Responses of Nitrogen-Fixing Bacteria Communities to Elevation, Season, and Slope Aspect Variations in Subtropical Forests of Yunnan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Field Design
2.2. Soil Analysis and DNA Extraction
2.3. Quantitative Real-Time PCR
2.4. PCR and DGGE Community Fingerprints
2.5. Statistical Analysis
3. Results
3.1. Vegetation Conditions and Soil Physical-Chemical Characteristics
3.2. Quantitative Real-Time PCR Assay
3.3. DGGE Analysis
3.4. Permutational Multivariate Analysis
3.5. Sequences Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Diallo, D.M.; Willems, A.; Vloemans, N.; Cousin, S.; Vandekerckhove, T.T.; Lajudie, P.D.; Neyra, M.; Vyverman, W.; Gillis, M.; Gucht, K.V.D. Polymerase chain reaction denaturing gradient gel electrophoresis analysis of the N2-fixing bacterial diversity in soil under Acacia tortilis ssp. raddiana and balanites aegyptiaca in the dryland part of Senegal. Environ. Microbiol. 2004, 6, 400–415. [Google Scholar] [CrossRef]
- Wartiainen, I.; Eriksson, T.; Zheng, W.; Rasmussen, U. Variation in the active diazotrophic community in rice paddy nifH PCR-DGGE analysis of rhizosphere and bulk soil. Appl. Soil Ecol. 2008, 39, 65–75. [Google Scholar] [CrossRef]
- Dias, A.C.F.; Pereirae, S.M.D.C.; Cotta, S.R.; Francisco, D.A.; Fábio, L.S.; Salles, J.F.; Azevedo, J.L.; Elsas, J.D.; Andreote, F.D. Abundance and genetic diversity of nifH gene sequences in anthropogenically affected Brazilian mangrove sediments. Appl. Environ. Microbiol. 2012, 78, 7960–7967. [Google Scholar] [CrossRef] [Green Version]
- He, D.H.; Shen, Q.L.; Xu, Q.F.; Chen, J.H.; Cheng, M.; Mao, X.W.; Li, Y.C. Evolvement of structure and abundance of soil nitrogen-fixing bacteria community in Phyllostachys edulis plantations with age of time. Acta Pedol. Sin. 2015, 52, 934–942. [Google Scholar]
- Meng, H.; Zhou, Z.C.; Wu, R.N.; Wang, Y.F.; Gu, J.D. Diazotrophic microbial community and abundance in acidic subtropical natural and re-vegetated forest soils revealed by high-throughput sequencing of nifH gene. Appl. Microbiol. Biotechnol. 2019, 103, 995–1005. [Google Scholar] [CrossRef] [PubMed]
- Moisander, P.H.; Beinart, R.A.; Voss, M.; Zehr, J.P. Diversity and abundance of diazotrophic microorganisms in the South China Sea during intermonsoon. ISME J. 2008, 2, 954–967. [Google Scholar] [CrossRef] [Green Version]
- Shiozaki, T.; Nagata, T.; Ijichi, M.; Furuya, K. Nitrogen fixation and the diazotroph community in the temperate coastal region of the northwestern North Pacific. Biogeosciences 2015, 12, 4751–4764. [Google Scholar] [CrossRef] [Green Version]
- Kjärstin, H.B.; Lasse, R.; Michael, K.; Ake, H. Isolation and gene quantification of heterotrophic N2-fixing bacterioplankton in the Baltic Sea. Environ. Microbiol. 2007, 9, 152–164. [Google Scholar]
- Silva, M.; Schloter, H.B.; Schloter, M.; Elsas, J.D.V.; Salles, J.F. Temporal dynamics of abundance and composition of nitrogen-fixing communities across agricultural soils. PLoS ONE 2013, 8, e74500. [Google Scholar]
- Farnelid, H.; Harder, J.; Bentzon, T.M.; Riemann, L. Isolation of heterotrophic diazotrophic bacteria from estuarine surface waters. Environ. Microbiol. 2014, 16, 3072–3082. [Google Scholar] [CrossRef] [PubMed]
- Ingrid, R.; Caton, T.M.; Caton, M.A.; Schneegurt. Nitrogen-fixation activity and the abundance and taxonomy of nifH genes in agricultural, pristine, and urban prairie stream sediments chronically exposed to different levels of nitrogen loading. Arch. Microbiol. 2018, 200, 1–11. [Google Scholar]
- Huhe, B.S.; Cheng, Y.X.; Nomura, N.; Nakajima, T.; Nakamura, T.U.H. Effect of abandonment on diversity and abundance of free-living nitrogen-fixing bacteria and total bacteria in the cropland soils of Hulun Buir, Inner Mongolia. PLoS ONE 2014, 9, e106714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.D.; Feng, X.M.; Hu, Y.G.; Ren, C.Z.; Zeng, Z.H. Effects of legume-oat intercropping on abundance and community structure of soil N2-ixing. Chin. J. Appl. Ecol. 2017, 28, 957–965. [Google Scholar]
- Juraeva, D.; George, E.; Davranov, K.; Ruppel, S. Detection and quantification of the nifH gene in shoot and root of cucumber plants. Can. J. Microbiol. 2006, 52, 731–739. [Google Scholar] [CrossRef]
- Wang, R.; Wang, J.; Zhu, K.; Xiu, W.; Zhao, J.; Yang, D.; Gang, L.I.; Liu, H. Abundance and diversity of diazotrophic nifH gene in the fluvo-aquic soil under different growth stages of maize. J. Tianjin Norm. Univ. Nat. Sci. Ed. 2018, 38, 35–41. [Google Scholar]
- Huang, L.N.; Tang, F.Z.; Song, Y.S.; Wan, C.Y.; Wang, S.L.; Liu, W.Q.; Shu, W.S. Biodiversity, abundance, and activity of nitrogen-fixing bacteria during primary succession on a copper mine tailing. FEMS Microbiol. Ecol. 2011, 78, 439–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirza, B.S.; Potisap, C.; Nusslein, K.; Bohannan, B.J.M.; Rodrigues, J.L.M. Response of free-living nitrogen-fixing microorganisms to land use change in the Amazon Rainforest. Appl. Environ. Microbiol. 2014, 80, 281–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, X.M.; Gong, Y.B.; Chen, L.W.; Wu, W.H.; Fang, J.J. Effects of different revegetation patterns in Mountain forests-the Arid valley ecotone in the upper reaches of Minjiang River on rhizosphere soil microbial biomass C, N and the structure of nitrogen-fixing bacteria community. J. Soil Water Conserv. 2011, 25, 208–213. [Google Scholar]
- Ravikumar, S.; Gnanadesigan, M.; Ignatiammal, S.T.M.; Sumaya, S. Population dynamics of free living, nitrogen fixing bacteria Azospirillum in Manakkudi mangrove ecosystem, India. J. Environ. Biol. 2012, 33, 597–602. [Google Scholar] [PubMed]
- Song, Z.; Zhu, J.M.; Yang, Y.S. Studies on soil microbiological characteristics of evergreen broad-leaved forest in Northern Fujian Province. J. Fujian Coll. For. 2000, 20, 317–320. [Google Scholar]
- Li, J.J.; She, H.Y.; Liu, J.; Yan, J.X.; Li, H.J. Soil organic mineralization and microbial characteristics along an altitudinal gradient in Guandi Mountain. China Environ. Sci. 2018, 38, 13–219. [Google Scholar]
- Xu, R.B.; Li, J.P.; Kong, W.; Chen, Z.G.; Li, C.Y.; Guo, J.; Guo, L.; Cao, X.L.; Li, X.H. Effect of elevation on the soil microbe quantity in tobacco growing region of Baokang in Hubei Province. Hubei Agric. Sci. 2012, 51, 005625–5653. [Google Scholar]
- Hirao, T.; Fujii, M.; Shigyo, N.; Kojima, H.; Fukui, M. Manabu Fukui. Influence of understory vegetation on soil bacterial communities and nitrogen cycling gene abundance in cool-temperate and sub-alpine forests along an elevational gradient. Pedobiol.-J. Soil Ecol. 2021, 87–88, 150746. [Google Scholar] [CrossRef]
- Wang, Y.S.; Li, C.N.; Shen, Z.H.; Rui, J.P.; Jin, D.C.; Li, J.B.; Li, X. Community assemblage of free-living diazotrophs along the elevational gradient of Mount Gongga. Soil Ecol. Lett. 2019, 1, 136–146. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Suyal, D.C.; Yadav, A.; Shouche, Y.; Goel, R. Microbial diversity and soil physiochemical characteristic of higher altitude. PLoS ONE 2019, 14, e0213844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.G.; Li, D.Q.; Wang, H.M.; Xiao, Q.M.; Liu, X.D. Molecular diversity of nitrogen-fixing bacteria from the Tibetan Plateau, China. FEMS Microbiol. Lett. 2006, 260, 134–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundqvist, M.K.; Sanders, N.J.; Wardle, D.A. Community and ecosystem responses to elevational gradients: Processes, mechanisms, and insights for global change. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 261–280. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.C.; Shi, Y.; Ni, Y.Y.; Deng, Y.; He, Z.L.; Chu, H.Y.; Zhou, J.H.; Joy, D.V.N. Dramatic increases of soil microbial functional gene diversity at the tree line ecotone of Changbai Mountain. Front. Microbiol. 2016, 7, 1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.B.; Shen, Z.H.; Li, C.N.; Kou, Y.P.; Wang, Y.S.; Tu, B.; Zhang, S.H.; Li, Z.S. Stair-step pattern of soil bacterial diversity mainly driven by pH and vegetation types along the elevational gradients of Gongga Mountain, China. Front. Microbiol. 2018, 9, 569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, J.Q.; Wu, B.; Chen, H.; Jiang, N.; Kang, S.M.; Liu, X.Z. Patterns and drivers of fungal diversity along an altitudinal gradient on Mount Gongga, China. J. Soils Sediments 2017, 17, 2856–2865. [Google Scholar] [CrossRef]
- Gupta, V.V.S.R.; Roper, M.M.; Roget, D.K. Potential for non-symbiotic N2-fixation in different agroecological zones of southern Australia. Aust. J. Soil Res. 2006, 44, 343–354. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, L. Spatial-seasonal variations of nitrogen fixation of water column in Taihu Lake. Aeta Scentiae Circunstantine 2016, 36, 1129–1136. [Google Scholar]
- Li, J.F.; Yang, J.W.; Yang, T.T.; Da, W.Y.; Hu, L.; Jing, C.H.; Yao, J.; Niu, S.Q. Seasonal dynamics of soil microbes and their relationship with soil physicochemical factors in alpine meadow in Maqu of Gansu. Pratacu Itural Sci. 2012, 29, 189–197. [Google Scholar]
- Yin, Y.L.; Wang, Y.Q.; Li, S.X.; Li, Y.; Zhao, W.; Ma, Y.S.; Wang, H.S.; Wen, H.Y. Study on seasonal various of characteristics of soil microbial community at degraded alpine meadows in the Three-River-Source area. Ecol. Environ. Sci. 2018, 27, 13–22. [Google Scholar]
- Wang, J.W.; Du, Q.Y.; Guan, X.Q. Determination of the seasonal changes of the biological nitrogen-Fixa activity of different plants in the Xilingoule grassland, Inner Mongolia. Acta Phytoecol. Geobot. Sixica 1989, 13, 387–391. [Google Scholar]
- Chen, S.; Zhang, C.Z.; Liu, D.B.; Zhang, Z.A.; Yang, J.C.; Wang, Z.X. Seasonal variation in the biomass of soil decomposer microbes and ITS relationship to the soil Habitat in the Leymus Chinensis grasslands in Northeast China. Acta Ecol. Sin. 1993, 15, 91–94. [Google Scholar]
- Rogozhina, Y.V.; Kostina, N.V.; Malyukova, L.S. Estimation of potential nitrogen-fixing activity of agrophytocenoses soils of the subtropical zone of Russia. Mosc. Univ. Soil Sci. Bull. 2011, 66, 32–35. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, Y.; Wang, Y.; Zhang, S.; Wang, H.K. Spatial and seasonal variations of Cyanobacteria and their nitrogen fixation rates in Sanya Bay, South China Sea. Sci. Mar. 2008, 72, 239–251. [Google Scholar]
- Cho, S.T.; Tsai, S.H.; Ravindran, A.; Selvam, A.; Yang, S.S. Seasonal variation of microbial populations and biomass in Tatachia grassland soils of Taiwan. Environ. Geochem. Health 2008, 30, 255–272. [Google Scholar] [CrossRef]
- Talaiekhozani, A. Seasonal dynamic and vertical distribution of microorganisms and nutrients in soils of Mostar Pit (Bosnia and Herzegovina). Agric. Conspec. Entificus 2013, 78, 107–111. [Google Scholar]
- Mishra, R.; Swain, M.R.; Dangar, T.K.; Thatoi, H. Diversity and seasonal fluctuation of predominant microbial communities in Bhitarkanika, a tropical mangrove ecosystem in India. Rev. Biol. Trop. 2012, 60, 909. [Google Scholar]
- Wang, G.; Zhao, J.M.; Hao, Q.Y.; Qin, Q.Q.; Hang, L.C. Quantitative distribution and preliminary selecting strains of the soil azotobacter in forest with different vegetation types. Guangdong Agric. Sci. 2013, 40, 60–64. [Google Scholar]
- He, R. Variations of Soil Microbial Biomass along Elevation Gradients in Subtropical Area in Wuyi Mountain. Ph.D. Thesis, Nanjing Forestry University, Nanjing, China, 2007. [Google Scholar]
- Yuan, C.M.; Liu, W.Y.; Li, X.S.; Chen, J. A Comparison of diversity and species composition of Lianas between Monsoon and moist evergreen broad-leaved forests on Western slope of Ailao Mountains, SW China. J. Mt. Sci. 2010, 28, 49–56. [Google Scholar]
- Gong, H.D.; Yang, G.P.; Lu, Z.Y.; Liu, Y.; Min, C. Composition and spatio-temporal distribution of tree seedlings in an evergreen broad-leaved forest in the Ailao Mountains, Yunnan. Biodivers. Sci. 2011, 19, 151–157. [Google Scholar]
- Wang, J.T.; Cao, P.; Hu, H.W.; Li, J.; Han, L.L.; Zhang, L.M.; Zheng, Y.M.; He, J.Z. Altitudinal distribution patterns of soil bacterial and archaeal communities along Mt. Shegyla on the Tibetan Plateau. Microb. Ecol. 2015, 69, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.H. Mammals on mountainsides: Elevational patterns of diversity. Glob. Ecol. Biogeogr. 2001, 10, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, E.A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biol. Biochem. 2016, 98, 109–126. [Google Scholar] [CrossRef] [Green Version]
- Mooshammer, M.; Wanek, W.; Hämmerle, I.; Fuchslueger, L.; Hofhansl, F.; Knoltsch, A.; Schnecker, J.; Takriti, M.; Watzka, M.; Wild, B.; et al. Adjustment of microbial nitrogen use efficiency to carbon: Nitrogen imbalances regulates soil nitrogen cycling. Nat. Commun. 2014, 5, 3694. [Google Scholar] [CrossRef]
- Morrissey, E.M.; Mau, R.L.; Hayer, M.; Liu, X.-J.A.; Schwartz, E.; Dijkstra, P.; Koch, B.J.; Allen, K.; Blazewicz, S.J.; Hofmockel, K.; et al. Evolutionary history constrains microbial traits across environmental variation. Nat. Ecol. Evol. 2019, 3, 1064–1069. [Google Scholar] [CrossRef] [PubMed]
- Moroenyanea, I.; Tripathib, B.M.; Adamsc, J.M.; Chend, S.; Steinberger, Y. Slope aspect influences soil microbial community structure and composition in the Israel arid Mediterranean. Isr. J. Ecol. Evol. 2020, 67, 1–6. [Google Scholar] [CrossRef]
- Li, R.; Liu, M.X.; Zhang, C.; Zhao, R.D.; Shao, P. Distribution characteristics of soil microbial communities along different slope direction of gannan sub-alpine Meadows. Ecol. Environ. Sci. 2017, 26, 1884–1891. [Google Scholar]
- Bennie, J.; Huntley, B.; Wiltshire, A.; Hill, M.O.; Baxter, R. Slope, aspect and climate: Spatially explicit and implicit models of topographic microclimate in chalk grassland. Ecol. Model. 2008, 216, 47–59. [Google Scholar] [CrossRef]
- Carletti, P.; Vendramin, E.; Pizzeghello, D.; Concheri, G.; Zanella, A.; Nardi, S.; Squartini, A. Soil humic compounds and microbial communities in six spruce forests as function of parent material, slope aspect and stand age. Plant Soil 2009, 315, 47–65. [Google Scholar] [CrossRef]
- Gong, X.Y.; Brueck, H.; Giese, K.; Zhang, L.; Sattelmacher, B.; Lin, S. Slope aspect has effects on productivity and species composition of hilly grassland in the Xilin River Basin, Inner Mongolia, China. J. Arid. Environ. 2008, 72, 483–493. [Google Scholar] [CrossRef]
- Hao, C.Y.; Zhu, Z.Z.; Wu, S.H. Correlation analysis of vegetation NDVI and type of vegetation with main environmental factors on eastern and western sides of Ailao Mountain. J. Plant Resour. Environ. 2009, 18, 68–72. [Google Scholar]
- Badano, E.; Cavieres, L.; Molina-Montenegro, M.; Quiroz, C. Slope aspect influences plant association patterns in the Mediterranean matorral of central Chile. J. Arid. Environ. 2005, 62, 93–108. [Google Scholar] [CrossRef]
Sample | Elevation (m) | Latitude | Longitude |
---|---|---|---|
E1 | 1246 | 24°26′11.85″ N | 100°53′12.67″ E |
E2 | 1506 | 24°27′21.31″ N | 100°57′55.09″ E |
E3 | 1848 | 24°28′30.26″ N | 100°58′50.36″ E |
E4 | 2105 | 24°30′7.66″ N | 100°59′27.89″ E |
E5 | 2417 | 24°30′52.61″ N | 101°0′41.68″ E |
E6 | 2517 | 24°32′22.49″ N | 101°01′39.68″ E |
E7 | 2643 | 24°32′9.19″ N | 101°01′52.01″ E |
W1 | 1204 | 24°36′5.29″ N | 101°06′56.10″ E |
W2 | 1515 | 24°35′19.21″ N | 101°07′28.79″ E |
W3 | 1808 | 24°35′10.11″ N | 101°07′2.16″ E |
W4 | 2104 | 24°33′29.31″ N | 101°04′35.83″ E |
W5 | 2407 | 24°33′35.24″ N | 101°04′7.41″ E |
W6 | 2513 | 24°32′51.74″ N | 101°02′43.31″ E |
W7 | 2643 | 24°32′9.46″ N | 101°01′54.19″ E |
Sample | Herbal Coverage | Arbor Coverage | Water Content (%) | pH | Organic Matter (g/kg) | N (%) | P (%) | K (%) | NO3−-N (mg/kg) | NH4+-N (mg/kg) |
---|---|---|---|---|---|---|---|---|---|---|
A-E1 | 80% | 40% | 16.15 | 6.720 | 18.65 | 0.570 | 0.270 | 37.670 | 0.57 | 23.75 |
A-E2 | 40% | 60% | 16.36 | 6.887 | 20.25 | 0.693 | 0.273 | 37.017 | 0.71 | 24.25 |
A-E3 | 40% | 60% | 24.83 | 6.900 | 82.57 | 1.807 | 0.353 | 22.103 | 0.67 | 27.75 |
A-E4 | 40% | 65% | 28.65 | 6.623 | 84.28 | 2.667 | 0.423 | 18.200 | 0.77 | 31.86 |
A-E5 | 40% | 70% | 34.60 | 6.750 | 102.10 | 3.050 | 0.380 | 16.917 | 1.72 | 42.16 |
A-E6 | 5% | 95% | 39.55 | 6.147 | 187.31 | 6.953 | 1.127 | 13.077 | 3.32 | 58.09 |
A-E7 | 5% | 90% | 49.62 | 6.787 | 185.37 | 4.910 | 0.680 | 16.697 | 0.88 | 44.15 |
B-E1 | 60% | 35% | 16.07 | 6.670 | 15.79 | 0.478 | 0.162 | 42.825 | 0.61 | 31.52 |
B-E2 | 30% | 55% | 16.36 | 6.837 | 18.78 | 0.586 | 0.111 | 48.146 | 0.76 | 31.55 |
B-E3 | 30% | 50% | 24.68 | 6.850 | 48.85 | 1.229 | 0.233 | 14.376 | 0.52 | 36.29 |
B-E4 | 30% | 60% | 28.38 | 6.573 | 54.50 | 1.830 | 0.305 | 20.077 | 1.25 | 54.88 |
B-E5 | 30% | 70% | 33.33 | 6.700 | 92.67 | 3.136 | 0.260 | 16.722 | 2.54 | 59.26 |
B-E6 | 5% | 90% | 37.36 | 6.097 | 246.93 | 8.891 | 0.850 | 7.164 | 2.95 | 73.75 |
B-E7 | 5% | 85% | 48.23 | 6.737 | 295.48 | 6.516 | 0.630 | 15.370 | 0.45 | 58.48 |
C-E1 | 75% | 40% | 13.57 | 6.683 | 14.74 | 0.467 | 0.137 | 39.360 | 0.81 | 24.44 |
C-E2 | 35% | 55% | 15.10 | 6.217 | 14.81 | 0.637 | 0.140 | 43.427 | 0.68 | 32.68 |
C-E3 | 35% | 60% | 24.50 | 6.587 | 70.47 | 1.680 | 0.293 | 13.430 | 0.81 | 33.32 |
C-E4 | 35% | 60% | 28.09 | 6.517 | 104.34 | 2.777 | 0.340 | 18.440 | 1.83 | 35.25 |
C-E5 | 35% | 70% | 32.10 | 6.593 | 104.52 | 2.843 | 0.247 | 23.527 | 2.18 | 36.67 |
C-E6 | 5% | 90% | 35.68 | 6.687 | 214.45 | 7.373 | 0.740 | 9.403 | 2.74 | 73.55 |
C-E7 | 5% | 85% | 47.096 | 6.287 | 143.45 | 3.930 | 0.543 | 17.290 | 0.87 | 35.81 |
D-E1 | 85% | 50% | 18.87 | 6.663 | 20.41 | 0.624 | 0.143 | 44.232 | 0.38 | 24.01 |
D-E2 | 50% | 65% | 19.19 | 6.197 | 24.49 | 0.752 | 0.173 | 47.173 | 0.35 | 24.96 |
D-E3 | 45% | 65% | 26.92 | 6.567 | 60.23 | 1.377 | 0.224 | 14.027 | 0.58 | 31.53 |
D-E4 | 45% | 65% | 30.38 | 6.497 | 80.91 | 2.536 | 0.287 | 17.803 | 1.42 | 31.79 |
D-E5 | 45% | 75% | 36.59 | 6.573 | 104.03 | 3.152 | 0.265 | 21.708 | 1.56 | 37.52 |
D-E6 | 15% | 95% | 41.32 | 6.667 | 236.00 | 7.606 | 0.826 | 12.343 | 2.99 | 73.01 |
D-E7 | 10% | 95% | 52.45 | 6.267 | 270.84 | 6.967 | 0.698 | 15.931 | 0.20 | 38.07 |
A-W1 | 85% | 60% | 17.78 | 6.973 | 21.86 | 1.253 | 0.540 | 16.173 | 0.34 | 24.07 |
A-W2 | 50% | 70% | 19.56 | 6.803 | 33.33 | 1.267 | 0.273 | 6.397 | 0.43 | 30.44 |
A-W3 | 40% | 70% | 21.90 | 6.897 | 39.13 | 1.460 | 0.543 | 11.690 | 0.45 | 41.80 |
A-W4 | 45% | 70% | 28.64 | 6.627 | 63.09 | 2.483 | 0.523 | 18.360 | 0.95 | 46.17 |
A-W5 | 25% | 90% | 41.73 | 6.187 | 146.83 | 4.923 | 0.957 | 17.960 | 3.78 | 56.10 |
A-W6 | 10% | 95% | 42.84 | 6.287 | 187.14 | 6.323 | 1.090 | 9.650 | 5.98 | 63.99 |
A-W7 | 10% | 90% | 44.76 | 5.167 | 183.49 | 4.540 | 0.577 | 18.603 | 1.28 | 45.49 |
B-W1 | 70% | 55% | 15.40 | 6.873 | 17.14 | 0.816 | 0.393 | 19.629 | 0.22 | 26.87 |
B-W2 | 40% | 65% | 19.11 | 6.703 | 20.68 | 1.121 | 0.187 | 11.136 | 0.60 | 45.52 |
B-W3 | 35% | 65% | 20.55 | 6.797 | 38.97 | 1.334 | 0.502 | 9.829 | 0.67 | 45.81 |
B-W4 | 35% | 60% | 26.12 | 6.527 | 48.81 | 2.051 | 0.414 | 21.438 | 0.92 | 51.45 |
B-W5 | 15% | 85% | 40.66 | 6.087 | 136.78 | 4.326 | 0.938 | 18.181 | 5.79 | 64.19 |
B-W6 | 5% | 90% | 41.78 | 6.187 | 215.33 | 6.723 | 0.986 | 8.362 | 8.38 | 88.53 |
B-W7 | 5% | 85% | 42.35 | 5.067 | 239.81 | 5.597 | 0.552 | 14.776 | 1.21 | 43.47 |
C-W1 | 90% | 65% | 10.04 | 6.497 | 12.38 | 0.877 | 0.390 | 20.700 | 0.38 | 21.32 |
C-W2 | 55% | 70% | 19.04 | 6.630 | 31.95 | 1.233 | 0.257 | 8.747 | 0.45 | 32.68 |
C-W3 | 50% | 75% | 19.12 | 6.783 | 37.47 | 1.297 | 0.510 | 9.683 | 0.53 | 46.53 |
C-W4 | 50% | 70% | 24.55 | 6.883 | 56.05 | 1.370 | 0.473 | 18.750 | 2.10 | 61.17 |
C-W5 | 30% | 90% | 38.07 | 6.227 | 188.19 | 3.580 | 8.040 | 16.593 | 2.76 | 76.10 |
C-W6 | 8% | 95% | 40.41 | 6.363 | 189.35 | 4.807 | 6.500 | 6.777 | 6.59 | 76.49 |
C-W7 | 8% | 90% | 40.98 | 5.440 | 172.46 | 4.640 | 0.483 | 10.250 | 0.75 | 30.49 |
D-W1 | 95% | 70% | 19.34 | 6.347 | 16.41 | 0.941 | 0.486 | 17.755 | 0.27 | 25.42 |
D-W2 | 60% | 75% | 21.15 | 6.480 | 26.16 | 2.005 | 0.214 | 8.845 | 0.27 | 25.71 |
D-W3 | 50% | 75% | 23.22 | 6.633 | 39.85 | 2.490 | 0.529 | 10.830 | 0.28 | 26.40 |
D-W4 | 55% | 75% | 30.52 | 6.733 | 51.38 | 2.726 | 0.356 | 18.479 | 0.38 | 27.47 |
D-W5 | 35% | 90% | 43.12 | 6.077 | 146.43 | 5.293 | 0.977 | 19.518 | 2.84 | 52.42 |
D-W6 | 15% | 95% | 44.56 | 6.213 | 166.40 | 6.158 | 0.956 | 7.817 | 5.64 | 68.07 |
D-W7 | 15% | 90% | 48.61 | 5.290 | 182.64 | 4.40 | 0.508 | 21.099 | 0.53 | 40.79 |
Factors | df | SS | MS | F. Model | η2 | Pr (>F) | Sig | |
---|---|---|---|---|---|---|---|---|
Abundance of nifH | Slope | 1 | 4.918 × 1012 | 4.918 × 1012 | 94.45 | 0.457 | <2 × 10−16 | *** |
Season | 3 | 6.689 × 1014 | 2.230 × 1014 | 4282.50 | 0.991 | <2 × 10−16 | *** | |
Altitude | 6 | 6.434 × 1013 | 1.072 × 1013 | 205.97 | 0.917 | <2 × 10−16 | *** | |
Slope × Season | 3 | 3.529 × 1013 | 1.176 × 1013 | 225.95 | 0.858 | <2 × 10−16 | *** | |
Slope × Altitude | 6 | 1.435 × 1013 | 2.392 × 1012 | 45.94 | 0.711 | <2 × 10−16 | *** | |
Season × Altitude | 18 | 2.738 × 1014 | 1.521 × 1013 | 292.16 | 0.979 | <2 × 10−16 | *** | |
Slope × Season × Altitude | 18 | 5.149 × 1013 | 2.861 × 1012 | 54.94 | 0.898 | <2 × 10−16 | *** | |
Residuals | 112 | 5.832 × 1012 | 5.207 × 1010 | |||||
Diveristy of nifH | Slope | 1 | 0.0979 | 0.0979 | 85.55 | 0.433 | 1.79 × 10−15 | *** |
Season | 3 | 0.8065 | 0.2688 | 234.87 | 0.863 | <2 × 10−16 | *** | |
Altitude | 6 | 3.0538 | 0.5090 | 444.64 | 0.960 | <2 × 10−16 | *** | |
Slope × Season | 3 | 0.0190 | 0.0063 | 5.54 | 0.129 | 0.00139 | ** | |
Slope × Altitude | 6 | 1.5211 | 0.2535 | 221.47 | 0.922 | <2 × 10−16 | *** | |
Season × Altitude | 18 | 1.6087 | 0.0894 | 78.08 | 0.926 | <2 × 10−16 | *** | |
Slope × Season × Altitude | 18 | 0.6307 | 0.0350 | 30.61 | 0.831 | <2 × 10−16 | *** | |
Residuals | 112 | 0.1282 | 0.0011 |
Band | Similar Sequence | Homology | Classification |
---|---|---|---|
N1 | Uncultured bacterium clone GHXIEBM05FPWWK nitrogenase iron protein (nifH) gene, partial cds (KX717645.1) | 95% | Bacteria; environmental samples |
N2 | Uncultured bacterium clone HP-201 nitrogenase (nifH) gene, partial cds (MF663484.1) | 97% | Bacteria; environmental samples |
N3 | Uncultured bacterium clone LS-4 nitrogenase iron protein (nifH) gene, partial cds (MG739331.1) | 98% | Bacteria; environmental samples |
N4 | Uncultured bacterium clone HP-215 nitrogenase (nifH) gene, partial cds (MF663496.1) | 97% | Bacteria; environmental samples |
N5 | Uncultured bacterium clone HP-221 nitrogenase (nifH) gene, partial cds (MF663502.1) | 96% | Bacteria; environmental samples |
N6 | Uncultured bacterium clone HP-201 nitrogenase (nifH) gene, partial cds (MF663484.1) | 97% | Bacteria; environmental samples |
N7 | Uncultured bacterium clone HP-54 nitrogenase (nifH) gene, partial cds (MF663369.1) | 97% | Bacteria; environmental samples |
N8 | Uncultured bacterium clone HP-54 nitrogenase (nifH) gene, partial cds (MF663369.1) | 98% | Bacteria; environmental samples |
N9 | Uncultured bacterium clone HP-201 nitrogenase (nifH) gene, partial cds (MF663484.1) | 96% | Bacteria; environmental samples |
N10 | Uncultured bacterium clone HP-201 nitrogenase (nifH) gene, partial cds (MF663484.1) | 98% | Bacteria; environmental samples |
N11 | Uncultured bacterium clone LS-45 nitrogenase iron protein (nifH) gene, partial cds (MG739361.1) | 97% | Bacteria; environmental samples |
N12 | Uncultured bacterium clone WK-A5 nitrogenase iron protein (nifH) gene, partial cds (HQ335962.1) | 97% | Bacteria; environmental samples |
N13 | Uncultured bacterium clone HP-27 nitrogenase (nifH) gene, partial cds (MF663348.1) | 97% | Bacteria; environmental samples |
N14 | Uncultured bacterium clone LS-4 nitrogenase iron protein (nifH) gene, partial cds (MG739331.1) | 97% | Bacteria; environmental samples |
N15 | Uncultured bacterium clone HP-195 nitrogenase (nifH) gene, partial cds (MF663478.1) | 97% | Bacteria; environmental samples |
N16 | Uncultured bacterium clone HP-195 nitrogenase (nifH) gene, partial cds (MF663478.1) | 92% | Bacteria; environmental samples |
N17 | Uncultured bacterium clone HP-205 nitrogenase (nifH) gene, partial cds (MF663488.1) | 97% | Bacteria; environmental samples |
N18 | Uncultured bacterium clone SAHN-12 nitrogenase iron protein (nifH) gene, partial cds MN600995.1) | 92% | Bacteria; environmental samples |
N19 | Uncultured bacterium clone HP-153 nitrogenase (nifH) gene, partial cds (MF663446.1) | 98% | Bacteria; environmental samples |
N20 | Uncultured bacterium clone J19II (16) nitrogenase (nifH) gene, partial cds (KX502033.1) | 96% | Bacteria; environmental samples |
N21 | Uncultured bacterium clone GHXIEBM05F2P7E nitrogenase iron protein (nifH) gene, partial cds (KX719750.1) | 91% | Bacteria; environmental samples |
N22 | Uncultured bacterium clone 299 nitrogenase iron protein (nifH) gene, partial cds (KY011601.1) | 99% | Bacteria; environmental samples |
N23 | Uncultured bacterium clone HP-153 nitrogenase (nifH) gene, partial cds (MF663446.1) | 96% | Bacteria; environmental samples |
N24 | Uncultured bacterium clone PF-1-39 dinitrogenase reductase (nifH) gene, partial cds (KM046237.1) | 97% | Bacteria; environmental samples |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Jia, W.; Li, Y.; He, X.; Wang, S. Responses of Nitrogen-Fixing Bacteria Communities to Elevation, Season, and Slope Aspect Variations in Subtropical Forests of Yunnan, China. Forests 2022, 13, 681. https://doi.org/10.3390/f13050681
Li H, Jia W, Li Y, He X, Wang S. Responses of Nitrogen-Fixing Bacteria Communities to Elevation, Season, and Slope Aspect Variations in Subtropical Forests of Yunnan, China. Forests. 2022; 13(5):681. https://doi.org/10.3390/f13050681
Chicago/Turabian StyleLi, Huipeng, Weijia Jia, Yue Li, Xiahong He, and Shu Wang. 2022. "Responses of Nitrogen-Fixing Bacteria Communities to Elevation, Season, and Slope Aspect Variations in Subtropical Forests of Yunnan, China" Forests 13, no. 5: 681. https://doi.org/10.3390/f13050681
APA StyleLi, H., Jia, W., Li, Y., He, X., & Wang, S. (2022). Responses of Nitrogen-Fixing Bacteria Communities to Elevation, Season, and Slope Aspect Variations in Subtropical Forests of Yunnan, China. Forests, 13(5), 681. https://doi.org/10.3390/f13050681