Measuring Radial Variation in Basic Density of Pendulate Oak: Comparing Increment Core Samples with the IML Power Drill
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Trees Selection
2.2. Estimating Basic Density by Dimensional Method
2.3. Estimating Wood Resistance by IML RESI PD400
2.4. Comparing Data from Resi and Basic Density of Each Sample
2.5. Statistical Analysis
3. Results
3.1. Mean Basic Density, Moisture Content and Average Annual Ring Width
3.2. Spearman Correlation between Examined Properties and Modelling Basic Density in Relation to Resi Amplitude
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tomczak, A.; Pazdrowski, W.; Jelonek, T. Quality of Scots Pine (Pinus sylvestris L.) Wood Part I. Characteristics of Selected Wood Traits and Properties Affecting Its Quality. Sylwan 2009, 153, 363–372. [Google Scholar]
- Machado, J.S.; Louzada, J.L.; Santos, A.J.A.; Nunes, L.; Anjos, O.; Rodrigues, J.; Simões, R.M.S.; Pereira, H. Variation of Wood Density and Mechanical Properties of Blackwood (Acacia melanoxylon R. Br.). Mater. Des. 2014, 56, 975–980. [Google Scholar] [CrossRef]
- Gao, S.; Wang, X.; Wiemann, M.C.; Brashaw, B.K.; Ross, R.J.; Wang, L. A Critical Analysis of Methods for Rapid and Nondestructive Determination of Wood Density in Standing Trees. Ann. For. Sci. 2017, 74, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New Handbook for Standardised Measurement of Plant Functional Traits Worldwide. Aust. J. Bot. 2016, 61, 167–234. [Google Scholar] [CrossRef]
- Tomazello, M.; Brazolin, S.; Chagas, M.P.; Oliveira, J.T.S.; Ballarin, A.W.; Benjamin, C.A. Application of X-ray Technique in Nondestructive Evaluation of Eucalypt Wood. Maderas Cienc. Tecnol. 2008, 10, 139–149. [Google Scholar] [CrossRef]
- Jacquin, P.; Longuetaud, F.; Leban, J.M.; Mothe, F. X-ray Microdensitometry of Wood: A Review of Existing Principles and Devices. Dendrochronologia 2017, 42, 42–50. [Google Scholar] [CrossRef]
- Schönfelder, O.; Zeidler, A.; Borůvka, V.; Bílek, L.; Vítámvás, J. Effect of Shelterwood and Clear-Cutting Regeneration Method on Wood Density of Scots Pine. Forests 2020, 11, 0868. [Google Scholar] [CrossRef]
- Wu, S.J.; Xu, J.M.; Li, G.Y.; Risto, V.; Lu, Z.H.; Li, B.Q.; Wang, W. Use of the Pilodyn for Assessing Wood Properties in Standing Trees of Eucalyptus Clones. J. For. Res. 2010, 21, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Couto, A.M.; Trugilho, P.F.; Neves, T.A. Modeling of Basic Density of Wood from Eucalyptus Grandis and Eucalyptus Urophylla Using Nondestructive Methods. Rev. Ceres 2013, 19, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Fundova, I.; Funda, T.; Wu, H.X. Non-Destructive Wood Density Assessment of Scots Pine (Pinus sylvestris L.) Using Resistograph and Pilodyn. PLoS ONE 2018, 13, 1–16. [Google Scholar] [CrossRef]
- De Pádua, F.A.; Tomeleri, J.O.P.; Franco, M.P.; da Silva, J.R.M.; Trugilho, P.F. Recommendation of Non-Destructive Sampling Method for Density Estimation of the Eucalyptus Wood. Maderas Cienc. Tecnol. 2019, 21, 565–572. [Google Scholar] [CrossRef] [Green Version]
- Isik, F.; Li, B. Rapid Assessment of Wood Density of Live Trees Using the Resistograph for Selection in Tree Improvement Programs. Can. J. For. Res. 2003, 33, 2426–2435. [Google Scholar] [CrossRef]
- Wang, S.Y.; Chiu, C.M.; Lin, C.J. Application of the Drilling Resistance Method for Annual Ring Characteristics: Evaluation of Taiwania (Taiwania cryptomerioides) Trees Grown with Different Thinning and Pruning Treatments. J. Wood Sci. 2003, 49, 116–124. [Google Scholar] [CrossRef]
- Gouvêa, A.d.F.G.; Trugilho, P.F.; Gomide, J.L.; da Silva, J.R.M.; Andrade, C.R.; Alves, I.C.N. Determination of Eucalyptus Basic Density by Different Nondestructive Methods. Rev. Árvore 2011, 35, 349–358. [Google Scholar] [CrossRef] [Green Version]
- İçel, B.; Güler, G. Nondestructive Determination of Spruce Lumber Wood Density Using Drilling Resistance (Resistograph) Method. Turkish J. Agric. For. 2016, 40, 900–907. [Google Scholar] [CrossRef]
- Downes, G.M.; Lausberg, M.; Potts, B.M.; Pilbeam, D.L.; Bird, M.; Bradshaw, B. Application of the IML Resistograph to the Infield Assessment of Basic Density in Plantation Eucalypts. Aust. For. 2018, 81, 177–185. [Google Scholar] [CrossRef]
- Li, X.; Qian, W.; Chang, L. Analysis of the Density of Wooden Components in Ancient Buildings by Micro-Drilling Resistance, Using Information Diffusion. BioResources 2019, 14, 5777–5787. [Google Scholar] [CrossRef]
- Ross, R.J.; Pellerin, R.F. Stress Wave Evaluation of Green Material: Preliminary Results Using Dimension Lumber. For. Prod. J. 1991, 41, 57–59. [Google Scholar]
- Bucur, V. Nondestructive Characterization and Imaging of Wood; Springer Series in Wood Science: Berlin, Germany, 2003; ISBN 9783642740671. [Google Scholar]
- Rinn, F. Basics of Micro-Resistance Drilling for Timber Inspection. Holztechnologie 2012, 53, 24–29. [Google Scholar]
- Rinn, F. One Minute Pole Inspection with Resistograph Micro Drillings. In Proceedings of the International Conference on Wood Poles and Piles, Fort Collins, CO, USA, 21–23 March 1994; pp. 12–18. [Google Scholar]
- De Ridder, M.; Van Den Bulcke, J.; Vansteenkiste, D.; Van Loo, D.; Dierick, M.; Masschaele, B.; De Witte, Y.; Mannes, D.; Lehmann, E.; Beeckman, H.; et al. High-Resolution Proxies for Wood Density Variations in Terminalia Superba. Ann. Bot. 2011, 107, 293–302. [Google Scholar] [CrossRef]
- Sharapov, E.; Brischke, C.; Militz, H.; Smirnova, E. Combined Effect of Wood Moisture Content, Drill Bit Rotational Speed and Feed Rate on Drilling Resistance Measurements in Norway Spruce (Picea abies (L.) Karst). Wood Mater. Sci. Eng. 2018, 15, 1–7. [Google Scholar] [CrossRef]
- Ukrainetz, N.K.; O’Neill, G.A. An Analysis of Sensitivities Contributing Measurement Error to Resistograph Values. Can. J. For. Res. 2010, 40, 806–811. [Google Scholar] [CrossRef]
- Gendvilas, V.; Downes, G.M.; Neyland, M.; Hunt, M.; Jacobs, A. Friction Correction When Predicting Wood Basic Density Using Drilling Resistance. Holzforschung 2021, 75, 508–516. [Google Scholar] [CrossRef]
- Sharapov, E.; Brischke, C.; Militz, H.; Smirnova, E. Prediction of Modulus of Elasticity in Static Bending and Density of Wood at Different Moisture Contents and Feed Rates by Drilling Resistance Measurements. Eur. J. Wood Wood Prod. 2019, 77, 833–842. [Google Scholar] [CrossRef]
- Nowak, T.P.; Jasieńko, J.; Hamrol-Bielecka, K. In Situ Assessment of Structural Timber Using the Resistance Drilling—MethodEvaluation of Usefulness. Constr. Build. Mater. 2016, 102, 403–415. [Google Scholar] [CrossRef]
- Acuña, L.; Basterra, L.A.; Casado, M.M.; López, G.; Ramón-Cueto, G.; Relea, E.; Martínez, C.; González, A. Application of Resistograph to Obtain the Density and to Differentiate Wood Species. Mater. Construcción 2011, 61, 465–2746. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, C.E.S.; Pace, J.H.C.; Gomes, F.J.B.; de Carvalho, P.C.L.; de Azevedo Reis, C.; de Figueiredo Latorraca, J.V.; Rolim, S.G.; de Carvalho, A.M. Comparison between Resistograph Analysis with Physical Properties of the Wood of Brazilian Native Tree Species. Floresta Ambient. 2020, 27, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Pratt, R.B.; Jacobsen, A.L.; Ewers, F.W.; Davis, S.D. Relationships among Xylem Transport, Biomechanics and Storage in Stems and Roots of Nine (Rhamnaceae) Species of the (California) Chaparral. New Phytol. 2007, 174, 787–798. [Google Scholar] [CrossRef]
- Tomczak, K.; Tomczak, A.; Naskrent, B.; Jelonek, T. The Radial Gradient of Moisture Content of Silver Birch Wood in Different Seasons. Silva. Fenn. 2021, 55, 10545. [Google Scholar] [CrossRef]
- Johnstone, D.M.; Ades, P.K.; Moore, G.M.; Smith, I.W. Predicting Wood Decay in Eucalypts Using an Expert System and the IML-Resistograph Drill. Arboric. Urban For. 2007, 33, 76–82. [Google Scholar] [CrossRef]
- Nutto, L.; Biechele, T. Drilling Resistance Measurement and the Effect of Shaft Friction—Using Feed Force Information for Improving Decay Identification on Hard Tropical Wood. In Proceedings of the 19th International Nondestructive Testing and Evaluation of Wood Symposium, Rio de Janeiro, Brazil, 22–25 September 2015; pp. 154–161. [Google Scholar]
- Kubus, M. The Evaluation of Using Resistograph When Specifying the Health Condition of a Monumental Tree. Not. Bot. Horti Agrobot. Cluj-Napoca 2009, 37, 157–164. [Google Scholar] [CrossRef]
- Bouffier, L.; Charlot, C.; Raffin, A.; Rozenberg, P.; Kremer, A. Can Wood Density Be Efficiently Selected at Early Stage in Maritime Pine (Pinus pinaster Ait.)? Ann. For. Sci. 2008, 65, 106. [Google Scholar] [CrossRef] [Green Version]
- Johnstone, D.; Moore, G.; Tausz, M.; Nicolas, M. The Measurement of Wood Decay in Landscape Trees. Arboric. Urban For. 2015, 36, 121–127. [Google Scholar] [CrossRef]
- Dias, D.; Colodette, L.; Thiersch, C.; Leite, H.; Gomide, J. Use of Resistograph Technique and of Dendrometric Variables in the Modeling of the Basic Density of Clonal Populations Eucalyptus. Ciência Florest. 2017, 27, 609–619. [Google Scholar] [CrossRef] [Green Version]
- Castaño-Santamaría, J.; Bravo, F. Variation in Carbon Concentration and Basic Density along Stems of Sessile Oak (Quercus petraea (Matt.) Liebl.) and Pyrenean Oak (Quercus pyrenaica Willd.) in the Cantabrian Range (NW Spain). Ann. For. Sci. 2012, 69, 663–672. [Google Scholar] [CrossRef] [Green Version]
- Pásztory, Z.; Börcsök, Z.; Ronyecz, I.; Mohácsi, K.; Molnár, S.; Kis, S. Oven Dry Density of Sessile Oak, Turkey Oak and Hornbeam in Different Region of Mecsek Mountain. Wood Res. 2014, 59, 683–694. [Google Scholar]
- Zeidler, A.; Boruvka, V. Wood Density of Northern Red Oak and Pedunculate Oak Grown in Former Brown Coal Mine in the Czech Republic. BioResources 2016, 11, 9373–9385. [Google Scholar] [CrossRef] [Green Version]
- Tomczak, A.; Tomczak, K.; Rutkowski, N.S.K.; Wenda, M.; Jelonek, T. The Gradient of Wood Moisture Within-Stem of Sessile Oak (Quercus petraea (Matt.) Liebl.) in Summer. Wood Res. 2018, 63, 809–820. [Google Scholar]
- Nazari, N.; Bahmani, M.; Kahyani, S.; Humar, M.; Koch, G. Geographic Variations of the Wood Density and Fiber Dimensions of the Persian Oak Wood. Forests 2020, 11, 1003. [Google Scholar] [CrossRef]
- Jakubowski, M.; Dobroczyński, M. Allocation of Wood Density in European Oak (Quercus robur L.) Trees Grown under a Canopy of Scots Pine. Forests 2021, 12, 712. [Google Scholar] [CrossRef]
- Vavrčík, H.; Gryc, V. Analysis of the Annual Ring Structure and Wood Density Relations in English Oakand Sessile Oak. Wood Res. 2012, 57, 573–580. [Google Scholar]
- Guller, B.; Guller, A.; Kazaz, G. Is Resistograph an Appropriate Tool for the Annual Ring Measurement of Pinus Brutia? In Proceedings of the Defektoskopie 2012, Seč u Chrudimi, Czech Republic, 30 October–1 November 2012; pp. 89–94. [Google Scholar]
- Zhang, S.Y. Variations and Correlations of Various Ring Width and Ring Density Features in European Oak: Implications in Dendroclimatology. Wood Sci. Technol. 1997, 31, 63–72. [Google Scholar] [CrossRef]
- Wang, S.Y.; Lin, C.J. Application of the Drill Resistance Method for Density Boundary Evaluation of Earlywood and Latewood of Taiwania. Taiwan J. For. Sci. 2001, 16, 197–200. [Google Scholar]
- Karlinasari, L.; Danu, M.I.; Nandika, D.; Turjaman, M. Drilling Resistance Method to Evaluate Density and Hardness Properties of Resinous Wood of Agarwood (Aquilaria malaccensis). Wood Res. 2017, 62, 683–690. [Google Scholar]
Number of Tree | Height (m) | Mean Diameter (cm) |
---|---|---|
1 | 27.0 | 52.5 |
2 | 29.0 | 51.0 |
3 | 27.5 | 65.0 |
4 | 24.0 | 54.5 |
5 | 23.5 | 56.0 |
6 | 30.0 | 72.5 |
7 | 27.5 | 56.5 |
8 | 32.0 | 58.0 |
9 | 24.0 | 54.5 |
Mean | 27.2 | 58.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomczak, K.; Tomczak, A.; Jelonek, T. Measuring Radial Variation in Basic Density of Pendulate Oak: Comparing Increment Core Samples with the IML Power Drill. Forests 2022, 13, 589. https://doi.org/10.3390/f13040589
Tomczak K, Tomczak A, Jelonek T. Measuring Radial Variation in Basic Density of Pendulate Oak: Comparing Increment Core Samples with the IML Power Drill. Forests. 2022; 13(4):589. https://doi.org/10.3390/f13040589
Chicago/Turabian StyleTomczak, Karol, Arkadiusz Tomczak, and Tomasz Jelonek. 2022. "Measuring Radial Variation in Basic Density of Pendulate Oak: Comparing Increment Core Samples with the IML Power Drill" Forests 13, no. 4: 589. https://doi.org/10.3390/f13040589
APA StyleTomczak, K., Tomczak, A., & Jelonek, T. (2022). Measuring Radial Variation in Basic Density of Pendulate Oak: Comparing Increment Core Samples with the IML Power Drill. Forests, 13(4), 589. https://doi.org/10.3390/f13040589