326, 311–319. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Porder, S.; Houlton, B.Z.; Chadwick, O.A. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 2010, 20, 5–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carreira, J.A.; García-Ruiz, R.; Liétor, J.; Harrison, A.F. Changes in soil phosphatase activity and P transformation rates induced by application of N- and S-containing acid-mist to a forest canopy. Soil Biol. Biochem. 2000, 32, 1357–1865. [Google Scholar] [CrossRef]
- Khan, K.S.; Joergensen, R.G. Changes in microbial biomass and P fractions in biogenic household waste compost amended with inorganic P fertilizers. Bioresour. Technol. 2009, 100, 303–309. [Google Scholar] [CrossRef]
- Staff, S. Keys to Soil Taxonomy, 12th ed.; Natural Resources Conservation Service; United States Department of Agriculture: Washington, DC, USA, 2014. [Google Scholar]
- Yang, K.; Zhu, J.; Gu, J.; Yu, L.; Wang, Z. Changes in soil phosphorus fractions after 9 years of continuous nitrogen addition in a Larix gmelinii plantation. Ann. For. Sci. 2015, 72, 435–442. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V.J. R Package “Corrplot”: Visualization of a Correlation Matrix (Version 0.84); R Core Team: Vienna, Austria, 2017. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://www.R-project.org/ (accessed on 10 March 2021).
- Qaswar, M.; Ahmed, W.; Jing, H.; Hongzhu, F.; Xiaojun, S.; Xianjun, J.; Kailou, L.; Yongmei, X.; Zhongqun, H.; Asghar, W.; et al. Soil carbon (C), nitrogen (N) and phosphorus (P) stoichiometry drives phosphorus lability in paddy soil under long term fertilization: A fractionation and path analysis study. PLoS ONE 2019, 14, e0218195. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, W.; Qaswar, M.; Jing, H.; Wenjun, D.; Geng, S.; Kailou, L.; Ying, M.; Ao, T.; Mei, S.; Chao, L.; et al. Tillage practices improve rice yield and soil phosphorus fractions in two typical paddy soils. J. Soils Sediments 2020, 20, 850–861. [Google Scholar] [CrossRef]
- Meason, D.F.; Idol, T.W.; Friday, J.B.; Scowcroft, P.G. Effects of fertilization on phosphorus pools in the volcanic soil of a managed tropical forest. For. Ecol. Manag. 2009, 258, 2199–2206. [Google Scholar] [CrossRef]
- Pizzeghello, D.; Berti, A.; Nardi, S.; Morari, F. Relationship between soil test phosphorus and phosphorus release to solution in three soils after long-term mineral and manure application. Agric. Ecosyst. Environ. 2016, 233, 214–223. [Google Scholar] [CrossRef]
- Sardans, J.; Penuelas, J. Increasing drought decreases phoshorus availability in an evergreen Mediterranean forest. Plant Soil 2004, 267, 367–377. [Google Scholar] [CrossRef]
- Cross, A.; Schlesinger, W. A Literature Review and Evaluation of the Hedley Fractionation: Applications to the Biogeochemical Cycle of Soil Phosphorus in Natural Ecosystems. Geoderma 1995, 64, 197–214. [Google Scholar] [CrossRef]
- Dossa, E.; Diedhiou, S.; Compton, J.; Assigbetse, K.; Dick, R. Spatial patterns of P fractions and chemical properties in soils of two native shrub communities in Senegal. Plant Soil 2009, 327, 185–198. [Google Scholar] [CrossRef]
- Spain, A.V.; Tibbett, M.; Ridd, M.; McLaren, T.I. Phosphorus dynamics in a tropical forest soil restored after strip mining. Plant Soil 2018, 42, 105–123. [Google Scholar] [CrossRef] [Green Version]
- Harmon, M.E.; Franklin, J.F.; Swanson, F.J.; Sollins, P.; Gregory, S.; Lattin, J.; Anderson, N.; Cline, S.; Aumen, N.; Sedell, J. Ecology of coarse woody debris in temperate ecosystems. In Advances in Ecological Research; Elsevier: Amsterdam, The Netherlands, 1986; Volume 15, pp. 133–302. [Google Scholar]
- Blake, L.; Mercik, S.; Koerschens, M.; Moskal, S.; Poulton, P.R.; Goulding, K.W.T.; Weigel, A.; Powlson, D.S. Phosphorus con tent in soil, uptake by plants and balance in three European long-term field experiments. Nutr. Cycl. Agroecosyst. 2000, 56, 263–275. [Google Scholar] [CrossRef]
- Redel, Y.; Staunton, S.; Durán, P.; Gianfreda, L.; Rumpel, C.; de la Luz Mora, M. Fertilizer P Uptake Determined by Soil P Fractionation and Phosphatase Activity. J. Soil Sci. Plant Nutr. 2019, 19, 166–174. [Google Scholar] [CrossRef]
- Wang, M.; Ma, L.; Strokal, M.; Ma, W.; Liu, X.; Kroeze, C. Hotspots for Nitrogen and Phosphorus Losses from Food Production in China: A County-Scale Analysis. Environ. Sci. Technol. 2018, 52, 5782–5791. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Wang, F.; Zhang, W.; Ma, W.; Velthof, G.; Qin, W.; Oenema, O.; Zhang, F. Environmental assessment of management options for nutrient flows in the food chain in China. Environ. Sci. Technol. 2013, 52, 5782–5791. [Google Scholar] [CrossRef] [PubMed]
- Díez, J.A.; Hernaiz, P.; Muñoz, M.J.; de la Torre, A.; Vallejo, A. Impact of pig slurry on soil properties, water salinization, nitrate leaching and crop yield in a four-year experiment in Central Spain. Soil Use Manag. 2006, 20, 444–450. [Google Scholar] [CrossRef]
- Si, L.; Xie, Y.; Ma, Q.; Wu, L. The short-term effects of rice straw biochar, nitrogen and phosphorus fertilizer on rice yield and soil properties in a cold waterlogged paddy field. Sustainability 2018, 10, 537. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Min, L.I.; Shuang, L.I.U.; Yujin, L.I.U.; Zhang, L.; Qi, C.A.O.; Dezhi, S.U.N. Seasonal variations and bioavailability of inorganic phosphorus in soils of Yeyahu Wetland in Beijing, China. Int. J. Sediment Res. 2011, 26, 181–192. [Google Scholar] [CrossRef]
Forest Type | Average DBH (cm) | Mean Height (m) | Density (Trees/hm−2) | Canopy Closure |
---|---|---|---|---|
Korean pine plantation | 21.7 | 19.1 | 1300 | 0.7 |
Natural Korean pine forest | 26.4 | 15.7 | 1175 | 0.7 |
Forest Type | Soil pH | T-N (g kg−1) | T-P (g kg−1) | SOC (g kg−1) | C:N Ratio |
---|---|---|---|---|---|
Korean pine plantation | 5.68 ± 0.21 | 2.3 ± 0.10 | 1.01 ± 0.42 | 69.22 ± 3 | 29.07 ± 1.7 |
Natural Korean pine forest | 5.59 ± 0.20 | 3.5 ± 0.11 | 1.25 ± 0.32 | 71.36 ± 5 | 20.38 ± 1.4 |
Forest | Subplot | Treatments | Soil pH | Total N (g kg−1) | SOC (g kg−1) | C:N Ratio |
---|---|---|---|---|---|---|
Korean Pine Plantation | SB-I | C | 5.6 ± 0.2 a | 2.2 ± 0.9 a | 50.1 ± 4.1 a | 22.7 ± 2.1 a |
L | 5.5 ± 0.1 a | 2.5 ± 0.7 a | 51.5 ± 4.2 b | 20.6 ± 1.9 a | ||
M | 5.4 ± 0.1 a | 2.9 ± 0.9 a | 62.3 ± 4.2 c | 21.4 ± 1.8 a | ||
H | 5.3 ± 0.1 b | 2.9 ± 1.4 b | 65.3 ± 5.6 c | 22.5 ± 1.9 a | ||
SB-II | C | 5.7 ± 0.3 a | 1.8 ± 0.8 a | 61.2 ± 5.0 c | 34.0 ± 2.5 b | |
L | 5.5 ± 0.2 a | 1.9 ± 0.8 a | 55.3 ± 4.8 b | 29.1 ± 2.5 b | ||
M | 5.6 ± 0.3 a | 2.9 ± 0.7 a | 56.6 ± 4.7 b | 19.5 ± 1.1 a | ||
H | 5.2 ± 0.1 b | 2.7 ± 1.6 b | 58.3 ± 4.9 b | 21.5 ± 1.3 a | ||
SB-III | C | 5.7 ± 0.3 a | 1.5 ± 0.9 a | 60.3 ± 5.0 b | 40.2 ± 3.6 c | |
L | 5.6 ± 0.3 a | 2.3 ± 0.9 a | 59.1 ± 4.8 b | 25.6 ± 2.0 b | ||
M | 5.5 ± 0.2 a | 2.6 ± 0.9 a | 62.3 ± 4.7 c | 23.9 ± 1.6 a | ||
H | 5.5 ± 0.1 a | 3.1 ± 1.1 b | 65.6 ± 4.9 c | 21.1 ± 1.7 a | ||
Natural Korean Pine Forest | SB-I | C | 5.6 ± 0.3 a | 1.9 ± 0.8 a | 60.3 ± 7.5 b | 31.7 ± 1.6 b |
L | 5.6 ± 0.3 a | 2.3 ± 0.9 a | 63.2 ± 6.8 c | 27.4 ± 1.6 b | ||
M | 5.4 ± 0.1 b | 2.7 ± 0.8 b | 64.3 ± 7.2 c | 23.8 ± 1.6 a | ||
H | 5.2 ± 0.1 b | 3.1 ± 1.1 b | 65.1 ± 8.0 c | 21.0 ± 1.6 a | ||
SB-II | C | 5.5 ± 0.1 a | 2.3 ± 0.9 a | 60.1 ± 4.1 b | 26.1 ± 1.6 b | |
L | 5.4 ± 0.1 a | 2.1 ± 1.1 a | 61.2 ± 5.1 c | 29.1 ± 1.6 b | ||
M | 5.3 ± 0.1 b | 3.2 ± 1.5 b | 63.1 ± 8.7 c | 19.7 ± 1.6 a | ||
H | 5.3 ± 0.1 a | 3.1 ± 14 b | 66.1 ± 7.2 c | 21.3 ± 1.6 a | ||
SB-III | C | 5.6 ± 0.2 a | 2.2 ± 0.6 a | 65.3 ± 6.2 c | 29.6 ± 1.6 b | |
L | 5.3 ± 0.1 b | 2.1 ± 1.3 a | 71.3 ± 6.2 d | 33.9 ± 1.6 b | ||
M | 5.2 ± 0.1 b | 3.2 ± 1.9 b | 75.3 ± 9.4 d | 23.5 ± 1.6 a | ||
H | 5.1 ± 0.1 b | 3.4 ± 1.8 b | 68.6 ± 9.8 c | 20.1 ± 1.6 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, A.; Chen, L.; Jamil, M.A.; Abid, K.; Khan, K.; Duan, W.; Li, C.; Khan, A. Changes in Soil-Phosphorus Fractions by Nitrogen and Phosphorus Fertilization in Korean Pine Plantation and Its Natural Forest. Forests 2022, 13, 527. https://doi.org/10.3390/f13040527
Hussain A, Chen L, Jamil MA, Abid K, Khan K, Duan W, Li C, Khan A. Changes in Soil-Phosphorus Fractions by Nitrogen and Phosphorus Fertilization in Korean Pine Plantation and Its Natural Forest. Forests. 2022; 13(4):527. https://doi.org/10.3390/f13040527
Chicago/Turabian StyleHussain, Anwaar, Lixin Chen, Muhammad Atif Jamil, Kulsoom Abid, Kashif Khan, Wenbiao Duan, Changzhun Li, and Attaullah Khan. 2022. "Changes in Soil-Phosphorus Fractions by Nitrogen and Phosphorus Fertilization in Korean Pine Plantation and Its Natural Forest" Forests 13, no. 4: 527. https://doi.org/10.3390/f13040527
APA StyleHussain, A., Chen, L., Jamil, M. A., Abid, K., Khan, K., Duan, W., Li, C., & Khan, A. (2022). Changes in Soil-Phosphorus Fractions by Nitrogen and Phosphorus Fertilization in Korean Pine Plantation and Its Natural Forest. Forests, 13(4), 527. https://doi.org/10.3390/f13040527