Changes in Soil Ectomycorrhizal Fungi Community in Oak Forests along the Urban–Rural Gradient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Site
2.2. Sample Collection and Treatment Process
2.3. Soil Physicochemical Properties Determination
2.4. Soil DNA Extraction, PCR Amplifification and Sequencing
2.5. Data Analysis
3. Results
3.1. Differences in Soil Physicochemical Properties
3.2. MBC and MBN Contents in the Quercus acutissima Forest Soil
3.3. The Change in ECM Fungi Diversity
3.4. ECM Fungal Community Compositions Vary with Urban–Rural Gradient
3.5. LEfSe Analysis of ECM Fungi Community
3.6. Driving Factors of ECM Fungal Composition
3.7. Relationships of ECM Fungal Diversity with Soil Factors
4. Discussion
4.1. Diversity and Composition of ECM Fungal Community in the Quercus acutissima Forest Soil along the Urban–Rural Gradient
4.2. Influencing Factors of ECM Fungal Community Composition in Quercus acutissima Forests along the Urban–Rural Gradient
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kumar, J.; Atri, N.S. Studies on ectomycorrhiza: An appraisal. Bot. Rev. 2018, 84, 108–155. [Google Scholar] [CrossRef]
- Roy-Bolduc, A.; Laliberté, E.; Hijri, M. High richness of ectomycorrhizal fungi and low host specificity in costal sand dune ecosystem revealed by network analysis. Ecol. Evol. 2016, 6, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Brundrett, M.C. Mycorrhizal associations and other means of nutrition of vascular plants: Understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 2009, 320, 37–77. [Google Scholar] [CrossRef]
- Rinaldi, A.C.; Comadini, O.; Kuyper, T.W. Ectomycorrhizal fungal diversity: Separating the wheat from the chaff. Fungal Diversi. 2008, 33, 1–45. [Google Scholar]
- Simard, S.W.; Durall, D.M. Mycorrhizal networks: A review of their extent, function, and importance. Can. J. Bot. 2004, 82, 1140–1165. [Google Scholar] [CrossRef]
- Tedersoo, L.; Smith, M.E.; May, T.W. Ectomycorrhizal lifestyle in fungi: Global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 2010, 20, 217–263. [Google Scholar] [CrossRef]
- Finlay, R.D. Ecological aspects of mycorrhizal symbiosis: With special emphasis on the functional diversity of interactions involving the extraradical mycelium. J. Exp. Bot. 2008, 59, 1115–1128. [Google Scholar] [CrossRef]
- Sebastiana, M.; Martins, J.; Figueiredo, A.; Monteiro, F.; Sardans, J. Oak protein profile alterations upon root colonization by an ectomycorrhizal fungus. Mycorrhiza 2017, 27, 109–128. [Google Scholar] [CrossRef] [Green Version]
- Rudawska, M.; Pietras, M.; Smutek, I.; Strzeliński, P.; Leski, T. Ectomycorrhizal fungal assemblages of Abies alba Mill. outside its native range in Poland. Mycorrhiza 2016, 26, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Baquerizo, M.; Reich, P.B.; Trivedi, C.; Eldridge, D.J. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 2020, 4, 210–220. [Google Scholar] [CrossRef]
- Erlandson, R.S.; Savage, J.A.; Cavender-Bares, J.M.; Peay, K.G. Soil moisture and chemistry influence diversity of ectomycorrhizal fungal communities associating with willow along a hydrologic gradient. FEMS Microbiol. Ecol. 2016, 92. [Google Scholar] [CrossRef] [Green Version]
- Garcia, M.; Jane, O.; Smith, E.; Daniel, E.; Luoma, L.; Melanie, L.; Jones, D. Ectomycorrhizal communities of ponderosa pine and lodgepole pine in the south-central Oregon pumice zone. Mycorrhiza 2016, 26, 275–286. [Google Scholar] [CrossRef]
- Corrales, A.; Arnold, A.E.; Ferrer, A.; Turner, B.L.; Dalling, J.W. Variationin ectomycorrhizal fungal communities associated with Oreomunnea mexicana (Juglandaceae) in a Neotropical montane forest. Mycorrhiza 2016, 26, 1–17. [Google Scholar] [CrossRef]
- Cox, F.; Barsoum, N.; Lilleskov, E.A.; Bidartondo, M.I. Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. Ecol. Lett. 2010, 13, 1103–1113. [Google Scholar] [CrossRef]
- Benucci, G.M.N.; Bonito, G.M. The Truffle Microbiome: Species and geography effects on bacteria associated with fruiting bodies of hypogeous Pezizales. Microb. Ecol. 2016, 72, 4–8. [Google Scholar] [CrossRef]
- Szuba, A. Ectomycorrhiza of Populus. Forest Ecol. Manag. 2015, 347, 156–169. [Google Scholar] [CrossRef]
- Walker, J.; Miller, O.; Horton, J. Hyperdiversity of ectomycorrhizal fungus assemblages on oak seedlings in mixed forests in the southern Appalachian Mountains. Mol. Ecol. 2010, 14, 829–838. [Google Scholar] [CrossRef]
- He, F.; Yang, B.S.; Wang, H.; Yan, Q.L.; Cao, Y.N.; He, X.H. Changes in composition and diversity of fungal communities along Quercus mongolica forests developments in Northeast China. Appl. Soil Ecol. 2016, 100, 162–171. [Google Scholar] [CrossRef]
- Behnke-Borowczyk, J.; Kowalkowski, W.; Kartawik, N.; Baranowska, M.; Barzdajn, W. Soil fungal communities in nurseries producing Abies alba. Balt For. 2020, 26, 426. [Google Scholar] [CrossRef]
- Jin, W.; Yang, Y.Z.; Sun, H.J.; Yuan, Z.L. Diversity of Ectomycorrhizal Fungi a Seed Collecting Forest of Quercus virginiana. Sci. Silvae Sin. 2020, 56, 1001–7488. [Google Scholar]
- Voříšková, J.; Brabcová, V.; Cajthaml, T.; Baldrian, P. Seasonal dynamics of fungal communities in a temperate Oak forest soil. New Phytol. 2014, 201, 269–278. [Google Scholar] [CrossRef]
- Salvati, L.; Ranalli, F.; Gitas, I. Landscape fragmentation and the agro-forest ecosystem along a rural-to-urban gradient: An exploratory study. Int. J. Sustain. Dev. World Ecol. 2014, 21, 160–167. [Google Scholar] [CrossRef]
- Cardou, F.; Aubin, I.; Bergeron, A.; Shipley, B. Functional markers to predict forest ecosystem properties along a rural-to-urban gradient. J. Veg. Sci. 2020, 31, 416–428. [Google Scholar] [CrossRef]
- Bu, F.Q.; Yan, H.; Fan, M.J. Suburban communities in ecologically sensitive areas of vegetation Optimization—Case study of jinan city, the southern mountains. Shandong For. Sci. Technol. 2014, 44, 16–20. [Google Scholar]
- The 7th National Census of Jinan. Available online: http://m.iqilu.com/pcarticle/4882711?ivk_sa=1024320u (accessed on 16 June 2021).
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Huang, S.Y.; Zha, X. Assessing spatial variability of soil organic carbon and total nitrogen in eroded hilly region of subtropical China. PLoS ONE 2020, 15, e0244322. [Google Scholar] [CrossRef]
- Gao, G.F.; Li, P.F.; Zhong, J.X.; Shen, Z.J.; Chen, J.; Li, Y.T.; Isabwe, A.; Zhu, X.Y.; Ding, Q.S.; Zhang, S.; et al. Spartina alterniflflora invasion alters soil bacterial communities and enhances soil N2O emissions by stimulating soil denitrifification in mangrove wetland. Sci. Total Environ. 2019, 653, 231–240. [Google Scholar] [CrossRef]
- Foster, J.C. Soil sampling, handling, storage and analysis. In Methods in Applied Soil Microbiology and Biochemistry; Academic Press: New York, NY, USA, 1995; pp. 49–121. [Google Scholar]
- Richard, F.; Roy, M.; Shahin, O. Ectomycorrhizal communities in a Mediterranean forest ecosystem dominated by Quercus ilex: Seasonal dynamics and response to drought in the surface organic horizon. Ann. Forest Sci. 2011, 68, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Garcia, K.; Doidy, J.; Zimmermann, S.D.; Wipf, D.; Courty, P.E. Take a trip through the plant and fungal transportome of mycorrhiza. Trends. Plant Sci. 2016, 21, 937–950. [Google Scholar] [CrossRef] [PubMed]
- Van Dam, N.M.; Bouwmeester, H.J. Metabolomics in the rhizosphere: Tapping into belowground chemical communication. Trends. Plant Sci. 2016, 21, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Gao, M.H. Community structure and driving factors for rhizosphere ectomycorrhizal fungi of Betula platyphylla in Daqing Mountain. Chin. J. Ecol. 2021, 40, 1244–1252. [Google Scholar]
- Treseder, K.K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 2004, 164, 347–355. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, D.J.E.; Pouyat, R.; Szlavecz, K.; Setälä, H.; Kotze, D.J.; Yesilonis, I.; Sarel, C. Urbanization erodes ectomycorrhizal fungal diversity and may cause microbial communities to converge. Nat. Ecol. Evol. 2017, 1, 439–447. [Google Scholar] [CrossRef]
- Ashley, S.; Hannes, P.; Steven, A.D.; Baho, D.L.; Mercè, B. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 2012, 3, 417. [Google Scholar] [CrossRef] [Green Version]
- Tedersoo, L.; Suvi, T.; Larsson, E.; Kõljalg, U. Diversity and community structure of ectomycorrhizal fungi in a wooded meadow. Mycol. Res. 2006, 110, 734–748. [Google Scholar] [CrossRef]
- Yang, R.H.; Li, Y.; Wu, Y.Y.; Tang, L.H.; Shang, J.J.; Bao, D.P. Genome-based analysis of lignocellulose-degrading enzyme systems in different Lentinus edodes strains. Acta Edulis Fungi 2018, 25, 15–22. [Google Scholar]
- Wieg, B.D.; Durall, D.M.; Simard, S.W. Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol. 2007, 176, 437–447. [Google Scholar]
- Redecker, D.; Szaro, T.M.; Bowman, R.J.; Bruns, T.D. Small genets of Lactarius xanthogalactus, Russula cremoricolor and Amanita francheti in late-stage ectomycorrhizal successions. Mol. Ecol. 2001, 10, 1025–1034. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.S.; He, F.; Zhao, X.H.; Wang, H.; Xu, X.H.; He, X.H.; Zhu, Y.D. Composition and function of soil fungal community during the establishment of Quercus acutissima seedlings in a Cd-contaminated soil. J. Environ. Manag. 2019, 246, 150–156. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Zou, W.Q.; Yang, L.; Li, W.Z.; Zhang, H.D.; Chen, X.W.; Wang, X.W. Root exudation rate and rhizosphere effect of different mycorrhizal associations of tree species in typical black soil area. Chin. J. Ecol. 2021, 33, 2810–2816. [Google Scholar] [CrossRef]
- Liu, X.L.; Dou, L.; Ding, X.H.; Sun, T.; Zhang, H.J. Influences of different afforestation systems on the soil properties of limestone mountains in the mid-eastern region of China. Catena 2021, 201, 105198. [Google Scholar] [CrossRef]
- Fang, F.; Wu, C.Z.; Hong, W.; Fang, H.L.; Song, P. Study on relationship between plant rhizosphere and non-rhizosphere soil enzymes and microorganisms. Subtrop. Agric. Res. 2016, 3, 209–215. [Google Scholar]
- Wang, X.; Liu, J.; Long, D.; Han, Q.; Huang, J. The ectomycorrhizal fungal communities associated with Quercus liaotungensis in different habitats across northern China. Mycorrhiza 2017, 27, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Kyaschenko, J.; Clemmensen, K.E.; Karltun, E.; Lindahl, B.D. Below-ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities. Ecol. Lett. 2017, 20, 1546–1555. [Google Scholar] [CrossRef]
- Zhou, Y.; Hartemink, A.E.; Shi, Z.; Liang, Z.; Lu, Y. Land use and climate change effects on soil organic carbon in North and Northeast China. Sci. Total Environ. 2019, 647, 1230–1238. [Google Scholar] [CrossRef]
- Dong, W.Y.; Zhang, X.Y.; Liu, X.Y.; Fu, X.L.; Chen, F.S.; Wang, H.M.; Sun, X.M.; Wen, X.M. Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China. Biogeosciences 2016, 12, 5537–5546. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.K.; Wen, L.; Li, Y.Y.; Wang, X.X.; Zhu, L.; Li, X.Y. 2012. Soil-quality effects of grassland degradation and restoration on the Qinghai-Tibetan Plateau. Soil Sci. Soc. Am. J. 2012, 76, 2256–2264. [Google Scholar] [CrossRef]
- Wu, Z.Z.; Cheng, H.G.; Wang, J.T.; Cheng, Q.D. Effects of biochar addition ratio and freezing-thawing on nitrogen leaching from ditched soil. J. Agro-Environ. Sci. 2019, 39, 1295–1302. [Google Scholar]
- Hao, L.F.; Hao, W.Y.; Wang, X.F.; Liu, H.; Liu, T.Y. Response of four ectomycorrhizal fungi to nitrogen sources. South. For. Sci. 2020, 48, 20–24. [Google Scholar]
- Simkin, S.M.; Allen, E.B.; Bowman, W.D.; Clark, C.M. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proc. Natl. Acad. Sci. USA 2016, 113, 4086–4091. [Google Scholar] [CrossRef] [Green Version]
- Olchowik, J.; Hilszczańska, D.; Bzdyk, R.M.; Studnicki, M.; Malewski, T.; Borowski, Z. Effect of deadwood on ectomycorrhizal colonisation of old-growth oak forests. Forests 2019, 10, 480. [Google Scholar] [CrossRef] [Green Version]
Sampling Site | pH | SOM (g∙kg−1) | TN (g∙kg−1) | NH4+-N (mg∙kg−1) | NO3−-N (mg∙kg−1) | AP (g∙kg−1) | AK (g∙kg−1) | C/N |
---|---|---|---|---|---|---|---|---|
Urban | 7.87 ± 0.03 a | 10.88 ± 4.13 b | 2.67 ± 0.09 b | 7.28 ± 0.03 b | 11.65 ± 1.59 a | 17.92 ± 1.11 a | 297.61 ± 9.38 a | 3.26 ± 1.28 a |
Suburban | 4.88 ± 0.11 b | 27.16 ± 9.88 a | 2.92 ± 0.03 a | 8.59 ± 0.19 a | 3.81 ± 0.68 b | 5.22 ± 0.06 b | 242.02 ± 15.24 b | 5.44 ± 1.05 a |
Rural | 4.50 ± 0.31 b | 12.40 ± 8.40 b | 2.89 ± 0.01 a | 8.81 ± 0.13 a | 3.48 ± 0.20 b | 4.42 ± 0.10 b | 228.14 ± 9.80 b | 2.50 ± 1.70 a |
Sampling Site | Shannon Index | Simpson Index | Chao1 Index | Good’s Coverage |
---|---|---|---|---|
Urban | 2.54 ± 0.06 b | 0.89 ± 0.01 b | 58.00 ± 1.76 a | 0.992± 0.002 a |
Suburban | 2.12 ± 0.04 c | 0.83 ± 0.01 c | 63.00 ± 10.50 a | 0.993± 0.001 a |
Rural | 2.76 ± 0.02 a | 0.92 ± 0.00 a | 65.72 ± 2.97 a | 0.993± 0.001 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, H.; Yang, B.; Wang, H.; Sun, W.; Jiao, K.; Qin, G. Changes in Soil Ectomycorrhizal Fungi Community in Oak Forests along the Urban–Rural Gradient. Forests 2022, 13, 675. https://doi.org/10.3390/f13050675
Shen H, Yang B, Wang H, Sun W, Jiao K, Qin G. Changes in Soil Ectomycorrhizal Fungi Community in Oak Forests along the Urban–Rural Gradient. Forests. 2022; 13(5):675. https://doi.org/10.3390/f13050675
Chicago/Turabian StyleShen, Hongyan, Baoshan Yang, Hui Wang, Wen Sun, Keqin Jiao, and Guanghua Qin. 2022. "Changes in Soil Ectomycorrhizal Fungi Community in Oak Forests along the Urban–Rural Gradient" Forests 13, no. 5: 675. https://doi.org/10.3390/f13050675
APA StyleShen, H., Yang, B., Wang, H., Sun, W., Jiao, K., & Qin, G. (2022). Changes in Soil Ectomycorrhizal Fungi Community in Oak Forests along the Urban–Rural Gradient. Forests, 13(5), 675. https://doi.org/10.3390/f13050675